Computational Hydraulics ProfessorAnirban Dhar Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture 9 Partial Differential Equation: BVP

Welcome to the lecture number 9 of the course computational hydraulics. We are in model number 2 numerical methods. And in this particular class we will be covering unit 5, partial differential equation with boundary value problems.

(Refer Slide Time 00:30)

What are the learning objective for this particular unit? First objective is to discretize the derivative of single valued multidimensional functions using finite difference approximations. And second 1 is to derive the algebraic form using discretized partial differential equation and boundary conditions.

(Refer Slide Time 01:15)

Let us consider a surface in 3 dimension and with x and y this phi surface is varying. So phi is a function of x and y only.

(Refer Slide Time 01:40)

If we discretize this using finite grid size then with this rectangular domain for this i, i minus 1, i plus 1, j minus 1, j minus 1. We can get internal general points and for those points we can define our partial derivatives and corresponding finite difference approximations.

(Refer Slide Time 02:18)

So for this internal points if we extend it to the surface we will get corresponding function values. So obviously these functions values are at discrete points. And intermediate points we do not have information.

(Refer Slide Time 02:57)

So with this setup we can use the Taylor series expansion. In Taylor series expansion for that dependent variable phi x and y these two are independent variables. So with increment del x and del y in two directions we can write this phi xy plus delta x into del phi by del x, delta y into del phi by del y, plus second order term for this 1.

(Refer Slide Time 03:44)

Finite Difference Approximations Problem Domain
Taylor Series
Taylor series expansion for a function with two independent variables can be
expressed as,
$\phi(x + \Delta x, y + \Delta y) = \sum_{\eta_x=0}^{\infty} \sum_{\eta_y=0}^{\infty} \frac{\Delta x^{\eta_x} \Delta y^{\eta_y}}{\eta_x! \eta_y!} \frac{\partial^{\eta_x+\eta_y} \phi(x, y)}{\partial x^{\eta_x} \partial y^{\eta_y}}$
$= \phi(x, y) + \Delta x \frac{\partial \phi}{\partial x} + \Delta y \frac{\partial \phi}{\partial y}$ $\underbrace{\frac{1}{2!} \left[\Delta x^2 \frac{\partial^2 \phi}{\partial x^2} + 2\Delta x \Delta y \frac{\partial^2 \phi}{\partial x \partial y} + \Delta y^2 \frac{\partial^2 \phi}{\partial y^2} \right]}_{0} \cdots$
$\left(\frac{1}{2!}\left[\Delta x^2 \frac{\partial^2 \phi}{\partial x^2} + 2\Delta x \Delta y \frac{\partial^2 \phi}{\partial x \partial y} + \Delta y^2 \frac{\partial^2 \phi}{\partial y^2}\right]\right) \cdots$
🚱 🔗 📇 D. O 陆 🔕 🖪 🛛 👘 Company Company (Company)

We can utilize this information to get the approximation of partial derivatives. So for the two dimensional domain let us say it is starting from x0 to xM. That means we have M numbers of segments and m plus 1 number of grid points or node points in x direction.

(Refer Slide Time 04:25)

N plus 1 number of node points or grid points in y direction. Again we have N number of segments in y direction.

(Refer Slide Time 04:41)

So del x and del y these are constant values for this particular configuration. IJ is the central point for any general discretization stencil. So with this configuration we can start discretization of partial derivatives.

(Refer Slide Time 05:00)

In this case we have black dots are boundary nodes, red dots are corner nodes and blue dots are interior nodes. We have seen in our ordinary differential equation discretization that we need to specify the boundary conditions at boundary nodes and governing equation for interior nodes.

(Refer Slide Time 05:55)

So first approximation is forward difference with respect to x. So in our discretization we have seen for single valued with single dependent variable if we take the forward difference obviously this is phi i plus 1 minus phi i divided by del x. In this case we are using the same concept and we are extending it for partial derivative.

(Refer Slide Time 06:53)

And in case of partial derivative we need to consider the second dependent variable independent variable and there is no change in that independent variable because this is derivative with respect to a particular independent variable x. That's why we are increasing the index for x.

