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Welcome, this is the last lecture for the module 3. So, here we are discussing anisotropic

elasticity. So, in the previous two lecture we first discuss the how to find out the number

of  independent  constant  for  a  general  anisotropic  material.  Then  what  we  did  is

essentially  we  derive  the  Hook’s Law in  a  Voigt  notation  from the  general  for  the

anisotropic material. 

And  then  we  found  out  that  it  is  a  21  independent  constants  out  of  81  only  21  is

independent constant using major and minor symmetries. Then what we did is essentially

we found out the strain energy functions for general anisotropic material and we point

out that that the strain energy function is invariant under coordinate transformation, so

since it is a scalar. 

So,  using  this  relation  essentially  we found out  the  monoclinic  material  constitutive

equation  of  a  monoclinic  material.  Also  we  have  used  the  indicial  notation  for  the

transformation of the elastic constants to find out the transformed constants of the elastic

components, elastic material constants for the monoclinic material. So, and also we have

discussed the stress strain, comparing the stress strain also we can find out this elastic

constant for the monoclinic material. Now, in this lecture we will basically find out the

how  to  would  come  up  with  the  orthotropic  material  constant,  and  what  does  this

orthotrophy means. 
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So, essentially we will quickly go through the process in the last class we have discuss.

So, strain energy function is a this function, and this is the transformation coordinate

transformation rules for the this thing.

(Refer Slide Time: 02:42)

So, what we did essentially a for the monoclinic material, we used only x 1, x 2 plane or

12 plane is plane of symmetry. So, reflection about x 3 axis gives me the coordinate

rotation matrix of this form, then using this relation we find out the strains which will

change in sign. 
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And  then  from  that  we  from  the  general  triclinic  material  anisotropic  triclinic  or

anisotropic material we have observed that these quantities the rate quantities will flip

the signs. So,  which cannot be,  which will  change the strain energy and since strain

energy cannot be change then this material constant has to be 0 so that it will not change.
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So, we find out finally, the constitutive matrix for a monoclinic material. 
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Now, here in the previous case we have assumed that this 1-2 plane is symmetric plane.

So, in addition to that if we assume that 2-3 plane is also plane of symmetry that means,

if I just draw another plane from here which is 2-3 plane. So, this plane is actually also

the symmetric plane, in addition to our already the 3 1-2 plane symmetry is already there.

So, if I now draw it in this form. So, this is my 1-2 plane symmetry for the monoclinic

material and then again also we assume the 2-3 plane is symmetry. 

Then my rotation matrix can be written in this form, then again with the similar concept

we can find out the, what is the stress strain, what is the strains. So, essentially we can

write  this  strain  matrix  which  is  essentially  a  epsilon  dash  is  essentially  epsilon  11,

epsilon 12, which will be minus epsilon 13 which will be minus epsilon 23, epsilon 22,

epsilon 12 minus minus epsilon 13, epsilon 23, and epsilon 33. So, this  is my strain

matrix. 
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So, once this strain matrix is known to me then we can just simply convert  it  to the

previous case, that is the these stain matrix. So, we will convert it the Voigt notation. So,

epsilon dash is epsilon 1, epsilon 2 dash is epsilon 2, epsilon 3 dash is epsilon 3 and so

on. So, now if you do this then we can see from here that epsilon 16, epsilon 26, epsilon

36, epsilon 45 these quantities will lead to 0 or coefficient associated to these quantities

will be 0 essentially because these quantities will change the sign. 

Now, this 2 understand this we have what we did is essentially we took the previous case

the monoclinic material which is having one plane of symmetry that is x 1, x 2 plane is

symmetry. Now then we are again saying that 2-3 plane is also symmetric. So, 2-3 plane

is also plane of symmetry. So, reflection about x 1 is symmetry. So, that means, x 2, x 3

plane is a symmetry plane, it has it at the 2 plane of symmetry. So, previous case we have

seen what are the components of the what are the components of the or what are the

material constants which will be 0 in the previous case which is essentially C 14, C 15,

and so on this components is 0. Now, on top of that we are this is due to the one plane of

symmetry. Now, on top of that again we are assuming that 2 3 plane is also symmetry

plane of symmetry.
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So, then finally, we considered the general anisotropic material for which these due to

the 2-3 plane of symmetry these quantities will again come into or these quantities again

will change the sign. So, epsilon 16, epsilon 24, these no epsilon 26, epsilon 36 these will

change the sign. So, and epsilon 56 will also change the sign. So, these this again this

was there for the previous case. 

Now, this we again to do this again we have to again use the ingredients of the strain

energy function so which will again leave it to me that C 14, C 15, C 16, C 24 and so on

this  will  be  0.  So,  finally,  if  I  use  this  condition  then  it  will  be  my, this  case  my

constitutive matrix will look like this.
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So, which will have; if you have remember. So, we had this only these quantities are

there are in the monoclinic material now extra these quantities will be 0 due to the two

plane of symmetry and then these quantities all was also there so this will be again 0. So,

this gives me the full orthotropic material matrix or the. So, a material  with any two

planes  or  symmetry  is  orthotropic  material.  Actually  if  two  mutually  perpendicular

planes are symmetric then third plane is also plane of symmetry. 

