Computational Hydraulics Professor Anirban Dhar Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture 48 Steady Flow in Pipe Network (Contd.)

So let us start with this steady 1D pipe network HC which is Hardy Cross discharge configuration 1.

(Refer Slide Time: 00:25)

The Lat Control Angle Control II	Scileb 6.0.0 Console			_			
Intelligion Intelligion Intelligion <th>File Edit Control Applications ?</th> <th></th> <th>- 🍋 😰 🔅 🔺</th> <th></th> <th></th> <th></th> <th></th>	File Edit Control Applications ?		- 🍋 😰 🔅 🔺				
Intel Silver Intel Silver Intel Silver Intel Silver Intel Silver Intel Silver Intel Silver Intel Silver Intel Silver							
Native secondary Lasting Initial environments →>	Sc8ab 6.0.0 Console		7 * ×	Variable Erowser			
Hartog secondari Listing (Listing) evysioness → → → → → → → → → → → → → → →				Name	Value	Type	Vability
Lading ALLAL evidenments	Startup execution:						
>	loading initial environment						
Image: Section of the section of t	>						
Inter a file to target with Schlores Interful Depresentence, NC, Q, etgl.aci Interful Depresenten							
Inter to fits to tagen with Software Inter to fits							
Internet in the locations Internet Internet in the location of the l							
		The second as the second sector to the second					
International and the second secon		Select a rise to open work screates					
Rear Ten Rear T		Look HI A Pipe_1	- 60 07 0	-			
Reaching Constant Not Constan		iteady 10 pipe netwo	HE HE Q HERAL		_		
		steady 10 pipe netwo	rk_HC_Q_cfg2.sci uk_HC_Q_cfg2.sci				
Image: Construint For Construint F		Recent Items			E		
		-					
Produced a second secon		Contribut					
Produced by Produc		10.					
Personer mender, 50 year yearout, 140, 0, 45, 50		My Documents					
Pierameri mondry, Organizations, 140, 043, 140 Piera of them: Al Jointo Base(*aut) . Colleges spin to film		Computer					
Terrane intende, in gang vertexes, r.C. g. fs so Files of face: Ad Solide files(2.00) College spinster of face							
		Ple name: steady_10_1	ppe_retwork_HC_Q_rfg1.ac	9(3			
		Network Piles of type: All Solab file	s(*.s(*) ·	Cal Open set	ected file		
				_			
							15 miles
							689
							All and a second second
							Mark I
							13/
							THE ST
P.							- A
						1	P
						6	20

So we will try to utilise the same structure as we have used in case of gradually varied flow. But fundamental difference is that we do not require that much computational effort like our gradually varied flow. Let us start with this clc clear. This was there for gvf but we will not utilise it. This given data g is 9 point 81, global, eps max this is required for convergence, 1 into 10 to the power minus 6.

Beta value, beta it is 2, pipe n is pipe number so we have 8 pipes. Number of maximum, number of pipes connected to a particular loop we have 4. This is required for loop connectivity Matrix that I have discussed already. Now junction number, this junction number is 5. And ploop, ploop is for pseudo loop and iloop is for interior loop. Now loop number which is the total number of loops we have ploop plus iloop. That means number of pseudo loops plus number of interior or internal loops.

(Refer Slide Time: 02:14)

Now we have specified the discharge values directly without sign. Please check this thing, I have not used any signs here and we head difference 20 between two this tanks or reservoirs. In this case this is the loop connectivity matrix.

(Refer Slide Time: 02:47)

🛫 isteady 10. pipe setwork His Quity Exc (CUI) exclusion interation/Denktop/Dyna (Unitary) (Opping Setwork et al. 2016) and a law in a setwork	
The fait format options window Execute ?	
analy, ID gate retrack JC, Q, /gLas (20)	
A handle of a language work	
iloop=2/ //Interior Loop	
19 loopn=ploop+iloop	
20	
21 Qi=[0.319 0.134 0.062 0.019 0.043 0.185 0.035 0.072]; //Initial Discharge	
22	
23 head_diff=[20]; // m in psudo	
24	
25 loop_con=[4 -1 -2 -3 -4	
26 4 2 8 -7 -6	
27 3 3 5 -6 0];	
28	
29 pipe_con=zeros (pipen, loopn)	
30 for 1-110oph	
31 for i=110op_con(1,1)	
32 pipe_con(abs(loop_con(1,i+1)),1)=1/	
33 end	U
34 end	
35	
36 Ky=[100 500 200 100 400 300 400 300];	
37	
38 //Problem Dependent Parameters	
39 QV=zeros (loopn, nmaxpl) /	
40	
41 //General Identification Matrix	
42 for 1-1:loopn	
43 for i=1:loop_con(1,1)	
44 Qv(l,i)=sign(loop_con(l,i+1))*Qi(abs(loop_con(l,i+1)));	100 A
45 end	
46 end	2-1
47	201
48	
49 count = 0;	
50 rmse=1;	
an //mean-ban	196.

