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Welcome this  is the lecture number 19th for module 4, where we are discussing the

constitutive  relation.  And in the  last  to  last  class  actually  we have  discussed  the  an

isotropic material,  and in terms of mathematical constants that C ij is a mathematical

constants we have discussed. 
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Now, essentially the constitutive relation here is a actually for an orthotropic material.

We have already reduced the what does this mean this orthotropic means, and then this is

in a how stress and strains are related. So, just to a quick recap these are the normal

strains epsilon 11, epsilon 22 and these are the sheared strain.

So, for instance, this is gamma 12 and so on. So, essentially it is 2 of epsilon 12. So, we

know these things. And you also know the strain energy term u how it looks like and for

instance, the strain energy for the orthotropic material it will depend on the 9 constants.

So, the 9 such constants we have reduced from primary from 21 independent constants,

and from the 21 independent constant we first reduce the 13  for a monoclinic material



and then from that we have reduce the 9 constant for orthotropic material. And these 9

constants are these C 11, C 12, C 13, C 2 C 23, C 33 and C 44, 55, 66. So, that was the,

our basics in the last class. 

Now, again  from that  9  constant  we have  also  reduce  the  5  constants  which  is  for

transverse isotropic and then finally, we have reduced to 2 constant  for the isotropic

material. Now, in this class what will learn is essentially how these constants are related

with the engineering elastic constant. For instance, as we know for an isotropic material

we know that there are 2 mathematical constant as well as 2 engineering constants. For

instance, that if you remember the isotropic constitutive equation that C 11 and C 12 are

the engineering constants mathematical constant, and corresponding to the mathematical

constants are engineering constants are Young’s modulus and Poisson’s ratio. 

So,  our  main  objective  here  is  to  represent  this  constitutive  matrix  in  terms  of

engineering constants that is what will be the Poisson’s ratio Young’s modulus and all

those things. 
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So, before going into that what I wanted to tell you is that the similar to the stiffness

matrix or the constitutive matrix a compliance relation for the orthotropic material can

also be written, that is the compliance is essentially the inverse of a stiffness. So, that

instead of stress strain relation it is strain stress relation. 



So, essentially this compliance matrix looks like this because it will have the same thing

because the symmetry will be the same, and it will be related with the stresses. And then

in a similar manner we can represent it in a vector matrix form. So, this is a in Voigt

notation and S is a matrix here. So, essentially in a initial notation it is it looks like this.

Now, from our understanding that is a S has to be C inverse. 

Now, in a tensorial notation though it is not required for this class this is the tensorial

notation similar to the stiffness relation and in a initial notation it looks like this. So, here

S is a matrix, but here it is a actually S is a tensor. So, it is a essentially compliance

matrix is a 4th order tensor. So, this has to be remember, like for the stiffness matrix,

stiffness matrix also we know that is C ijkl, so similar to the i j k l, right.

Now so, S 11 and S 22 and S 12 S 13 these quantities can be written in terms of C 11 C

12  and  C  33  because  if  we  invert  the  C  matrix  we  will  get  the  S  matrix.  So,

corresponding to S 11 the components of C ij will be there. So, this can be achievable

very easily.

(Refer Slide Time: 06:13)

Now, to  find  out  the  engineering  constants  corresponding  to  this  we  will  use  this

compliance  relation.  Suppose  there  is  an  orthotropic  material  now,  there  are  3

perpendicular axis are mutually orthogonal axis, so these axis 1 2 3. 



So, along the 11 axis or 1 axis the first axis I apply a uniform normal stress. So, this is

sigma 1, I apply in the direction 1. Now, due to this stress all and all other stresses are 0,

I assume that all other stresses are 0. So, only sigma 1 is applied to the body. So, in that

relation, so only sigma 1 will be there and all other stress components will be 0. 

So, now if I multiply these with this compliance matrix then I will get the strains like this

which is epsilon 1 is S 11 sigma 1, epsilon 2 is S 12, and epsilon 3 is this and all other

strain components will be 0, because these components will have no effect because these

as  stress  components  will  be  0.  So,  all  sheared  strains  are  essentially  0,  and  these

components are the due to the Poisson’s effects that we know.

So, now, from a engineering perspective the engineering relation we know if I stretch a

body unidirectionly in one direction then the stress and stress relation is essentially the

gives the Young’s modulus in that direction. For instance, so, epsilon 1 can be written as

sigma  1  by  u.  So,  this  is  from  our  basic  knowledge  or  basic  strength  of  material

knowledge. So, now, similar to that I know that epsilon 2 that is the transverse strain in

the 2 direction will be minus nu 12 this term is nu actually. So, this is a Poisson’s ratio

and this is the sigma 1 by E 1.