(Refer Slide Time 07:24)

Finite Difference Approximations Problem Domain
Finite Difference Approximations
$\varphi(z) = \frac{\varphi_{i+1} - \varphi_i}{\sqrt{z}}$
First Order Forward Difference w.r.t. x
$\frac{\partial \phi}{\partial x}\Big _{i\mathcal{D}} = \frac{\phi_{i+\mathcal{D}} - \phi_{i\mathcal{D}}}{\Delta x} + \mathcal{O}(\Delta x)$
🚱 🖉 🖄 🕥 💾 🎯 🖪 🖉 👘 🖓 🖓 🖓

And in this case we have first order accuracy like our ordinary differential equation approximation and finite difference.

(Refer Slide Time 07:31)

	Finite Difference Approximations Problem Domain
J	Finite Difference Approximations
	$\varphi(z) = \frac{\varphi_{m} - \varphi_{i}}{\nabla z}$
	$ \begin{array}{c} i j \\ i j \\ \hline \\$
	First Order Forward Difference w.r.t. x
	$ \begin{array}{c} \left. \frac{\partial \phi}{\partial x} \right _{i\mathcal{G}} = \frac{\phi_{i+1\mathcal{G}} - \phi_{i\mathcal{G}}}{\Delta x} + \mathcal{O}(\Delta x) \end{array} $

Similar thing is for first order backward difference with respect to x. We need to consider i, i minus 1 point. Here again there is no change in the index for j but there is change in the i and i minus 1.

(Refer Slide Time 08:09)

	Finite Difference Approximations Problem Domain
J	Finite Difference Approximations
	$\frac{1}{2}$
	First Order Backward Difference w.r.t. x
	$\frac{\partial \phi}{\partial x}\Big _{i,j} = \frac{\phi_{i,j} - \phi_{i-2,j}}{\Delta x} + \mathcal{O}(\Delta x)$
-	

Further this second order center difference. Second order center difference for first order. This is first order derivative, this is second order accuracy. So i plus 1 and phi i minus 1. Two points and this is our point ij.

(Refer Slide Time 08:46)

We can again discretize the derivatives in another direction. The first order forward difference with respect to y, again this is with del y accuracy.

(Refer Slide Time 09:07)

	Finite Difference Approximations Problem Domain
J	Finite Difference Approximations
	$\frac{1}{2}$
	First Order Forward Difference w.r.t. y
	$\frac{\partial \phi}{\partial y}\Big _{i,j} = \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta y} + \mathcal{O}(\Delta y)$
(7)	

If we consider backward difference with respect to y this is again with del y and this is with del y accuracy first order accurate.

(Refer Slide Time 09:25)

And with second order center difference we have change in the index for j, j plus 1 and j minus 1. This is again second order accurate method.

(Refer Slide Time 09:41)

We have two extreme points we have i and j.

(Refer Slide Time 09:51)

Finite difference approximation this is for second order center difference with respect to x. This is second order derivative we have phi i minus 1,phiI,phi i plus 1, this is del x square this is similar to our single variable case. And again this is del x square accuracy. Interesting point is that for this second order derivative we need three points.

(Refer Slide Time 10:42)

Finite Difference Approximations Problem Domain	X 8
Finite Difference Approximations	
Second Order Center Difference w.r.t. x	
$\left(\frac{\partial^2 \phi}{\partial x^2}\Big _{i,j}\right) = \frac{\phi(-), j - 2\phi_{Dj} + \phi(-), j}{(\Delta x^2)} + \mathcal{O}(\Delta x^2)$	

If we consider second order center difference with respect to y, so in this case also this is change in i minus 1, i plus 1, j, j plus 1, j minus 1 and j. This is del y square overall accuracy of del y square.

(Refer Slide Time 11:10)

And this is mixed difference with respect to x and y. We need to consider the extreme points. We are considering the mix derivative at ij. However we need to consider the points in diagonal direction. (Refer Slide Time 11:47)

So this is i plus 1, j plus 1, which is positive. Then i minus 1, j minus 1, this 1 and i minus 1, j plus 1, this is i plus 1, j minus 1.

