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Welcome to the lecture number 9 of the course computational hydraulics. We are in model

number 2 numerical methods. And in this particular class we will be covering unit 5, partial

differential equation with boundary value problems.
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What are the learning objective for this particular unit? First objective is to discretize the

derivative  of  single  valued  multidimensional  functions  using  finite  difference

approximations.  And  second  1  is  to  derive  the  algebraic  form  using  discretized  partial

differential equation and boundary conditions.
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Let us consider a surface in 3 dimension and with x and y this phi surface is varying. So phi

is a function of x and y only.
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If we discretize this using finite grid size then with this rectangular domain for this i, i minus

1, i plus 1, j, j minus 1,j plus 1, j minus 1. We can get internal general points and for those

points  we  can  define  our  partial  derivatives  and  corresponding  finite  difference

approximations.
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So for this internal points if we extend it to the surface we will get corresponding function

values. So obviously these functions values are at discrete points. And intermediate points we

do not have information.
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So with this setup we can use the Taylor series expansion. In Taylor series expansion for that

dependent variable phi x and y these two are independent variables. So with increment del x

and del y in two directions we can write this phi xy plus delta x into del phi by del x, delta y

into del phi by del y, plus second order term for this 1.
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We can utilize this information to get the approximation of partial derivatives. So for the two

dimensional domain let us say it is starting from x0 to xM. That means we have M numbers

of segments and m plus 1 number of grid points or node points in x direction.
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N plus 1 number of node points or grid points in y direction. Again we have N number of

segments in y direction.
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So del x and del y these are constant values for this particular configuration. IJ is the central

point  for  any  general  discretization  stencil.  So  with  this  configuration  we  can  start

discretization of partial derivatives.

(Refer Slide Time 05:00)

In this case we have black dots are boundary nodes, red dots are corner nodes and blue dots

are interior nodes. We have seen in our ordinary differential equation discretization that we

need  to  specify  the  boundary  conditions  at  boundary  nodes  and  governing  equation  for

interior nodes.
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So first approximation is forward difference with respect to x. So in our discretization we

have seen for single valued with single dependent variable if we take the forward difference

obviously this is phi i plus 1 minus phi i divided by del x. In this case we are using the same

concept and we are extending it for partial derivative.
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And  in  case  of  partial  derivative  we  need  to  consider  the  second  dependent  variable

independent  variable  and there  is  no change in  that  independent  variable  because this  is

derivative with respect to a particular independent variable x. That's why we are increasing

the index for x.
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And  in  this  case  we  have  first  order  accuracy  like  our  ordinary  differential  equation

approximation and finite difference.
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Similar thing is for first order backward difference with respect to x. We need to consider i, i

minus 1 point. Here again there is no change in the index for j but there is change in the i and

i minus 1.



(Refer Slide Time 08:09)

Further this second order center difference. Second order center difference for first order.

This is first order derivative, this is second order accuracy. So i plus 1 and phi i minus 1. Two

points and this is our point ij.
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We can again discretize the derivatives in another direction. The first order forward difference

with respect to y, again this is with del y accuracy.
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If we consider backward difference with respect to y this is again with del y and this is with

del y accuracy first order accurate.
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And with second order center difference we have change in the index for j, j plus 1 and j

minus 1. This is again second order accurate method.
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We have two extreme points we have i and j.
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Finite difference approximation this is for second order center difference with respect to x.

This is second order derivative we have phi i minus 1,phiI,phi i plus 1, this is del x square this

is similar to our single variable case. And again this is del x square accuracy. Interesting point

is that for this second order derivative we need three points.
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If we consider second order center difference with respect to y, so in this case also this is

change in i minus 1, i plus 1, j, j plus 1, j minus 1 and j. This is del y square overall accuracy

of del y square.
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And this is mixed difference with respect to x and y. We need to consider the extreme points.

We are  considering the mix  derivative at  ij.  However  we need to  consider  the points  in

diagonal direction.
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So this is i plus 1, j plus 1, which is positive. Then i minus 1, j minus 1, this 1 and i minus 1, j

plus 1, this is i plus 1, j minus 1.
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This two are with positive signs, this diagonally these two are with negative signs. Divided

by 4 delta x delta y and this is our delta x square delta y square accuracy.
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So in this case we have two independent variable and we are considering variation for both

the variables. That’s why we need to show this (accu)order of accuracy in term of both the

independent variable.
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This is a general form of differential equation with a general variable phi. We have already

discussed this in our earlier lecture and in this case phi is some general variable lambda and

upsilon these are problem dependent parameters. And this gamma phi is a tensor if phi0 or f

phi0 other forces, Sphi is source sink term for this one.
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So if we approximate this equation and we utilize it for defining partial differential equations

as boundary value problem then we need to neglect this term zero, this advective term as

zero. This is also zero.
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We will consider only these two terms. In this case del operator we are considering only

variation of x and variation of y.These are unique vector in x and y direction. So this is del

operator. So with this information we can use a simplified governing equation to define the

boundary value problem.
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In this case without any cross term we have defined this del2 phi del x2. So obviously phi in