Now we need to construct one pipe connectivity matrix. So what is that? That means in starting from pipe 1, 2 up to 8 we need to provide certain information. What is information? Information is that in that matrix we will have first column which is for first loop, second column is second loop, third column is for third loop. Why this is required? This is required

during our delta QL update. So this one it is connected to first loop only. So we will write it as 1.

(Refer Slide Time: 03:47)

Johrnady, 1D, piper, network, HC, Q. (d) 1501 (CUlters Materialization) Desisting/Dignel (Sateraly, 21D) piper partners is No. 1 and 1 an	
rate, (D paie, petwork JHC, 0, (b) as (C the system in the Constant Parker, Tollandy, (C paie, petwork, HC, D, (b) and (c) a forest	
30 (n1,0,0,0,0,0,0,0,0,0,0)	
r product r removed a sep	
18 1100p=21 //Interior Loop	
19 loopn=ploop+iloop/	
20	
21 Q1=[0.319 0.134 0.062 0.019 0.043 0.185 0.035 0.072]; //Initial Dirharge	
22	
23 head_diff=[20]/ // m in psudo	
24	
25 loop_con=[4 -1 -2 -3 -4	
26 4 2 8 -7 -6	
27 3 3 5 -8 0]	
28	
29 pipe_con=zeros (pipen, loopn)	
30 for 1=1100pn	
31 for $1-1100p_{con}(1,1)$	
32 pipe_con(abs(loop_con(1,1+1)),1)=1/	•
33 end	
34 end	
35	
36 RV=[100 500 200 100 400 300 400 300])	
37	
38 //Problem Dependent Varameters	
39 QV=zeros (loopn, nmaxp1)	
40	•
41 //General Identification Matrix	
42 for 1=1:100pn	
43 for 1=1:100p_con(1,1)	
44 Qv(1,1)=sign(loop_con(1,1+1))*Q1(abs(loop_con(1,1+1))))	(200)
45 end	(Alternal)
46 end	901
47	
48	
49 count = 0/	
50 rmse=17	the -
	-

Second one it is connected to second one and first one. So I will write it as 1 and 2 both. So like that we can enter the pipe connectivity in a particular loop and we can provide this information during calculation.

(Refer Slide Time: 04:19)

ady_10_pige_retwork_HC_Q_rfg1.60				
iloop=2) //Interior Loop				
loopperilooptiloop				
o seehi preep reeep				
01=[0,319 0,134 0.062 0.019 0.043 0.185 0.035 0.072]; //Initia	al Distha	rae 9	2	
2		~	2_	
head diff=[20]; // m in psudo	F			
			_	
5 loop con=[4 -1 -2 -3 -4	••		•	
6 4 2 8 -7 -6 2		2		
7 3 3 5 -8 0];		~		
8				
9 pipe_con=zeros (pipen, loopn)				
o for 1=1:loopn				
1 for i=1100p_con(1,1)				
<pre>2 pipe_con(abs(loop_con(1,i+1)),1)=1;</pre>	•			
3 end	•			
4 end	•			
5				
6 Kv=[100 500 200 100 400 300 400 300]/				
7				
8 //Problem Dependent Parameters			_	
9 Qv=zeros(loopn,nmaxpl)/				
0	-		-	
1 //General Identification Matrix				
2 for 1=1:loopn				
<pre>3 for i=1:loop_con(1,1)</pre>				
4 Qv(1, i) = sign(loop_con(1, i+1))*Qi(abs(loop_con(1, i+1))))			
5 end				
6 end				
7				
8				
g count = 0;				
0 rmse=11				A A

Now we have straightway these Kv values. Kv is nothing but Ki cap.