(Refer Slide Time 12:09)

This two are with positive signs, this diagonally these two are with negative signs. Divided by 4 delta x delta y and this is our delta x square delta y square accuracy.

(Refer Slide Time 12:31)

So in this case we have two independent variable and we are considering variation for both the variables. That's why we need to show this (accu)order of accuracy in term of both the independent variable.

(Refer Slide Time 12:56)

This is a general form of differential equation with a general variable phi. We have already discussed this in our earlier lecture and in this case phi is some general variable lambda and upsilon these are problem dependent parameters. And this gamma phi is a tensor if phi0 or f phi0 other forces, Sphi is source sink term for this one.

(Refer Slide Time 13:50)

1	Finite Difference Approximations Problem Domain	S
	General Equation	
	A form of differential equation with a general variable ϕ :	
	$\frac{\partial (\widehat{N_{\phi}\phi})}{\partial t} + \nabla . (\widehat{\Upsilon_{\phi}\phi}\mathbf{u}) = \nabla . (\underline{\Gamma_{\phi}}.\nabla\phi) + F_{\phi_{\phi}} + S_{\phi} $ (10)	
	where e^{2} = general variable h^{2} = problem dependent parameters	
	$\Gamma_{\phi} = \text{tensor}$ $F_{\phi_0} = \text{other forces}$ $S_{\phi} = \text{source/sink term}$	
(7)	🖉 🚔 🔍 😨 💾 🔕 🛛 🛛 🖉 🖉 🖓 🖓 🖓	

So if we approximate this equation and we utilize it for defining partial differential equations as boundary value problem then we need to neglect this term zero, this advective term as zero. This is also zero.

(Refer Slide Time 14:16)

	Finite Difference Approximations Problem Domain	🥔 k 🐍 🔽 🛇
J	General Equation	
	A form of differential equation with a general variable ϕ : $\frac{\partial(\Lambda_{\phi,\phi})}{\partial t} + \nabla.(\Upsilon_{\phi,\phi}\mathbf{u}) = \nabla.(\Gamma_{\phi}.\nabla\phi) + B_{\phi_o} + S_{\phi}$ where ϕ = general variable $\Lambda_{\phi}, \Upsilon_{\phi}$ = problem dependent parameters Γ_{ϕ} = tensor F_{ϕ_o} = other forces S_{ϕ} = source/sink term	(10)
•		

We will consider only these two terms. In this case del operator we are considering only variation of x and variation of y.These are unique vector in x and y direction. So this is del operator. So with this information we can use a simplified governing equation to define the boundary value problem.

(Refer Slide Time 14:49)

1	Finite Difference Approximations Problem Domain
	General Equation
	A form of differential equation with a general variable ϕ :
	$\frac{\partial (\Lambda_{\phi}\phi)}{\partial t} + \nabla .(\Upsilon_{\phi}\phi\mathbf{u}) = \nabla .(\Gamma_{\phi}.\nabla\phi) + B_{\phi_o} + S_{\phi} $ (10)
	where ∂t (-1) (-1) (-1) (-1) (-1)
	ϕ = general variable
	$\Lambda_{\phi}, \Upsilon_{\phi} = \text{problem dependent parameters}$ $\Gamma_{\phi} = \text{tensor}$
	$F_{\phi_o} = \text{other forces}$ $\bigvee = \frac{1}{22} (1 + \frac{1}{22})$
	$S_{\phi}~=$ source/sink term
	× 🗿
()	

In this case without any cross term we have defined this del2 phi del x2. So obviously phi in previous case it's a two dimensional tensor with gamma x, gamma y, and cross terms are zero.