And. So, this is a very consistent with the definition of the of the Poisson’s ratio if you

look carefully that is epsilon 2 by a epsilon 1 is essentially nu 12 or minus nu 12 because

it is a contraction may is sigma S positive, sigma 1 is positive. So, that is the definition of

Poisson’s ratio  we know from our  knowledge of isotropic material  and definition  of

Poisson’s ratio the transverse strain by the longitudinal strain.

Now, here what I have done is essentially we have put 12 write the indices 12. So, 1

represents  the  stress  direction  and  2  represent  the  strain  direction.  So,  1,  this  1  is

represented is this stress direction so that means, the effect of first direction stress and the

effect of second direction strain. So, the ratio between these 2 strains are defined as the

Poisson’s ratio.

So, similar to this there will be a contraction in the third direction. So, there will be a

transverse  strain  in  third  direction  which  I  represent  nu 13.  So,  again  this  1  indices

represents the direction of the stress and 3 represents the direction of the strain. So, again

E 3 by E 1, E 3 a epsilon 3 by epsilon 1 is essentially nu 13. So, this will know from our



engineering knowledge that if we stretch one body and if we allow Poisson’s effect to

happen, then it will be like this the strain components will be like this. 

Now, all other strains that is shear strains will be 0. So, now, if we compute this 2 these 2

relation we can easily say that is 11 is essentially 1 by E 1. So, these actually gives me

the relation of S 11 with the engineering constant E 11. So, finally, this in this case S 11

we can derive it as a 1 by E 1. 
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Now, similar to that is 12 is minus nu 12 by E 1 and S 13 is minus nu 13 by E 1. So, this

is a case where actually I give a normal stress or the axial stress in the direction 1, and

then I compute the S first column of the constitutive compliance matrix. For instance, if

you remember the complex matrix the S 11, S 12 and S 13 we get and all other quantities

are 0 for orthotropic material. 

So, and then S 21 though the symmetric we will use this condition later. So, this similarly

instead of giving a one direction if I giving the second direction I will get the second

column of the complex matrix. So, that we will see now. 
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So, if now, instead of likewise if I give the first direction it will be S 11 is 1 by E 1 S 12

is this and S 13 is the this. So, nu 12 represents of Poisson’s ratio nu 12 and nu 13 in the

13. So, similar to that if we give thus axial stress in sigma 2 direction following the same

procedure I get the S 21, S 22 and S 33. Now, again third direction in the third direction,

if you give then we have S 31, S 32 and S 13 sorry, this will be S 33 this will be S 33. 

So,  now  what  we  got  is  essentially  if  you  remember  that.  So,  this  portion  of  the

compliance  matrix  we have got  in  terms of  engineering  constant.  So,  what  is  left  is

essentially S 44, S 55 and S 66 so, this is left. So, to find out these constant we will use

pure sheared stress. So, I think all of you know what is pure shear so, we will see it. 
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Now, in that material I just give a sheared stress or a pure shear in the direction of 12

direction. So, now, this pure shear is actually this is sigma 12. So, I represented in terms

of sigma 6 as in the Voigt notation. So, it is essentially sigma 6. 

So, similar to the normal cases or the axial cases I just put only sigma 6 and then all

other stress are 0. So, the here it is essentially this and this direction, and similarly this to

this direction this is the opposite side of the body.

Now, if I give this pure shear condition then I will have only sheared strain which is

essentially gamma 12 which will be nonzero. Other strain components I can see it from

this  matrix  multiplication  with  this  matrix  and multiply  this  vector  then  other  strain

components become 0. So, in a from engineering perspective the same we know that

shear strain is shear stress by shear modulus. So, this essentially place the comparison

and then if I compare these two relation then I can simply comment the S 66 G 12. So, G

12 is a shear modulus in 12 plane.

So, now, similar to this I can give sheared pure shear condition in these direction and

these direction as well as in these direction and these direction. So, similar to this I can

obtain the S 55, then S 44. So, to summarize here S 44 I can just obtain like this in the

previous procedure, and which will be G 23 and then S 55 is G 13 and S 66 is G 12. So,

by this actually we got the every component of the, every component of the matrix. So,

every component of the compliance matrix. 



Now, if I put it if I just use this engineering constant to represent the compliance matrix.