(Refer Slide Time: 04:31)

Now again we need to specify this Qv. What is Qv? Zeros loop number. So Lth loop and up to maximum number of pipes connected in a particular loop we need to create this Qv matrix because this is a main matrix that is required for our calculation. Because we need to preserve the sign convention in this matrix itself.

(Refer Slide Time: 05:10)

Now for general identification we have this Qv. We need to transfer our initial values. If loop connectivity L i plus 1 which is starting from second column of the loop connectivity matrix, if it is positive then Q should be positive for that loop.

(Refer Slide Time: 05:44)

Otherwise what it means? Let us see our loop connectivity matrix. If loop connectivity for first entry this is negative this sign gives us negative for negative value or minus 1 for negative value, plus one for positive value. So sign multiplied by Qi. Qi value I have specified without any sign so I should input these values within this Qv L i with this sign. So sign should be coming from this loop connectivity matrix directly.

(Refer Slide Time: 06:29)

11	redy 10 pipe network HC Q rtg1 to (CUIter/Melministrato/Desitop/Spe. (Utredy 10 pipe network HC divide and a failure	
The I	Int Format Options Window Decode 7	/ 🚍 🥖 🍼 🥔 🔌 🦦 💊 刘
μ.	I Design reduced by C. C. Stat and C. Sharash device the Design Proc. 10, page reduced, 10, Q. Stat and Solitons.	
-	y_10_pige_retwork_HC_Q_rfg1.or [20]	
22		
23	head diff=[20]; // m in psudo	
24		
25	loop_con=[4 -1 -2 -3 -4	
26	4 2 0 -7 -6	
27	3.3.5 -8 0]/	
28		
29	pipe_con-zeros(pipen, loopn)	
30	for 1=1:loopn	
31	for i=1:loop_con(1,1)	
32	pipe_con(abs(loop_con(1, i+1)),1)=1;	
33	end	
34	end	1
35		
36	KV=[100-500 200 100 400 300 400 300]/	
37	//	
38	Overseros (loope pmaxpl);	
39	Quereros (rooph, nmaxpr)	
40	//Conneral Identification Matrix	
42	for l=1 loop	
43	for i=1:1cop con(1,1)	
44	Qv(1,i) = sign(loop con(1,i+1))*Qi(abs(loop con(1,i+1)));	
45	end	
46	end	
47		
48		
49	count = 0)	
50	rmse=1/	
51	//Space Loop	SIL
52	while rmse > eps_max	
53	rmse=0;	
54	delg=zeros(loopn, 1))	
55	for 1=110opn	

Now with this information or initial information I can start this iteration. Obviously in this case we have only space loop or this loop for iteration. Counter equals to zero, rmse equals to

1 so that I can enter into this while loop. This rmse equals to zero, del QL zeros loopn 1. That means for each loop I have specified one del Q.

(Refer Slide Time: 07:12)

-	y_10_pape_network_HC_0_cityt.sol(ClubersVuberstrato/DestlopPipe_Ubleaty_10_pape_network_HC_0_cityt.sol) = Schlates
	hr, Dugwe, Jetrovit, HC, Qu figla and 🔟
46	end
87	
48	
49	count = 0;
50	Imse=1/
51	//Space Loop
52	while rmse > eps max
53	Impe=0/
54	delg=zeros (loopn, 1) 🦰
55	for 1-1:loopn
56	nr=0,
57	dr=0;
58	if(l<=ploop) then
59	nr=nr+head_diff(1);
50	end
61	for i=1:loop_con(1,1)
52	nr=nr+Kv(abs(loop_con(1,i+1)))*Qv(1,i)*abs(Qv(1,i))^(betav-1);
53	$dr=dr+betav*Kv(abs(loop_con(1,i+1)))*abs(Qv(1,i))^(betav-1))$
54	end
55	delQ(l)=-(nr/dr);
56	end
57	
58	
59	
70	for 1=1:10opn
11	for j=1:loop_con(1,1)
12	for k=1:loopn
73	if (pipe_con(abs(loop_con(1,j+1)), k) <>0) then
74	if (pipe_con(abs(loop_con(1,j+1)),k)==1) then
15	Qv(1,j)=Qv(1,j)+delQ(pipe_con(abs(loop_con(1,j+1)),k))/
76	else
77	Qv(1,j)-Qv(1,j)-delQ(pipe_con(abs(loop_con(1,j+1)),k))/
18	end
19	end

Now this part is important for our calculation. For L equals to 1 to loop numbers, nr dr numerator and denominator, if L less than equals to plop. That means less than equal to number of ploops then we need to add this nr value equals to nr plus head difference. The head difference we need to add here directly in the numerator because for our problem only this head difference is there.

