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Welcome, so we are in the module 3, where basically we are discussing the boundary

value problems in elasticity and we are discussing flexure Problems in Flexure. So, in

this is lecture number 35, so in the previous two lecture, what we have discussed is the

rectangular beam or a 2 dimensional rectangular body or 2 dimensional beam.

Where basically we use stress functions to find out the solution of the beam problem and

also we have compared some of the results with the usual strength of material solutions.

And in doing so, we also showed that the theory of elasticity solution gives you a more

accurate result compared to strength of material approach.
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Now, here in this lecture actually we will be doing for this same thing we will be doing

for curved bar or curved beam, essentially under pure bending.

So, bending this problem is also solved in solved via strength of material approach where

essentially  we  derived  Winkler  Bach  formula  which  is  a  which  we  know from our

knowledge of a strength of material approach that this Winkler Bach formula gives the

hyperbolic stress variation.  And we will see how elasticity approach or the theory of



elasticity  approach how this  stress  varies  or  what  is  the  stresses  if  we calculate  via

elasticity approach. Now, this beam this is a curve beam and it is acting on a couple or

the moment at the end. And this is usual pure bending formula that we have encountered

in other straight beams.

So,  what  are  the  boundary  condition  for  these  beams?  Boundary  conditions  are

essentially there is no forces in these two surface; this surface and this surface there is no

forces which is actually represents the sigma rr, if this is the radius at the centre of the 2

arc then sigma rr that stress along the radial direction at r equals to a and r equals to b is

0, which means that concave and convex boundaries are free from normal forces.

Now, normal stresses at the end give rise to moment only that means, the normal stresses

here that is sigma theta theta, actually theta is measured from the this centroid line. So, if

you draw a centroid line, so theta is at any point theta is measured this is a theta. So, this

is theta, so the normal stresses.

So along these it will be the radial line; this does not create any normal force which

essentially if I integrate from a to b sigma theta theta dr has to be 0 and it only gives

couple because we have a moment acting at the end or the in free in surface. So, sigma

theta theta r dr has to be the minus M, so this is another boundary condition.

And there is no tangential  force applied at  the boundary. So, there is no shear force

actually acting or the essentially this kind of tangential force is not acting, so sigma r

theta is 0. So, with these boundary conditions we want to solve this problem.

Now, look carefully that I am using here sigma rr sigma theta theta sigma r theta; all

these  are  polar  coordinate  system,  which  is  a  essentially  we  have  discussed  2

dimensional 3 dimensional cylindrical system.

When I reduced it to 2 dimensional it becomes polar coordinate system and in the polar

coordinate system we also know that how it is related with the rectangular coordinate

system for instance x is r cos theta y is r are sin theta.

And r is root over x square plus y square and theta is r to 10 y by x and all those things

we know. So, in the general curvilinear system for instance if you remember that h 1 and



h 2 that h 1 is here 1 and h 2 is r. So, that e theta e r is the e r and e theta r our basis

vector here. 

Now, since this is a polar coordinate system so, er and e theta is essentially not constant

vector and its derivative will have some variable in terms of theta or r that we have seen

in the while doing the cylindrical coordinate system. So, those formulas are essentially

we need now to find out the solution of this problem. So, let us see how these things

work.
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So,  for  instance  in  a  general  polar  coordinate  system  or  polar  coordinates  the  2

dimensional continuum can be written is this form this is the balance law these tools are

balanced law where b r and b theta are general body force and if the body force are taken

as 0, so, then this becomes the compatibility equation. See this equation is very much

similar to what we get in the Cartesian coordinate system. For instance, in the Cartesian

coordinate system we get del square del x square plus del square del y square sigma x

plus sigma y equals to 0.

So, this is the compatibility equation we get in the Cartesian coordinate system and this

is sigma xx sigma rr plus sigma theta theta and this is the Cartesian this thing.



So,  these  del  square  x  by  del  x  square  is  replaced  by  the  polar  coordinate  system

operator. So, now the final we also need to have the final form of this equation which is

essentially this form.
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So, the bi harmonic equation that we want to have, so if we this if we substitute now

sigma rr and sigma theta theta of this form that is 1 by r d phi dr plus 1 by r square d

square phi d theta square and sigma theta is d square phi dr square. Then we get the final

biharmonic form of the compatibility equation or the popularly known as the biharmonic

equation.

Now, you have to see or you can verify that that these form this sigma rr and sigma theta

theta also satisfies the governing equation in 2 dimensional polar coordinate system. That

is the sigma and this phi is also known as the stress function. So, this satisfies these two

equations directly. So, you can also just substitute this and check its check whether it

satisfies or not.

And then if you substitute it in the usual compatibility equation, so, this is essentially

sigma rr and sigma theta theta, so this is sigma rr and this is sigma theta theta.

So, this if we substitute and then we take this out phi, so, this is the final biharmonic

equation which is very similar to the Cartesian coordinate system except this is the in the

polar coordinate system. Now, this is sigma r theta is also this.