So, that means, if we say that orthotropic material is mutually to mutually orthogonal

plane  of  symmetries  are  orthotropic  material  3  mutually  plane  of  symmetries  are

orthotropic material. Now, these can be done through this the previous procedure where

we have seen that this using this C ijkl formula we can also do that, this formula. We can

also use this formula to do the, to find out the changes. 
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Now, also we can use the stress transformation formulas. For instance the in the last class

we have discussed that sigma transpose equals to sigma Q transpose or Q sigma into Q

and epsilon transpose equals to Q transpose epsilon Q. If you compare this stress strains

then also we can come up with the orthotropic in case of an orthotropic material what

will be the constitutive constants.

So, in case of a 3D orthotropic material what we have see a C matrix looks this or the

constitutive matrix looks like this C 11, C 12, C 13, 0, 0, 0. So, C 12, C 22, C 23, 0, 0, 0;

and C 13, C 23, C 33, 0, 0, 0 and then all 0s C 44, 0, 0; then all 0s 0, C 55, 0; 0, 0, 0, 0

and then C 66. Now, this is for 3D material. 

Now, for a 2D material what will be the case? Now, for a 2D material naturally the strain

components will be, essentially the strain components will be like this for 2D case for 2D

case 2D orthotropic case the strain components will be epsilon 11, epsilon 22, and 2

epsilon 12. So, these gives me in a Voigt notation epsilon 1, epsilon 2, epsilon 6 right

with the previous assumption because we have a assume that 12 is 1 and 12 is 6. 

So, now my for a 2D constitutive matrix will come like this C 11, C 12, 0; C 12, C 22, 0;

0, 0, C 66. So, this is 2D constitutive matrix so, finally, the stress strain relation will be

your sigma 11, sigma 22, sigma 12 will be C 11, C 12, 0, C 12, C 22, 0, 0, 0, C 66. Now,

this will be your epsilon 11, epsilon 22, 2 epsilon 12. 



Now, you see now there is another condition, that condition says that this constitutive

matrix what should be the value of this material parameters. For instance can it be C 11,

can it be any value C 12, can it be any value C 13, can it be any value. Actually what are

the possible values of these constants are also very important because for instance all of

you must  have  heard  that  Poisson’s ratio  if  you remember  the  from the  strength  of

material or solid mechanics concept that Poisson’s ratio the range of the passions ratio is

0.5 to minus 0.1. 

So, this why this range is given I think we will discuss it a later, but here what do you

want to point out that these matrix the component of these matrices this C and for 2D

case.  For instance,  this, this matrices what is the condition for which the component

values what should be the values of these C ij’s. So, that this matrix is representing a real

anisotropic  material.  So,  the  basic  condition  is  that  that  these  matrix  has  to  be  the

positive definite matrix. 

So,  what  is  positive  definite  matrix?  So,  the  positive  definite  matrix  means  here  is

essentially all principle minors are determinant of all principle minors should be 0. So,

for instance I will explain with for this 2D case. For instance this is the first minor C 11.

So, C 11 has to be greater than 0, right. 

So, now determinant of this C 11 second principle minor that is C 12 and this C 12, C 22

this has to be greater than 0, right. And then the third one that is the C 11, C 12, and 0; C

12, C 22, 0; and C 0, 0, C 66 this has to determinant of this has to be 0. 

So, now see this gives us a condition on which the C 11 and C 22 and C 13 and it is inter

relation how it  is related,  it  is these condition gives us. For instance C 11 cannot be

negative. So, it has to be greater than 0. For the second condition what we see that that C

11 into C 22 minus C 12 square has to be greater than 0. This imposes another restriction,

right. So, this quantity has to be greater than 0.

Now, similarly this if you look carefully that C 66 into C 11, C 22 minus C 12 square this

has to be greater than 0. So, this also this C 66 has to be greater than 0. So, this is how

these for 3D case also we can represent its C 11 C; in that case we can also represent this

all principle minors for instance if I write it this has to be greater than 0. Then again this

condition,  this  condition  will  evolve  and  then  this  condition  which  is  actually  the



determinant of 3 cross symmetrics this will be 0 then multiplied with this. So, all these

quantities has to be 0. 

So that means, the even though we know the material properties, the material properties

of  a  constitutive  tensor  that  means,  constitutive  we  know  how  it  looks  like  the

constitutive  matrix  is,  but  we do it  is  we have to  be very careful  how this  material

parameters can be taken. So, this is for instance in this orthotropic case how we cannot

take this arbitrary value of the material parameters. So, we cannot take C 44 with 0. 