(Refer Slide Time: 08:03)

So i equals to 1 to loop connectivity L 1. L 1 means it gives the entry in the first column. So for the first loop we have four connected pipes. For four connected pipes I can calculate this nr equals to Kv which is K value into Qv into absolute Qv into the power beta v minus 1. Again denominator this is dr equals to dr into beta v into Kv abs Qv L i to the power beta minus 1. After taking abs I am taking this power.

(Refer Slide Time: 08:57)

So if I divide this to numerator by denominator this with a negative sign I will get this QL value or del QL value. Now this del QL value is okay but we need to add this to our different discharge values. So how to add this? So let us start with information with a loop connectivity. So three rows. So L equals to 1 to loop number. So 1, 2, 3.

(Refer Slide Time: 09:49)

For each loop you can start and I can go or I can iterate from j equals to 1 to loop connectivity L 1. That means for first loop I should use j equals to 1 to 4, for second loop j equals to 1 to 4, but third loop it is j equals to 1 to 3. So I am checking different entries there. 1234, 1234, 123 and this is zero.

(Refer Slide Time: 10:33)

Now in this case next level is K equals to loop number. Now we need to add this del Q value. For del Q I am adding this K index. If K is the index for del Q and it directly matches with 1, let us say we are talking about Q1 and we are in L equals to 1. So I should add that value here.

(Refer Slide Time: 11:13)

Otherwise if there is no match between K and L here I should subtract this del Q value because I need to consider or I need to update my discharge in different loops. So after performing this operation I will get the updated Qv values. Obviously in this case we need to calculate the rmse value. What is this rmse? Rmse is equal to already I have used rmse equals to zero. So rmse equals to rmse plus del QL to the power 2.

(Refer Slide Time: 12:05)

- ste	ady 10 pipe setural MC 0 of \$100 CONTROL CONTROL OF STREET, 20 pipe setural MC Andrew Controls
File E	
E.	To pay, price on the Construction of Construction of Construction (Construction of Construction of Constructio
	y_D_ge_retriefs_HC_Q_fgLe0 16
57	dr=U/
58	if(l<=ploop) then
59	nr=nr+head_diff(1),
60	end
61	for i=1:10op_con(1,1)
62	nr=nr+Kv (abs(loop_con(l,i+1)))*Qv(l,i)*abs(Qv(l,i))^(betav-1))
63	dr=dr+betav*Kv(abs(loop_con(l,i+1)))*abs(Qv(l,i))^(betav=1))
64	end
65	delq(1) = -(nr/dr)
66	and
67	
68	
69	
70	for 1=1:loopn
71	for j=1:loop_con(1,1)
72	for k=1:loopn
73	if (pipe_con(abs(loop_con(1,j+1)),k) <>0) then to
74	if (pipe_con(abs(loop_con(l,j+1)), k)==1) the last
75	Qv(l,j)=Qv(l,j)+delQ(pipe_con(abs(loop_con(l,j+1)),k));
76	else
77	Qv(l,j)=Qv(l,j)-delQ(pipe_con(abs(loop_con(l,j+1)),k));
78	end end
79	en and the second se
80	end
81	end
82	end
83	
84	
85	for 1-1:100pn
86	rmse=rmse+delQ(1)^2;
87	end
0.0	
89	
90	rmse=sqrt (rmse/loopn)/

So I am taking square of all discharge or increment value there. So with this I can calculate rmse. Rmse equals to square root of rmse divided by loop number because for each loop we will have one del Q. So I can display this count and rmse value.

(Refer Slide Time: 12:36)

If there is convergence obviously this loop this is for while loop this will terminated and I will get the discharge values for different loops, okay. For loops and these are different connected pipes.

(Refer Slide Time: 13:01)

Obviously this abs value means the actual global pipe number and Qv is the discharge value with proper sign for that Lth loop.

(Refer Slide Time: 13:17)

Now if I run this I am getting negative discharge value which is consistent with my first loop, loop 1 all negative discharge values. Loop 2 I have second pipe which is having positive, eight pipe which is having positive.