So, this we can substitute in the governing equation and check whether this satisfies or

not. Now, the general solution of this biharmonic equation is very lengthy formulation

and it is known as the Michell solution, so in terms of Fourier series. So, this solution is

very  long solution  and it  contains  the  infinite  terms  and this  Michell  solution  these

Fourier series will be in terms of theta.

So, so we do not really required these things here or we will really discuss these things

here rather we will take a modification of this Michell solution or specifically the first

terms of the Michell solution, so, first few terms of the Michell solution. 

Now, this is what we what I have already discussed that stresses of this form satisfy the

governing differential equation. Now, here the phi is the stress function that we need to

now concentrate on. So, let us see how this phi will looks like.
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So, now this stress function if we just check this stress function from the previous thing

that phi is a general function of r and theta.

But however, if I take if I or if I assume that phi is a function of r only that means, all

terms related to theta the derivative with respect to theta will vanish. So, then my phi

becomes the my biharmonic form of the equation will take this form.



So, they see there is no derivative with respect to theta, so they essentially d 2 phi by d

theta 2 cancels becomes 0. So, that is d 2 phi by d theta 2, if you put in the previous

biharmonic equation this becomes 0.

So, this becomes this equation and if we if I just multiply or expand this thing and then

this  is  my  final  differential  equation.  Now, see  this  differential  equation  this  is  the

ordinary  differential  equation,  this  is  not  a  partial  differential  equation  and  this

differential equation can be.

So, it is solvable actually if you substitute a new variable for instance t equals to e to the

power r then this differential equation can be converted to a differential equation with

linear  differential  equation  with  constant  coefficient.  Now,  this  solution  of  this

differential equation can be thought of can be written in terms of this that is A log r B r

square log r plus C r square plus D.

So, this is this exercise you can also try and c whether they satisfies this differential

equation or not. So, our phi is of this form finally, our phi is of this form and the stresses

naturally will be 1 by r d phi dr, because 1 by r square d square phi d theta 2 d theta

square are 0.

So, my stresses are a B c here three constants and sigma theta is del square phi by del r

square which is also this and sigma r theta which is essentially 0 because d phi by d theta

is 0. So, see we have a four constants, so similar to the previous approach these four

constants we need to identify from the stress boundary condition that we have seen for

the pure bending.

Now, our first job is to identify these constants what are these values. Now, this is the

boundary condition that we are talking about we have three basic boundary conditions

here which is sigma rr at r equals to a and r equals to b equals to 0.

And there is no normal stresses at the end and no normal forces at the end only moment

is there and there is no tangential force. So, that is sigma r theta equals to 0 which is

already satisfied  by our  stress function where we have already seen that  sigma rr  is

essentially the sigma r theta is essentially 0 this is due to the form of the stress function

we have considered.



So, we have the what is the form the basic thing is that our stress function is function of r

only there is no variation in theta. So, that is the basic thing which leads to sigma r theta

or that shear stress in r theta system is 0. So, which also satisfies our third boundary

condition now from the first to boundary condition then we have to find out the constants

four constants abcd.

(Refer Slide Time: 16:10)

So, let us see the first boundary condition tells us that convex and concave boundaries

are free from normal forces, now that is sigma rr if I right.

So, r equals to a and r equals to b it has to be 0 so that means, this end this end and this

end there is no sigma rr. So, rr means along this the along the radius radial direction.

So, this leads to 2 equation, this is the first equation and this is the second equation. So,

then again we have a third equation we need to find out a third equation which is through

the normal stresses at the in give rise to moment only.

(Refer Slide Time: 17:03)



So, the moment means first of all we have to show that it does not give you any stresses

or normal force in this axis. So, there is no normal force it is only the moment it gives.

So, if  I  just  integrate  now sigma theta dr and substitute  this  then if  I  just  do simple

integration  which  is  this  is  the  form  of  sigma  theta.  And  then  if  I  do  the  simple

integration from a to b then it seems that we have this form and this form is actually we

have deduced in the previous slide that is if I substitute a and b in place of r.

So, this A by b square plus B into 2 log b plus 2 C and then 1 by a by a square plus B into

2 log a 1 plus 2 log a plus 2 C. So, now, this is 0 from equation number 1 in the previous

slide and this is 0 from the equation 2 of the previous slide.

So,  this  quantity  finally,  this  quantity  becomes  0,  so  these  also  satisfies  our  stress

function also satisfies this boundary condition. Now, this once I satisfy this boundary

condition then it proves that our stress function does not give any rise to the normal

force. So, it satisfies the equilibrium also, so that means, we need to satisfy the other

thing now.

So that means, that these normal stresses are only giving rise to any normal stresses gives

rise to a moment only there is no normal force. So, normal force we have checked it does

not give.
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So,  our  next  boundary  condition  because  its  normal  stresses  at  the  end give  rise  to

moment only.