So, the basic premises of these is that the strain the constitutive matrix has to be the

positive definite otherwise what will happen is that the strain energy will not be positive

definite or strain energy or the strain energy cannot be greater than 0. So, this will restrict

the constitutive matrix to be symmetry is coming from the major and minor symmetry,

and positive definite coming from the existence of a strain energy and which is greater

than 0. So, this, this actually restricts the component of the elasticity matrix. 
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Now, again another thing I want to point out here is that, suppose we were discussing

about 2D material where the 2D orthotropic material where will have C 11, C 12, 0 and

C 12, C 22 and 0; 0, 0, C 66, right.

Now, if you remember first class we have discussed this is C 11 can be also represented

in terms of engineering constants, for instance if it is a 2D orthotropic material. So, this



is x 1 and x 2 component, x 2; x 1 and x 2 axis. So, C 11 is along the modulus along x 1

direction and C 12 is a 12 direction, and then C 22 into 2 direction. 

So,  now  this  C  66  is  the  shear  direction  shear  part.  Now, these  C  11 can  also  be

represented in terms of engineering constant. For instance that we will discuss separately

how to represent it in the engineering constants, but basically what we have seen earlier

is that I am repeating it here again that we have defined the anisotropic material or the

orthotropic material here that along 1 direction it is E 1, along 2 direction it is E 2 along

and the Poisson’s ratio is nu 12 and G 12 is my shear modulus. 

You see there are 4 independent, 4 independent material constant and from these matrix

also we observed that this is a 4 independent material constant which are actually C 11,

C 12, C 22, and C 66. So, these all 4 constants are equivalent to this constant. So, I this

constants can be represented in terms of E 1, E 2, E 3, nu 12 and G 12. Again there is

another  case  which  we  will  also  discuss  probably  in  subsequent  lectures  that  these

material maybe in a orthotropic in a particular direction.

So, that is x 1, x 2 display in this direction it is orthotropic. Now, if it if I rotate this is

called the material axis, but the body axis the a structural axis may not be the same as the

material axis. For instance the structural axis could be in the x 2 dash x 1 dash direction x

1 dash direction. So, this is my body axis or the structural axis, but my material direction

is like this. For instance, this case will appear in case of a woven composites where we

will have the material axis is along this direction and the structural axis is along that

different direction.

So, this is my structural axis x 2 x 1 dash and x 2 dash this is my structural axis, but my

material axis is in this direction x 1, x 2. That means, when I have the material property

the Young’s modulus is along E 1 is this E 1 not in this direction. My body axis or the

structural axis is along this direction, but my material axis is along this direction. So,

when to when we solve a particular problem we have to solve it in the body axis or in x

2, x 1 dash or the prime direction. So, we have to convert this constitutive tensor to the

again to the body axis.

So, again the rotation matrix comes and so the the formula that again C ijkl we can write

it Q i p Q i, Q j Q and Q k r Q c s, C pqrs. So, this rotation this if you if you see this

rotation is along theta. So, here Q will be different so cos theta sin theta minus sin theta



cos theta one for 2D case. So, this has to be properly transform this rotation matrix has to

be properly this constitutive matrix or the c matrix has to be transformed to the structural

axis. 

Now, due to this transformation it will look like. So, if this is the theta this angle is theta

so, this C in the prime coordinate system may not look like the same form. So, C 1 11, C

12 dash, C 13 dash, C or sorry 16 dash, C 12 dash, C 22 dash, C 26 dash, and C 16 dash,

C dash 26 and C dash 66. So, this is this prime coordinate system this is the this is the in

x 1, x 2 coordinate system it is C but in prime coordinate systems it is C dash right. So,

because you have to solve the problem in the structural axis. 

Now, this does not represent orthotropic material right. So, and apparently it means it

may looks like that these relventory represent the orthotropic material but it is actually

orthotropic material it is coming from the rotation of these matrix, so these matrix. So,

when we see it is an orthotropic material we are talking about the material axis, we are

not talking about the structural axis. This distinction has to be remembered carefully

because we may need to transform the material in the structural axis in that case the form

of the orthotropic form may not be preserved. 

So, these are the even though it looks in C that 1 2 3 4 5 6, there are 6 independent

components  in  this  form,  but  actually  there  are  5  independent  components.  The  5

independent components come from here that C 11, C 12, C 22, C 66 and the theta. So,

the rotation as well as the material constant in the material axis. 

So, essentially is rotated orthotrophy or special class of orthotrophy, so where we will

essentially rotate the material axis to match with the structural axis. So, this is the one

point, one has to remember when applying for a composite material. We will discuss this

composite material in a detail form in the subsequent classes. 

So,  here  I  stop  today in  the  next  module.  We will  again  discuss  some parts  of  the

anisotropic,  and then basically will discuss transverse isotropy and then isotropy, and

then  some  strain  energy, form of  strain  energy  and  then  will  go  for  the  composite

analysis. 

Thank you.