(Refer Slide Time: 13:57)

The Last Control Applications ? The image of the second applications ?	Schub 6.0.0 Console						-	-	
Production Product	File Edit Control Applications ?					-			
Number of the second									
For Pulling (set (logg mont, 1:1)) 0r(1,1)) Mont Non- 1: objects rege (n*3/op) 2: objects rege (n*3/op) 3: objects rege (n*3/op)	- Reb & 0.0 Container		Variable	e Erowser					ł
Image (1884 (1684 (> for 1=1(loop_con(1,1)	A		Name	Value	Type	Vabity		
Not Not Not Not Not Not Loop Roders: 1 1 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10	b disp([abs(loop_con(1,1+1)) QV(1,1)])		100	Kv	1.	8 0	Double	local)	
Tape Name Name Name Name Name Name 1. -0.318499 -0.424799 -0.424799 -0.424799 -0.424799 2. -0.148994 -0.424799 -0.424799 -0.424799 2. -0.148994 -0.424799 -0.424799 3. -0.624799 -0.424799 -0.424799	> end			9	14	6	Double	local	
1.1-09.0154034 1				Qv.	34	4	Double	local	
Fight Robber Diselbarge (n*3/s) 13.1184098 Image: Status (n*3/s) 23.1384098 Image: Status (n*3/s) 33.0424709 Image: Status (n*3/s) 43.0148094 Image: Status (n*3/s) 23.138318 Image: Status (n*3/s) 33.0424709 Image: Status (n*3/s) 23.138318 Image: Status (n*3/s) 33.0424709 Image: Status (n*3/s) 33.0424709 Image: Status (n*3/s) 33.0424709 Image: Status (n*3/s)	Loop Number: 1 !			in of	-	2 - 1	Double	- Incar	1
Fige Rother: Discharge (n ² 3/s) 1. -3. 2. -0.134334 3. -0.0424709 4. -0.102014 7. -0.038334 6. 0.072045 7. -0.033834 8. 0.072045 7. -0.033834 8. 0.072045 7. -0.033834 8. 0.072045 7. -0.033834 8. 0.072045 7. -0.033834 8. 0.072045 7. -0.038934 6. 0.072045 7. -0.038934 8. 0.0424709 9. 0.0424709				glelQ	(9.79e-07) 7.36.		Double	local	
Page Number Databasys (n*3/s) 1. -0.318699 2. -0.138536 3. -0.643709 4. -0.518699 1. -0.518699 4. -0.518699 1. -0.518699 4. -0.6186996 1. -0.5186996 4. -0.5186996 1. -0.5186996 1. -0.5186996 1. -0.5186996 1. -0.5186996 1. -0.5186996 2. 0.1318518 6. 0.6722935 7. -0.0338936 6. 0.6722935 7. -0.0338936 1. Exclusive (n*3/s) 3. 0.6424799 2. -0.1389386				dr.	10	0 (Double	local	
10.318998 1	Fipe Number Discharge(m^3/s)			abs wax	be-0	5 - I	Double	local.	
1. -9.3154098 2. -9.134338 3. -9.0422109 4. -9.0186094 10op Hanker: 2 : 7. -9.033036 6. -9.032036 6. -9.033036 6. -9.133334 7. -9.033036 6. -9.133336 7. -9.033036 6. -9.133334 7. -9.033036 6. -9.133336 7. -9.033036 6. -9.1433936 1 Excharge (n'3/a) 3. 9.0424709 2 -				hand diff		<u> </u>	Couldre	- prese	
10,1348999 20,134338 30,0424799 40,0148094 1.Loop Rubber: Daelbarge (x ⁻³ /y) 20,138338 50,0424799 40,138338 50,0424799 40,138338 50,0424799 40,138338 50,0424799 40,138338 50,0424799 50,042479 50,0424							Double	local.	
20.134318	10.3104094			ioop		2 (Double	local	
20.139335				2	_	2	Double	local	
2. -0.0624709 3. -0.0624709 4. -0.0186094 1Coop Rudsect 2. 2. 0.158038 3. 0.042095 3. 0.0424709 3. 0.0424709	20.1345154			prov	_	1 1	Double	be al	
 30.0424799 40.0184994 1. Coop Runker: 2 1 Prior Hunker: Discharge (m³/r) 2. 0.138318 3. 0.0722945 70.038936 40.138936 1. Exerbarge (m³/r) 3. 0.0424799 2. 0.142994 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Nerves 1	feed				9.0	ł
a0.042109 New Nadowadden. 40.0184094 Pieze Nader (1/3/2) 2. 0.1145134 Pieze Nader (1/3/2) 2. 0.1145135 Pieze Nader (1/3/2) 3. 0.072015 Pieze Nader (1/3/2) 3. 0.0424109 Pieze Nader (1/3/2)			-	1					
40.018094 12eep Russer 2 1 1 Page Russer Discharge (n*3/s) 2. 0.334318 3. 0.022045 70.038936 40.183936 12eep Russer 3 1 Page Russer Discharge (n*3/s) 3. 0.042499 2	30.0624709		Péring fa	eed unavailable.				-	1
1. 0.1792033 75.0338356 40.188836 (Loop Huskers J 3 1 Pige Muther Discharge (n*3/2) 3. 0.0424109	 PLDE PLANE PLANE (M: 37.9) 2. 0.1345138 3.0.3345138 								
60.1838364 (Loop Runkers 3 1 Pipe Husher Diseinarge(n ⁴ 3/s) 30.6424109 x	 0.032039 -0.0330936 								
6, -0,1333364 1Loop Hubers 3 1 Fige Hubber Discharge (6*3/3) 3, 0,0424709 2									
1Loop Humber: 3 1 Pige Humber: Distriburge (n*3/#) 1 3. 0.0424709 1	60.1838936					1	-		
Pipe Hubber Disetharge(#3/#) 3. 0.642409 4	Loop Humber: 3 !						90		
3. 0.6634799	Pipe Humber Discharge(m^3/s)								i
							V		
	3. 0.0424709					1	Y		