(Refer Slide Time 15:40)

	Finite Difference Approximations Problem Domain
J	Problem Definition
	Governing equation
	A two-dimensional BVP can be written as, $\partial^2 \phi = \partial^2 \phi$
	$\Omega: \Gamma_x \frac{\partial^2 \phi}{\partial x^2} + \Gamma_y \frac{\partial^2 \phi}{\partial y^2} + S_\phi(x, y) = 0$
	subject to
	Boundary Condition
	$\Gamma_D^1: \phi(0,y) = \phi_1$
	$\Gamma_D^2: \phi(L_x, y) = \phi_2$
	$\Gamma_N^3: \frac{\partial \phi}{\partial y}\Big _{(x,0)} = 0$
	$\Gamma_N^4: \frac{\partial \phi}{\partial y}\Big _{(x,L_y)} = 0$
(7)	

So if we simplify this and consider that gamma x, gamma y these two are constant then we can write in this format that means gamma y and x these are not varying with x and y.So Sphi is some source sink term.

(Refer Slide Time 15:59)

	Finite Difference Approximations Problem Domain
	Problem Definition
	Governing equation A two-dimensional BVP can be written as, $\partial^2 \phi = \partial^2 \phi$
	$\Omega: \underline{\Gamma}_x \frac{\partial^2 \phi}{\partial x^2} + \underline{\Gamma}_y \frac{\partial^2 \phi}{\partial y^2} + \underline{S}_{\phi}(x, y) = 0$
	subject to
	Boundary Condition
	$egin{array}{ll} \Gamma_D^1:&\phi(0,y)=\phi_1\ \Gamma_D^2:&\phi(L_x,y)=\phi_2 \end{array}$
	$\Gamma_N^3: \frac{\partial \phi}{\partial y}\Big _{(x,0)} = 0$
	$\Gamma_N^4: \frac{\partial \phi}{\partial y}\Big _{(x,L_y)} = 0$
(7)	

We can define boundary condition for a rectangular domain. So we have rectangular domain, this is lx for that rectangular domain ly for this y direction and this is zero zero point.

(Refer Slide Time 16:32)

Finite Difference Approximations Problem Domain
Problem Definition
Governing equation
A two-dimensional BVP can be written as, $p^2 = p^2 = 0$
$\Omega: \underline{\Gamma_x} \frac{\partial^2 \phi}{\partial x^2} + \underline{\Gamma_y} \frac{\partial^2 \phi}{\partial y^2} + \underline{S_\phi(x, y)} = 0$
subject to
Boundary Condition
$\begin{split} \Gamma_D^1 : & \phi(0, y) = \phi_1 \\ \Gamma_D^2 : & \phi(L_x, y) = \phi_2 \\ \Gamma_N^3 : & \frac{\partial \phi}{\partial y}\Big _{(x,0)} = 0 \\ \Gamma_N^4 : & \frac{\partial \phi}{\partial y}\Big _{(x,L_y)} = 0 \end{split}$
N 2019 € 😤 O O H 🚳 🚺 Company and a state of the USA

So with this information we have defined these four boundary conditions gamma d1 that means this left boundary at x is equal to zero and y this is Dirichlet kind of boundary or specified boundary, phi1.

(Refer Slide Time 16:54)

	Finite Difference Approximations Problem Domain Problem Definition
	Governing equation A two-dimensional BVP can be written as, $\Omega: \underline{\Gamma}_x \frac{\partial^2 \phi}{\partial x^2} + \underline{\Gamma}_y \frac{\partial^2 \phi}{\partial y^2} + \underline{S}_{\phi}(x, y) = 0$
	subject to Boundary Condition
	$ \begin{split} & \left(\begin{array}{c} \Gamma_D^1 \\ \Gamma_D^2 \\ \Gamma_D^2 \\ \end{array} \right) & \left(\begin{array}{c} \phi(0,y) = \phi_1 \\ \phi(L_x,y) = \phi_2 \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^3 \\ \Gamma_N^3 \\ \end{array} \right) & \left. \begin{array}{c} \frac{\partial \phi}{\partial y} \\ \left _{(x,0)} = 0 \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^3 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \end{array} \right) \\ & \left. \begin{array}{c} \Lambda^2 \\ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ \\ \\ & \left(\begin{array}{c} 0 \end{array} \right) \\ \\ \\ \\ \\ \end{array} $ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\
()	🖉 📸 💿 👘 🍘 🛂

And gamma 2d this is again Dirichlet boundary with x is equal to lx and for all y we have this phi two value. This is phi1.