So, this is the my strain vector and this is a stress vector. So, this is my compliance

matrix. Now, if you look carefully that we know that orthotropic material is having 9

independent constants. So, engineering constant will also be 9. 
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So, now, if you see the all rate quantities are independent I have written only one times

here. So, if you look carefully 1 2 3 4 5 6 7 8 9 10 11 12. So, there are 12 components

here, so which cannot happen because orthotropic material we have seen there are only 9

independent components. So, now, if we use this condition that the compliance matrix is

symmetric matrix. So, now, these 2 quantities will be equal. So, for instance, nu 21 by E

2 has to be nu 12 by E 1 So, if you flip the side. So, nu 12 by nu 21 is essentially E 1 by

E 2. 

So, in general I can do it for this one these and these case also because this will be same

and this case and this case also. So, this will actually reduce 3 mode component of this

matrix 3 mode. So, finally, it will the a 9 independent component. So, in general nu ij by

nu ji equals to E i by E j.  So, this can also be proved from the (Refer Time: 17:47)

reciprocal theory. So, this is reciprocal relation also.

So, for here ij can, ij is 1, 2 and 3. So, finally, it is what we have seen is a essentially

there are 3 Young’s modulus E 1, E 2 and E 3, and there were 6 Poisson’s ratios which

was nu 12 nu 21 nu 13 nu 31 and nu 23 and nu 32. So, among these with this reciprocal



relation  we  can  say  that  these  quantities  are  only  independent  these  quantities  are

independent or these quantities are only independent whatever it is and so finally, there

are 3 independent here 3 independent here. And then there are another 3 independent is

coming from the shear modulus G 12, G 23 and G 13. So, there are 3 here. So, finally,

this reduces the engineering constants of orthotropic material from 12th to 9. So, these

are my engineering constants.

So, what it means essentially is that there are 3 mutually perpendicular direction. So,

along each direction there are Young’s modulus which is E 1, E 2, E 3, and similarly for

there are 3 planes nu 12, 13 and 23. So, there are Poisson’s ratio is according to that

strain and there were shear modulus in that (Refer Time: 19:36). So, in case of isotropic

material  what  we  have  seen  that  Young’s  modulus  and  Poisson’s  ratios  are  only

independent components. So, shear modulus can be represent in terms of E and nu so,

will see that here. 
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Now, if we look carefully, so once we get the compliance relation and if we write the

independent constants only then we can invert that compliance matrix S to get the C

matrix,  and C matrix this will look like these. So, if we look carefully that C matrix

contains the all engineering components which are E 1, E 2, E 3, nu 23, nu 32, nu 13 and

nu 31 and etcetera. So, this is the and obviously, C 4; C 44, C 55 and C 66 are the shear

modulus itself. So, because you know the diagonal terms if you invert it will be just 1 by



S 66, so which is essentially G 12 so, and this is the delta. So, delta is a also composed

on the engineering constants.

So,  what  we  learnt  here?  That  is  C  matrix  and  S  matrix  that  stiffness  matrix  and

compliance  matrix  can also be represented  in terms of  9 engineering  constants.  And

those 9 engineering constants are  3 Young’s modulus,  3 Poisson’s ratio,  and 3 shear

modulus. So, now, with this knowledge we can proceed to derive for transverse isotropic

material. 

(Refer Slide Time: 21:32)

So, as you know the transverse isotropic material if we have discussed in the previous

class  that  is  if  we  take  the  23  plane  is  a  plane  of  isotropy. So,  then  probably  you

remember that if you rotate 23 plane about axis x 1 so we get the transverse isotropic

constitutive relation and those transverse constitutive relation we will have, transverse

isotropic constitutive relation will have 5 independent components. So, from their 9 to

we have reduced it to 5, so 9 for orthotropic and 5 for transverse isotropic.

Now, if we assume that 23 plane is plane of isotropy then it will be E 2 and so Young’s

modulus along this direction and this direction in the same and shear modulus obviously,

will be same G 12. So, this G 12 and G 13 will be same, so and nu 12 and nu 13 will be

same.



Now, this reduces, so E 1 will be independent one of them will be independent and one

of them will be independent and here G 12 and G 13, one of them will be independent.

So, 1 2 3 4 5 and 6, so that is I will written here, so E 1, E 2, nu 12, nu 23 and G 12, so

and G 23. So, you see we have 5 independent constants for transverse isotropic material,

but with this reasoning we get the 6 independent constant. But this G 23 is not actually

independent because this is a plane of isotropic. So, this plane 23 is isotropic plane.

So, now, as we know the isotropic plane in this isotropic plane I have 2 independent

constant only. So, if I know the Poisson’s ratio in this plane Young’s modulus in this

plane which is say E 2 or E 3, and then for in this Poisson’s ratio is G 23 nu 23 if I know

this then I can actually find out G 23 which is not then independent, so which is these

actually G 23 is E 2 by 2 into 1 plus nu 23. So, essentially G 23 is not an independent

constant. 