So if I see physically what is the meaning of this one? So here in this case we have loop 1 which is initially loop 1. For loop 1 this is loop 1, for loop 1 we are getting this negative values.

(Refer Slide Time: 14:44)

This 3184 we have assumed close values that is why there is no change in values, almost nil. But only change is there for last one. This is point 019, I am getting here as point 0184 which is very close to this one.

(Refer Slide Time: 15:16)

For loop 2 this pipe number 2, pipe number 2 is positive, this is consistent, pipe number 8 again this is positive, this is consistent, pipe number 7 this is negative, pipe number 6 this is negative. Again we are getting the same value here.

(Refer Slide Time: 15:39)

Now we can change the initial distribution of discharge. If I change this initial distribution of discharge then I should get the same value starting from specified initial discharge values. So let us say that this is my configuration.

(Refer Slide Time: 16:11)

So what is the value here? In this case I have changed these values. This is point 35, this is point 2, point 05, point 05, point 05, point 1, point 15, point 05. But one thing is that I have not changed the direction of the flow. Whatever direction I have assumed initially I have calculated my values based on that only.

(Refer Slide Time: 16:50)

Now if I run the same thing with configuration because in this case the configuration part changes. Minus 2, minus 3, minus 4, there is no change. 2, 8 there are no change in that one. Only change is there in terms of magnitude or values of Q. There is no change in this connectivity matrix.

(Refer Slide Time: 17:28)

So for this connectivity matrix or loop connectivity if I open this configuration 2 which is this one, these are the specified discharge values. This point 35, point 15, point 1, point 05 these are initial discharge values and there is no change in the program otherwise.

(Refer Slide Time: 18:02)

So I can again iterate using this method and interestingly I am getting convergence again and discharge values these are again same values are coming. Minus point 318, point 134, point 062. These values are same as we have got from our configuration 1.

(Refer Slide Time: 18:45)

Now let us change this configuration or direction of flow. So let us change this direction. Now in this case let us consider that flow is from right to left. So flow is towards this tank which is having higher elevation.

(Refer Slide Time: 19:13)

These are the values which I have got by specifying the discharge by maintaining discharge continuity at the junctions. So these are assumed values to maintain the discharge continuity at the junction itself.

(Refer Slide Time: 19:35)

So in this case if I see the connectivity matrix, connectivity matrix I can see that 1234. So these four entries are actually positive entries. That means the flow is clockwise and loop connectivity if I see this is minus 2 and minus 3. These are only two changes here.