(Refer Slide Time 17:14)

	Finite Difference Approximations Problem Domain
l I	Problem Definition
	Governing equation
	A two-dimensional BVP can be written as, $\partial^2 \phi = \partial^2 \phi$
	$\Omega: \underline{\Gamma}_{x} \frac{\partial^{2} \phi}{\partial x^{2}} + \underline{\Gamma}_{y} \frac{\partial^{2} \phi}{\partial y^{2}} + \underline{S}_{\phi}(x, y) = 0 \qquad \qquad$
	subject to
	Boundary Condition
	$ \begin{array}{c} \Gamma_D^1 \\ \Gamma_D^2 \\ \Gamma_D^3 \\ \Gamma_N^3 \\ \Gamma_N^4 $
(7)	😂 🟥 🗿 🦉 🔚 🎯 🛃

And for gamma three, this is gamma n3, this is actually phi n. In y direction there is no variation. And top we have del phi by del y equals to zero. So we can see that for this boundary value problem values are either specified for all boundaries or they are written in terms of boundary conditions.

(Refer Slide Time 17:40)

	Finite Difference Approximations Problem Domain
J	Problem Definition
	Governing equation
	A two-dimensional BVP can be written as, $\partial^2 \phi = \partial^2 \phi$
	$\Omega: \underline{\Gamma}_x \frac{\partial^2 \phi}{\partial x^2} + \underline{\Gamma}_y \frac{\partial^2 \phi}{\partial y^2} + \underline{S_\phi(x, y)} = 0$
	subject to
	Boundary Condition
	$(\Gamma_D^1) \phi(0,y) = \phi_1$
	$\begin{array}{c} \Gamma_D^2 \\ \phi(L_x,y) = \phi_2 \\ \phi \end{array} \qquad \begin{array}{c} \Delta \\ \phi \end{array}$
	$ \begin{array}{c} \Gamma_D^2 \\ \Gamma_N^2 \\ \Gamma_N^3 : \begin{array}{c} \frac{\partial \phi}{\partial y} \Big _{(x,0)} = 0 \end{array} \end{array} \xrightarrow{\Delta} \\ \begin{array}{c} \varphi_1 \\ \varphi_2 \\ \hline \varphi_1 \\ \hline \varphi_2 \\ \hline \varphi_2 \\ \hline \varphi_1 \\ \hline \varphi_2 \\ \hline $
	$\Gamma_N^4: \frac{\partial \phi}{\partial y}\Big _{(x,L_y)} = 0 \qquad \qquad \begin{array}{c} \begin{pmatrix} \phi, \phi \\ \phi \end{pmatrix} = \begin{array}{c} 2 \phi \\ \phi \\ \phi \end{array}$
-	A 10 4 2000

So domain discretization, this is lx this is y Dirichlet, Dirichlet boundary, Neumann, Neumann boundary.

(Refer Slide Time 18:18)

Important point is for this corner points. For corner points either we can consider it in this gamma n domain or in gamma d domain. In this case we can consider it in gamma d domain because in this case let us say that value is specified for these points these four points 1, two, three and four.

(Refer Slide Time 18:57)

For this green portion that is Neumann boundary we can define the boundary condition based on three points or two points depending on the desired accuracy.

(Refer Slide Time 19:18)

So let us consider the discretization of governing equation. In this case we have discretized the governing equation with second order accurate scheme gamma x, gamma y into this.

(Refer Slide Time 19:45)

	Finite Difference Approximations Problem Domain 🧨 📂 🎓 📚 🍫 💐 💭 🖋 🥔 🖈 🍾 🗊 📎
	Numerical Discretization Governing Equation
	The governing equation can be discretized as,
	$\Gamma_x \frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2} + \Gamma_y \frac{\phi_{i,j-1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^2} + \mathcal{O}(\Delta x^2, \Delta y^2) = -S_{\phi}\big _{i,j}$
(7)	🔗 👸 D. O. 🖸 💾 🚳 🔼

This is second order accurate. Minus Sphi ij which is specified value source sink term. We have transferred it into right hand side.

