
Computational Hydraulics
Professor Anirban Dhar

Department of Civil Engineering
Indian Institute of Technology Kharagpur

Lecture 46
Unsteady 2D Surface Flow

Welcome to  this  lecture  of  computational  hydraulics.  We are  in  module  4  surface  water

hydraulics and this is unit number 8, unsteady 2D surface flow. And this is the last unit of our

module 4.
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Learning objective of this particular unit. At the end of this unit students will be able to solve

2D unsteady shallow water flow using explicit approach.



(Refer Slide Time: 00:55)

Problem statement, let us consider one river and irrigation command system. Let us say that

this is my river system and this is one rectangular 2D area which is the command area and we

have some hydraulic structure on the upstream side.
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So the water is supplied from that hydraulic structure for irrigation purpose or the problems

with severe flooding situation where due to upstream release from dams or barrages there will

be inundation in the downstream areas. So we can conceptualize the problem as 1D and 2D

case. Individually we can solve these systems. So in our previous lecture class I have already

discussed 1D channel flow or unsteady channels flow case.



So now let us consider the case for 2D surface or free surface flow. We are talking about free

surface  flow  because  top  portion  of  our  water  flows  situation  that  is  exposed  to  the

atmosphere.
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Now in this case let us consider our main course structure. In this one our hydraulic system is

2D  or  that  is  our  mathematical  conceptualization.  So  we  need  to  write  2D  governing

equations. 2D problem is unsteady in nature in this case because time evaluation of surface

flooding or surface water movement we can track using those governing equations. So we

will have one governing equation, initial condition and boundary conditions.

So in this case we need to discretize our domain either with structured or unstructured mesh

or with structured or unstructured point generation. So let us consider the case where we have

utilized finite volume method. Now for using this finite volume method with a rectangular

coordinate  system  or  with  uniform  grading  we  need  to  consider  structured  mesh.  So

numerical discretization that is in terms of finite volume.

And algebraic form the resulting equations will be nonlinear in nature. So what we can do we

can simply reduce the problem to pseudo linear or pseudo nonlinear problem and we can

solve  it  using explicit  approach.  Obviously in  explicit  approach the  technique  is  straight

forward. We do not require any iterative method. Only iteration or time stepping is required

for forward marching. And finally we can get the solution for the problem.
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So  in  this  case  conservative  form  of  the  governing  equation  depth  average  mass  and

momentum conservation equations for surface water flow can be written like this where U is

vector, E is vector, G and S all are column vectors. Individually if we see these components

this is h, hu, hv, hu, this is hu square, gh square by 2, huv and this one G, hv, huv, hv square,

gh square.

Now in this case on the right hand side we have minus qs. That means something is there

which is going out of the system. We can consider infiltration as minus qs from the bottom of

our ground surface.
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Now in this case first row that represents our continuity equation and second and third row

these two considering momentum equation in x and y directions. We are not considering any

variations in z direction. Obviously if we want to consider the variation in z direction we

have to consider the full scale Navier Stokes equation. But this is depth integrated equation

that is why we are not considering the variation within our system.
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So non conservative form can be written from conservative equation like this. In this case

obviously del F by del U this term is again vector. If we consider one dimensional case this is

like Jacobian but in this case this Jacobian part is again vector.
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If I write this h as U1, U2 as uh, U3 as vh so in this case I can write the first vector as U1,

U2, U3. Now E is nothing but U2. This is U2 square by U1. This was U square and this is U2

square means this is square divided by our h. So obviously this is u square h. So like that I

have converted all the terms for this E and G in terms of U1, U2 and U3.
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Obviously uvh this term will be U2 U3 divided by U1. So after converting this we can get the

information about this del F by del U. So obviously Jacobian can be calculated like this. Here

F is again vector. In this case this is Ei plus Gj.
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Now  for  this  one  we  can  individually  calculate  del  E  by  del  U  and  del  G  by  del  U

components. So we can get this Jacobian matrix out of this. So how to calculate this one?

This is essentially E1, this is E2, this is E3. This one is G1, this is G2, this is G3. Now for del

E by del U, E and both are vectors.

In this case we will have del E by del U1, del E1 by del U2, del E1 by del U3, del E2 by del

U1, del E by del U2, del E2 by del U3 and last one which is which is our del E3 del U1, del

E3 del U2, del E3 del U3. Now in this case directly in this can be calculated like this.
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Now what is del E1 by del U1? There is no del U1 so obviously this is zero. Del E1 with

respect to U2 obviously this is 1. Again we do not have any U3 so zero. Like that we can

calculate individual components for this Jacobian matrix for individual E and G components.
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Now after this calculation we can discretize our domain because we need to use finite volume

method. So obviously for finite volume method we need to divide our domain into number of

cells. So let us say that on x direction I have total M number of cells, on y direction I have N

number of cells. And like our classical problem we have this gamma N which is Neumann

boundary, gamma D which is specified boundary.
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There can be situations where my domain is totally closed one. In that case I can consider all

sides here this red. So all sides I have closed boundary or zero Neumann kind of condition.

But obviously we need to see individual components in that case.
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So starting with the discretization of the governing equation. So as per finite volume method

the  governing  equation  is  integrated  over  the  element  volume in  space.  So  what  is  that

element volume? This omega P. Now in this omega P if I integrate starting from t to t plus

delta t. That means nth time level to n plus 1 time level obviously we can write this with this

integral sign. Now in this case I have changed this divergence of F and utilised it directly

here.