(Refer Slide Time: 20:13)

<mark>° ▶ ⊅ ≈ ♦ 4 ≅ ∕</mark>	Pipes in Parallel Pipes in Network References		I.I.T. Kharagpur	
Configuration 3 Loop Connectivity				
	$loop_{con} = \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 8 & -7 & -6 \\ -3 & 5 & -8 & 0 \end{bmatrix}$		
			(A	
Dr. Anirban Dhar	NPTEL	Computatio	onal Hydraulics	6

So with this configuration if I try to run my problem using Hardy Cross method I can see in this case we have got convergence with 21 iterations. The convergence parameter was 1 into 10 to the power minus 6 up to that level we have set the accuracy.

(Refer Slide Time: 20:50)

Pipes in Network References Configuration 3 Loop Connectivity $loop_{con} = \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix}$ $loop_{con} = \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix}$ $\frac{1}{2} + \frac{1}{2} + \frac{1}$	°►≠≈►+=/	Pip More Poster Itel	
$Loop_{con} = \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix}$ $Loop_{con} = \begin{bmatrix} 4\\ 4\\ 4\\ 4 \end{bmatrix}$ $Loop_{con} = \begin{bmatrix} 4\\ 4\\ 4 \end{bmatrix}$ $Loop_{con} = \begin{bmatrix} 4\\ 4\\ 4$		Pipes in Network	Send E G D Concer 7 7
Fige Husber Discharge(n*3/a)	Configuration 3 Loop Connectivity	$oop_{con} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$	Image: Second
Dr. Anirban Dhar NPTEL	Dr. Anirban Dhar	NPTEL	Pige Number Discharge(m ⁺ 3/s)

So if I open this third configuration or cfg 3, now only change is there for this one, connectivity matrix, this is 1234. These values are there.

(Refer Slide Time: 21:17)

🖌 steady 10 pipe network HC Q. dg3 so IC Users (Administrator) Desktop (Pipe Toteady, 10 pipe network HC Q. dg3 so) - So Notes	
strate th one estants (C. 0. dollars, C.) Intends (D. one estants (C. 0. dollars, C.), strate, (D. one retrievel; HC. 0. dollars, D.)	
21 01=0, 35 0, 55 0, 6 0, 65 0, 05 0, 2 0, 05 0, 05 11 //Initial Discharge	
22	
23 head diff=[20]; // m in nsudo	
24	
25 loop con=[4,1,2,3,4	
26 4 -2 11 -7 -6	
27 3 -3 5 -0 014	
28	0
29 pipe con-zeros (pipen, loopn)	
30 for l=1:loopn	
31 for i=liloop con(l, 1)	
32 pipe con(abs(loop con(1, i+1)), 1)=1;	
33 end	
34 end	
35	
36 Ky= (100 500 200 100 400 300 400 300)	
37	
38 //~~~~~ Problem Dependent Parameterg~~~~~~~	
39 Qv=zeros(loopn,nmaxpl)/	
40	
41 //General Identification Matrix	
42 for 1=1:100pn	
43 for i=1100p con(1,1)	
44 Qv(1,i)=sign(loop con(1,i+1))*Qi(abs(loop con(1,i+1))))	
45 end	
46 end	
47	all the second s
48	1994
49 count = 01	d at
50 mme=1/	A 124
51 //Space Loop	
52 while rmse > eps max	
53 rmse=0;	5
54 delg=zeros(loopn, 1);	4
Line 14. Column 8.	

So now if I run it I am getting negative value in that here. Again this is 27, 27 is the number of iterations that is required for this one.

(Refer Slide Time: 21:52)

So what it means this negative? Negative means this flow is counter clockwise. We have considered the flow as in clockwise direction but it is showing that whatever value you assume by maintaining the junction continuity you will get the exact direction of the flow.

(Refer Slide Time: 22:17)

So obviously with the configuration 3 we are getting convergence here and at the same time we can visualize the actual direction of flow from the final results. So this was having a positive value because positive Q for these four.

(Refer Slide Time: 22:44)

But finally when I have got the result, results are showing negative values. That means the flow is just opposite to the assumed direction. So with these three you can change different values and get the desired value for a specific network. You can also change the network configuration for maybe you can change K values or difference in elevation del h or you can add pump to this problem to see what are the changes occurring during the solution process.

(Refer Slide Time: 23:40)

Obviously I have not included the pump system within this source code. You can suitably modify these codes to add the pump consideration in pseudo loop calculation. Thank you.