(Refer Slide Time 19:54)

So this equation can be arranged as following. So with this, this i j minus 1. That means if we have any general ij structure then this is ij minus 1, this ij plus 1, this is i minus 1 j, this is i plus 1 j.

(Refer Slide Time 20:54)

	Finite Difference Approximations Problem Domain
	Numerical Discretization Governing Equation
	The governing equation can be discretized as,
	$\Gamma_x \frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2} + \Gamma_y \frac{\phi_{i,j-1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^2} + \mathcal{O}(\Delta x^2, \Delta y^2) = -S_\phi \big _{i,j}$
	The equation can be rearranged as,
	$\frac{1}{\Delta y^2} \phi_{i,j-1} + \frac{1}{\Delta x^2} \phi_{i-1,j} - 2 \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} \right) \phi_{i,j}$
	$+\frac{\Gamma_x}{\Delta x^2}\phi_{i+1,j} + \frac{\Gamma_y}{\Delta y^2}\phi_{i,j+1} = -S_\phi\big _{i,j}$
(7)	🖉 🚆 👀 🕥 💾 🎯 🗷

In this case this coefficient we are starting with ij minus 1 this is first, then i minus 1 j this is second, ij this is third, i plus 1 j this is fourth and fifth one is ij plus 1.So we have considered the coefficient for all these points.

(Refer Slide Time 21:21)

Finite Difference Approximations Problem Domain
Numerical Discretization Governing Equation
The governing equation can be discretized as,
$\Gamma_x \frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2} + \Gamma_y \frac{\phi_{i,j-1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^2} + \mathcal{O}(\Delta x^2, \Delta y^2) = -S_\phi \big _{i,j}$
The equation can be rearranged as, $2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$
$\frac{\Gamma_y}{\Delta y^2} \phi_{i,j-1} + \frac{\Gamma_x}{\Delta x^2} \phi_{i-1,j} - 2\left(\frac{\Gamma_x}{\Delta x^2} + \frac{\Gamma_y}{\Delta y^2}\right) \phi_{i,j} $
$+\frac{\Gamma_x}{\Delta x^2}\phi_{i+1,j} + \frac{\Gamma_y}{\Delta y^2}\phi_{i,j+1} = -S_{\phi}\big _{i,j}$
N
🛞 🙆 🗒 🕥 🐧 🔕 🔼

Now if we simplify this by using this notation that alpha x and alpha y can be written as gamma x by delta x square and gamma y by delta y square.

(Refer Slide Time 21:50)

So we can write this in simple form but the problem is we cannot construct the algebraic matrix forms because we have double index notation present. In 1 dimension single index is possible to form this matrix easily.

(Refer Slide Time 22:30)

Finite Difference Approximations Problem Domain
Numerical Discretization Governing Equation
The governing equation can be discretized as,
$\Gamma_x \frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2} + \Gamma_y \frac{\phi_{i,j-1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^2} + \mathcal{O}(\Delta x^2, \Delta y^2) = -S_\phi \big _{i,j}$
The equation can be rearranged as,
$\frac{\Gamma_y}{\Delta y^2} \phi_{i,j-1} + \frac{\Gamma_x}{\Delta x^2} \phi_{i-1,j} - 2\left(\frac{\Gamma_x}{\Delta x^2} + \frac{\Gamma_y}{\Delta y^2}\right) \phi_{i,j} \\ + \frac{\Gamma_x}{\Delta x^2} \phi_{i+1,j} + \frac{\Gamma_y}{\Delta x^2} \phi_{i,j+1} = -S_{\phi}\big _{i,j}$
In simplified form, this can be written as
$\begin{aligned} \alpha_y \phi_{i,j-1} + \alpha_x \phi_{i-1,j} - 2 \left(\alpha_x + \alpha_y \right) \phi_{i,j} + \alpha_x \phi_{i+1,j} + \alpha_y \phi_{i,j+1} = -S_d \\ \text{with} \alpha_x = \left(\frac{\Gamma_x}{\Delta x^2} \right) \text{and} \alpha_y = \frac{\Gamma_y}{\Delta y^2}. \end{aligned}$

But individual points will have individual governing equations or boundary condition equations. These individual points will have individual equations. So these points are itself in ij format. So we cannot construct the matrix directly.