So, if I just now integrate sigma theta r dr which is equals to m. So, now sigma theta if I

substitute here which is d 2 phi by dr square. So, phi is a function of remember in our

case that phi is a function of r only, so this becomes our this integral become this. So, we

need to evaluate this integral what is the form.

So, now, in doing so we just do the by parts; so, integration by parts where this is the first

term and this is the second term. So,, so essentially the first function is r and then second

function is d phi d 2 phi by dr square.

So,  this  is  the  integration  by  parts  now this  integration  by parts  if  I  write.  So,  this

becomes integral d phi dr the second term becomes phi so this is clear now this term is

also we have to evaluate. So, this term if I write it in this form then 1 by r phi dr by r

square.

So, I just multiply it r and 1 by r, so this term is essentially our sigma rr if you look

carefully that sigma rr is our sigma rr is actually 1 by r d phi by dr and there 1 by r

square into d 2 phi by d theta 2.

So, this term will be 0, so only this term is there so this becomes our sigma rr. Now if I

substitute b to a sigma rr is essentially b to a 0 because that is our another boundary

condition which we have already satisfied earlier so this term becomes 0.



So, now, only this term is left and so minus of phi a to b is equals to minus M. So, this

becomes phi a to b becomes M so now, if i substitute my phi now.

So, then A log b by a plus B into b square log by log b minus a square log a plus C into b

square minus a square equals to M. So, this is my third equation that we are looking for,

so this is my third equation.

So, now we have a 3 equations and we have 3 unknowns you see the unknowns are ABC.

So, if we can now find out these 3 unknowns we can compute the stresses very easily.

So, let us see what are the form of these unknowns.
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So, here the unknowns the equation 3 equations that we have seen is written. So, this is

the first equation that we have seen earlier and this is the third second equation and this

is the third equation and we have a unknown 1 2 3 unknown A B and C. So, now if I

solve ABC, we get of this form; so these forms are very lengthy form.

So, C is of this thing and then we have also used N is essentially this. So, these with

these three constants we can now compute stresses and this stress is essentially what we

have seen is comparable with the Winkler Bach formula that we have seen in the strength

of material.
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So, let us see what are the stresses so the stresses look like this. So, in case of a pure

bending this sigma rr is this. So, here N is also a constant actually which compose of b

and a.

So, and sigma theta is also minus 4M I N which is also a very long expression. So, this

sigma rr sigma rr sigma theta is essentially we can compute from the theory of elasticity.

So, and sigma r theta is essentially 0.

So, if you remember strength of material solution of this problem which was the Winkler

Bach formula. This Winkler Bach formula gives us the stress variation in general this

stress variation is a hyperbolic equation.

And this stress variation is essentially sigma equals to some we can write it in this form

some constant say M into capital M by a square is our this thing, now inner radius. So,

this is hyperbolic stuff now hyperbolic kind of equation.

Now this sigma theta is equivalent to this sigma for the strength of material solution.

Now if we compare these two solutions, so this if I term it exact because this is exact

sigma theta and this is a Winkler Bach solution.

So, if we compared these two things then we can easily see that these two approach the

Winkler Bach formula gives a very nice approximation or very accurate approximation

to the exact result. While the linear variation when we approach that these thickness of

these that is b minus a here the h is much less than the outer radius that is a.



So, h is much less than the outer radius h is a essentially h is b minus a. So, this b minus

a is much less than a then we can use this kind of formula. So, where we directly use the

straight beam formula pure bending of a straight beam, so that gives me the linear stress

variation and which is pretty inaccurate actually.

And then if we take the curvature effect properly then we get the hyperbolic a hyperbolic

stress variation.  And then if we go a little bit  more for the exact theory of elasticity

solution then we get the actual stress variation which is of this form.

Now, as I have told earlier  this hyperbolic stress variation is quite good approximate

quite good with the theory of elasticity result now. So, what we have seen here, so the

pure bending case we it is very popular with us. So, pure bending case for the curved

beam which is generally done in the strength of material approach, which is a Winkler

Bach formula.

So, this formula is very close to the exact theory of elasticity solution and theory of

elasticity  solution  how  we  have  achieved  the  theory  of  elasticity  solution  we  have

achieved with a stress function approach. So, in the stress function approach we consider

the first few terms of the Michell solution which leads to our stress function is dependent

on r only.

So, it is independent of theta and since this is a pure bending case. So, which is satisfying

our boundary conditions, so by this procedure we achieved sigma rr sigma theta and

sigma r theta you see only sigma theta we can compare with the usual Winkler Bach

formula for the strength of material solution. But also you got the sigma r at the variation

of the stresses along the radial axis.

So, this gives you better insight of the problem via theory of elasticity approach. So, I

stop here today and I  will  continue with the derivation  of the displacement  for pure

bendings in the next class.

Thank you.