previous case it's a two dimensional tensor with gamma x, gamma y, and cross terms are zero.
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So if we simplify this and consider that gamma x, gamma y these two are constant then we

can write in this format that means gamma y and x these are not varying with x and y.So Sphi

is some source sink term.
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We can define boundary condition for a rectangular domain. So we have rectangular domain,

this is lx for that rectangular domain ly for this y direction and this is zero zero point.
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So with this information we have defined these four boundary conditions gamma d1 that

means this left boundary at x is equal to zero and y this is Dirichlet kind of boundary or

specified boundary, phi1.
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And gamma 2d this is again Dirichlet boundary with x is equal to lx and for all y we have this

phi two value. This is phi1.
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And for gamma three, this is gamma n3, this is actually phi n. In y direction there is no

variation.  And top we have del phi by del y equals  to zero.  So we can see that  for this

boundary value problem values are either specified for all boundaries or they are written in

terms of boundary conditions.
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So  domain  discretization,  this  is  lx  this  is  y  Dirichlet,  Dirichlet  boundary,  Neumann,

Neumann boundary.
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Important point is for this corner points. For corner points either we can consider it in this

gamma n domain or in gamma d domain. In this case we can consider it in gamma d domain

because in this case let us say that value is specified for these points these four points 1, two,

three and four.
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For this green portion that is Neumann boundary we can define the boundary condition based

on three points or two points depending on the desired accuracy.
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So let us consider the discretization of governing equation. In this case we have discretized

the governing equation with second order accurate scheme gamma x, gamma y into this.
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This is second order accurate. Minus Sphi ij which is specified value source sink term. We

have transferred it into right hand side.
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So this equation can be arranged as following. So with this, this i j minus 1. That means if we

have any general ij structure then this is ij minus 1, this ij plus 1, this is i minus 1 j, this is i

plus 1 j.
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 In this case this coefficient we are starting with ij minus 1 this is first, then i minus 1 j this is

second, ij this is third, i plus 1 j this is fourth and fifth one is ij  plus 1.So we have considered

the coefficient for all these points.
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Now if we simplify this by using this notation that alpha x and alpha y can be written as

gamma x by delta x square and gamma y by delta y square.
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So we can write this in simple form but the problem is we cannot construct the algebraic

matrix forms because we have double index notation present. In 1 dimension single index is

possible to form this matrix easily.
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But  individual  points  will  have  individual  governing  equations  or  boundary  condition

equations. These individual points will have individual equations. So these points are itself in

ij format. So we cannot construct the matrix directly.
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So what we can do, we can introduce single index notation. Single index L can be written as i

j m plus 1. This is ij.  This point can be represented as L.
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So L minus 1 is basically i minus j point, L plus 1 is i plus 1 j, L minus m plus 1 this is ij

minus 1 and L plus m plus 1 is ij plus 1 point.
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We are starting from point 0 to m, that’s why we have m plus 1 number of points. So if we

take the next level in y direction so obviously there will be difference of m plus 1 number of

nodes.
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So with this information we can construct our grid system with 0 as starting point, m here and

finally this will give the maximum number of points.
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Wehave started from this point then we will move towards this.
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Again the next level will start from here this point.
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Again we will move in this direction again we will come back to this point and move to this

direction.
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So i we are starting with j.  For j equals to zero level we have m plus 1 number of points

starting from zero to M. Then we will have m plus 1, like that we can define our nodal points

with single index notation so that we can easily form the final matrix for solution.
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With single index notation the equation can be written as, in this case we have this kind of

stencils that we have L, L minus 1, L plus 1. So we have five points.
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So m plus 1, L minus 1, L, L plus 1, L plus m plus 1. And this S phi is basically defined for ij

or S phi we can write it in terms of L. So we can uses thisequation for interior points or blue

points. For boundary points we need to define the boundary conditions.
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For  Dirichlet  boundary  things  are  clear  because  we  can  directly  specify  the  boundary

conditions without any error. But Neumann boundary we need to consider the second order

discretization because we have second order accurate scheme here for governing equation.
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So we can include n, n minus 1, n minus 2 points. And this is second order accurate.
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With this information we can use the single index notation to represent the thing. And we can

directly use this one as equation for matrix form.
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Similarly for this is for the top boundary, we can use it for bottom boundary zero, 1, 2 points

and we can use the single index notation to represent the boundary condition.
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Again we are getting some equation for those boundary points. Now with this governing

equation in discretize form and boundary conditions we can form the matrix for solution.
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Interestingly for interior points we will have five coefficients. For L, L minus 1, L plus 1 and

this is L plus m plus 1. This is for L minus m plus 1.
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This is valid for interior points but if we have boundary points then we need to consider

another structure point here which will consider the L minus two m plus 1and on this side

also L plus 2 into m plus 1 to consider the three points.
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Now we can solve this A matrix with phi and define for single index notation. And we will

have something bL for right hand side. So with this we can solve this phi Lby inverting the A

matrix. And this will give solution for the desired problem.
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And next  lecture  class  we  will  be  discussing  the  time  derivative  and  partial  differential

equation. Thank you. 