(Refer Slide Time 23:00)

So what we can do, we can introduce single index notation. Single index L can be written as i j m plus 1. This is ij. This point can be represented as L.

(Refer Slide Time 23:21)

So L minus 1 is basically i minus j point, L plus 1 is i plus 1 j, L minus m plus 1 this is ij minus 1 and L plus m plus 1 is ij plus 1 point.

(Refer Slide Time 23:49)

We are starting from point 0 to m, that's why we have m plus 1 number of points. So if we take the next level in y direction so obviously there will be difference of m plus 1 number of nodes.

(Refer Slide Time 24:16)

So with this information we can construct our grid system with 0 as starting point, m here and finally this will give the maximum number of points.

(Refer Slide Time 24:47)

Wehave started from this point then we will move towards this.

(Refer Slide Time 24:55)

Again the next level will start from here this point.

(Refer Slide Time 25:00)

Again we will move in this direction again we will come back to this point and move to this direction.

(Refer Slide Time 25:11)

So i we are starting with j. For j equals to zero level we have m plus 1 number of points starting from zero to M. Then we will have m plus 1, like that we can define our nodal points with single index notation so that we can easily form the final matrix for solution.

(Refer Slide Time 25:54)

With single index notation the equation can be written as, in this case we have this kind of stencils that we have L, L minus 1, L plus 1. So we have five points.

(Refer Slide Time 26:33)

So m plus 1, L minus 1, L, L plus 1, L plus m plus 1. And this S phi is basically defined for ij or S phi we can write it in terms of L. So we can uses this equation for interior points or blue points. For boundary points we need to define the boundary conditions.

(Refer Slide Time 27:13)

For Dirichlet boundary things are clear because we can directly specify the boundary conditions without any error. But Neumann boundary we need to consider the second order discretization because we have second order accurate scheme here for governing equation.

(Refer Slide Time 27:43)

	Finite Difference Approximations Problem Domain	X - S
J	Neumann Boundary Condition	
	i,N-1 i,N-2	
	Top Boundary	
	Second Order Discretization	
	$\frac{3\phi_{i,N} - 4\phi_{i,N-1} + \phi_{i,N-2}}{2\Delta y} + \mathcal{O}(\Delta y^2) = 0 $ (11)	
(7)	🙆 🥞 🔍 🖓 💾 🎯 📕 🛛 🗖	:33 PM /26/2017

So we can include n, n minus 1, n minus 2 points. And this is second order accurate.

(Refer Slide Time 27:53)

Finite Difference Approximations Problem Domain
Neumann Boundary Condition
i.N-1 i.N-1 i.N-2
Top Boundary
Second Order Discretization
$\frac{3\phi_{i,N} - 4\phi_{i,N-1} + \phi_{i,N-2}}{2\Delta y} + \mathcal{O}(\Delta y^2) = 0 \tag{11}$
😰 🥝 🖄 🕼 💿 👫 🎯 🔼 transmission of the second se

With this information we can use the single index notation to represent the thing. And we can directly use this one as equation for matrix form.

(Refer Slide Time 28:13)

Finite Difference Approximations Problem Domain
Neumann Boundary Condition
í.N-1 • i.N-2
Top Boundary
Second Order Discretization
$\frac{3\phi_{i,N} - 4\phi_{i,N-1} + \phi_{i,N-2}}{2\Delta y} + \mathcal{O}(\Delta y^2) = 0 \tag{11}$ In single index notation format, $3\phi_l - 4\phi_{l-(M+1)} + \phi_{l-2(M+1)} = 0$
🖻 🖉 🐃 🔍 🌒 💾 🎯 🖪 🐘 👔 🔤 🖉 🖓 🖉

Similarly for this is for the top boundary, we can use it for bottom boundary zero, 1, 2 points and we can use the single index notation to represent the boundary condition.