So, these reduces finally, and it is consistent with our previous knowledge that is the

transverse isotropic material is having only 5 independent constants, which are 2 in the

plane of isotropic it is 2 constants. So, in the plane of isotropic in the 2 constants because

isotropic material we know already from knowledge is there are 2 independent constants

E and nu, and then along this axis there along the transverse axis of the normal to that

axis, normal to that plane that is x one axis there are 3 constant.

So, one Young’s modulus and Poisson’s ratio and the shear modulus which as E 1, E 2

and nu 12, nu 23, and G 12; so, this actually very consistent with our previous module of

isotropic, transverse isotropic constitutive relation of the transverse isotropic material. 

So, now you see there in both the cases the relation between engineering constant and the

mathematical constant the mathematical constant by which I mean that C ij or S ij, those

both the cases the number of independent constant does not change. Even though the

form or the how it relates the form is different but the number of independent constant in

all cases in case of isotropic material or in case of a orthotropic material is same. So,

with this knowledge we can also reduce the isotropic material. 
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For instance, in the so finally, the engineering constant for transverse isotropic material is

E 1 to E 12, nu 12, E 23 and G 12. And then assuming all planes are strain of isotropy so

then E 1, E 2 will be let us assume E and nu 12 and nu 23 is nu which is Poisson’s ratio,

and  then  again  we  know that  G  12  can  be  related  with  E  and  nu.  So,  finally,  the

independent engineering constants for isotropic material is E and nu. So, this actually

completes the relation between the mathematical constants or the C ij or S ij with the E

and nu.

So, to summarize for and orthotropic material what we what we have is essentially the 3

Young’s modulus, 3 Poisson’s ratio and 3 shear modulus. For the isotropic material we

have, for transverse isotropic material we have 2 Young’s modulus, 2 Poisson’s ratio and

1 shear modulus. Similarly, for isotropic material  there are 1 Young’s modulus and 1

Poisson’s ratio. There is no independent shear modulus, because shear modulus which

can be related with the E and nu. So, this is for a orthotropic material. Now, the question

is in case of a general an isotropy what is the case.
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So, if you remember for a in case of a general an isotropic material, so the general an

isotropic material in the constitutive matrix, if you remember for a general anisotropic

material which is after in the introduction of major and minor symmetry. So, C 11, C 12,

and C 13; C 22, C 23, C 23 C 33; C 14, C 15, C 16; and C 24, C 25, C 26 and then C 34,

C 35, C 36 and then C 44, C 45, C 46, C 55, C 56, C 66, so original an isotropic material.

So, now if you remember in the class that we have previous class we have say that these

are  the  normal  stress  components.  So,  these  components  are  the  normal  stress

component, and these components are responsible for the Poisson’s ratio and these are

the  coupling  coefficients,  these  are  the  coupling  coefficients  which  are  actually  the

coupling between normal stress and shear stress. 

So, now and these are the sheared, pure shear components of the shear components, and

these are the these and the components between in between sheared strains there are

coupling  and this  is  known as  strains  coupling strains from effect.  So,  these are  the

Poisson’s effect, these are the stress of effect, these are the coupling coefficient which is

the connected with the shear strain and the normal strain, and these are the pure normal

strain, and these are the shear strain stress or shear strain here, so stress strain coefficient.

Now, corresponding to this coupling coefficient, there are coupling coefficient for the

engineering constant.  And similar to this instance of coefficient there are engineering

constants corresponding to that. So, now, if you look for an isotropic material, so there



will be similar to that orthotropic material, if you start from orthotropic material there

will be say there are 3 Young’s modulus, there will 3 Poisson’s ratio, there will be 3 shear

modulus and so there will be 18 such coefficients. 

This case, this coupling coefficient there will be 18 such coefficient out of which we can

again prove that by the symmetry of this we can have 9 engineering constants, and then

from here actually there are 3 engineering constants. So, finally, if you sum up this is 21

independent  engineering  constants  which  is  consistent  with  the  our  mathematical

constant for general an isotropic body. In this way you can also derive for the monoclinic

material. 

Now, if we reduce this as per the symmetry condition that we have used in the previous

classes we can also derive from this 21 engineering constant to 13 engineering constant

for monoclinic material, then from 13 to we can reduce for 9, for a orthotropic material

from 9 to 5 for a transverse isotropic material and then from 5 to 2 finally, we get the

isotropic material. So, in the both cases in the mathematical constants or be engineering

constants, the number of independent constants will not change at all.
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So, this actually completes the relation between engineering constant and mathematical

constant. So, in the next class we will try to find out what should be the restriction on

this constant or is there any restriction on these engineering constants. 



Thank you.