(Refer Slide Time 28:35)

Neumann Boundary Condition i.2 $i.1$ $i.0$ Bottom Boundary Second Order Discretization $\frac{-3\phi_{i,0} + 4\phi_{i,1} - \phi_{i,2}}{2\Delta y} + \mathcal{O}(\Delta y^2) = 0$ (13) In single index notation format, $\frac{-3\phi_l + 4\phi_{l+(M+1)} - \phi_{l+2(M+1)}}{2\Delta y} = 0$ (13)	Finite D	ifference Approximations Problem Domain	ê 🗭 🌾 🖗 -	4 🖽 🥖 🍠 🥔	🛛 🕬
Bottom Boundary Second Order Discretization $\frac{-3\phi_{i,0} + 4\phi_{i,1} - \phi_{i,2}}{2\Delta y} + \mathcal{O}(\Delta y^2) = 0 \tag{13}$ In single index notation format,	Neumann Boun	dary Condit	ion		
Second Order Discretization $\frac{-3\phi_{i,0}+4\phi_{i,1}-\phi_{i,2}}{2\Delta y}+\mathcal{O}(\Delta y^2)=0 \tag{13}$ In single index notation format,		_	• <i>i</i> ,1		
$\frac{-3\phi_{i,0}+4\phi_{i,1}-\phi_{i,2}}{2\Delta y}+\mathcal{O}(\Delta y^2)=0 \tag{13}$ In single index notation format,					
In single index notation format,	Second Order Discre				
$\frac{-3\phi_l + 4\phi_{l+(M+1)} - \phi_{l+2(M+1)}}{2\Delta y} = 0$	In single index notat	ion format,			(13)
Dr. Anirban Dhar NPTEL Computational Hydraulics 22	Dr. Anirban Dhar				7

Again we are getting some equation for those boundary points. Now with this governing equation in discretize form and boundary conditions we can form the matrix for solution.

(Refer Slide Time 29:00)

F	inite Dif	ference	Probler	n Dom	ions nain	° 🜔	1	5	\$ _4		1 1 0	9 k	· 🖬 🗞
Matrix Form													
	۲×	×				×				×			
	×	×	×				×		0				
		×	×	×			0	×					
			×	×	×	×	0		×	×			
	×				Ŷ	$\hat{\mathbf{x}}$	×						
		×		0		×	×	×					
			\times				×	×	×				
		0		×				×	×	×			
	L				×				×	×			
Dr. Anirban Dhar		Ν	IPTEL					Cor	nputat	ional Hyd	lraulics 🖏		23

Interestingly for interior points we will have five coefficients. For L, L minus 1, L plus 1 and this is L plus m plus 1. This is for L minus m plus 1.

(Refer Slide Time 29:42)

This is valid for interior points but if we have boundary points then we need to consider another structure point here which will consider the L minus two m plus 1 and on this side also L plus 2 into m plus 1 to consider the three points.

(Refer Slide Time 30:21)

Finite Difference Approximations Problem Domain	8
Taylor Series	
Taylor series expansion for a function with two independent variables can be expressed as, $\underline{\phi(x + \Delta x, y + \Delta y)} = \sum_{\eta_x=0}^{\infty} \sum_{\eta_y=0}^{\infty} \frac{\Delta x^{\eta_x} \Delta y^{\eta_y}}{\eta_x! \eta_y!} \frac{\partial^{\eta_x + \eta_y} \phi(x, y)}{\partial x^{\eta_x} \partial y^{\eta_y}}$ $= \phi(x, y) + \Delta x \frac{\partial \phi}{\partial x} + \Delta y \frac{\partial \phi}{\partial y} + \frac{1}{2!} \left[\Delta x^2 \frac{\partial^2 \phi}{\partial x^2} + 2\Delta x \Delta y \frac{\partial^2 \phi}{\partial x \partial y} + \Delta y^2 \frac{\partial^2 \phi}{\partial y^2} \right] + \cdots$	
	4 17

Now we can solve this A matrix with phi and define for single index notation. And we will have something bL for right hand side. So with this we can solve this phi Lby inverting the A matrix. And this will give solution for the desired problem.

(Refer Slide Time 31:09)

And next lecture class we will be discussing the time derivative and partial differential equation. Thank you.