So divergence of F this will give individual components. So this will be nothing but if I take

del this is del by del x i plus del by del y j and if I take divergence of that so obviously I will

get del E by del x plus del G by del y.
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So after that I can start the discretization of my temporal term. So temporal term is nothing

but in this case del U by del t directly and this is similar to the discretization that we have

utilized for our groundwater equations. So for central cell which is the pth cell we can write

this and UP L plus 1 minus UP L. And L represents our time level in this case. Again in this

case I can write this for central cell P. This should be divergence of F, divergence of F can be

written like this.

Again this F dot nF, nF means F represents a particular face. Divergence of F in that one and

AF there. So for all faces for rectangular domain we have east, west, north, south. For all

domains we can write these components. We will have four components out of this, east,

west, north, south.
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This is similar to a previous discretization. Now the difference is now we can calculate the

flux values at the interface. For that calculation we need to consider flux at right face or right

side, flux from left side and UR is the value on the right side, UL is the value from the left

side.  So with  these  values  we can discretize our  full  flux  terms because in  groundwater

equations we have discretized the derivatives directly. But in this case we need to find out the

flux values at the interface. That is why this part is important.
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So in this case we can write this from the information from the right side, left side, this UL

which is nothing but UP plus del UP. And right is it E minus del E. So if I see this notation

this is nothing but this utilizes the minmod notation that we have discussed in our equations

for conservation law. And UP and UE these values are at the cell centres on the on the east

cell, west cell. And UEE this is for our east to east that means extreme east cell which is

adjacent to east cell.

(Refer Slide Time: 21:20)

Now for this one we need to see one thing. What is that? That is our minmod calculation. As

per our minmod calculations we have this a value. If modulus of a is less than our modulus of



b and ab both greater than zero. And if it is b modulus a and ab greater than zero then it is b,

otherwise it is zero in this case.
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So if I utilise this concept for discretization I can obviously we have UP and UP UW, these

are a and b values. If modulus of a is less than modulus of b and ab greater than zero then it is

a. If modulus of b is less than modulus of a, ab greater than zero this is b. Otherwise this is

zero.

So if I apply it directly in this case what I will get? This left side UP plus half of this one this

is delta P. In first case if modulus of a is less than modulus of b obviously this is UP plus half

UE minus UP because we have the first condition.



(Refer Slide Time: 24:02)

So for first condition this is UP plus UE divided by 2. Now if I have second condition that

means if I have b there then what will be the situation? If I have b there then this is UP plus

half  UP minus  UW. So that  means  this  is  3  by  2  UP minus half  UW. So what  is  this?

Physically it means that if this is my interface east, this is pth cell and this is cell w whatever

information is coming is from left side. This is my left side, this is my right side.
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Initially when we have a value we have seen that this quantity is P and E these two values

with average at the interface. But if it is b then we will have this value which is nothing but



this value at interface. So this is nothing but interpolation or linear interpolation of UW, this

is UW, this is UP and this is U from left side. Although it is UE but we are calculating ULE.
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Similarly if I see the thing for right side, the right side again if the first quantity this is a, this

is b and first one is my E minus half UE minus UP. So obviously in this case it will be UE

plus UP divided by 2. From right side again if it is second quantity, second quantity is UE

minus half UEE minus UE. So this is again 3 by 2 UE and minus half UEE.
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So again the information that is coming from my right side this is P, this is W, this is E and

this  is  east  cell.  So  for  this  cell  if  the  information  is  there  so  I  can  take  again  linear

interpolated  value  using  this  EE and E  here.  So  from right  side  we are  getting  linearly

interpolated value at the face or right side value. Like that we can have four combinations,

two for the case on the left side, two for right side.
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Now similarly when we will be calculating the value of west face so this is our P cell, this is

west, this is ww and this is east one. So we are considering this w face. In case of w again we

need to consider left and right one and in that case we have a and b. The first one if this is

half UP minus UW then this is half of UP plus UW. But if it is UE minus UP or this is del P in

this case. So del P is coming here on the right hand side it is just opposite. For left hand

calculation it will be UW.
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So either it should be average of P and W or the information should flow from other side. It

considers WW so obviously from this side it will be WW.
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For north face this is again similar. We have top and bottom cell. This is P, this is south, this is

north  and we are  talking  about  this  particular  north  face.  So  for  north  face  we need to

consider NN that means north cell and UP UN, UP, US and UNN. So this is the structure

there and we can calculate this UBn and UTn.
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Similarly if we have component on this side so that means this is south face, we have P, this

is north, this is south and then we can have SS for south-south cell there. So with this we can

again calculate the flux values at the interface.
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So for all faces we can calculate this. Now this is our general minmod limiter definition.

Alpha value which is the coefficient can be calculated as per the suggestion of Nujic, 1995.

So alpha should be greater than equal to maximum value of lambda P. Lambda P can be

calculated  from Jacobian  matrix  and it  is  the  largest  eigenvalues.  Obviously  this  can  be

approximated with lambda P equals to VP plus root over hP. VP is the resultant velocity and

hP this is our depth of flow in case of surface flooding or surface water flow.
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So we can utilize predictor corrector approach for explicit case. So obviously in this situation

if we need to calculate the flux value at east face, west, north face so that is nothing but on



east side it will be E, west side it will be W, north side it will be G, south side it will be S. So

individually these components will be there for calculation and S value is evaluated at Lth or

present  time  step.  And  this  U  star  which  is  calculated  (predic)  or  predictor  step  or

intermediate step in this case.
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And in corrector step U star-star value is calculated. And U star-star value in this case again

we have this one. So in simplified form again E, W, G, n, these values can be calculated there.

At future time level or L plus 1 in our case which is the t plus delta t level we can simply add

these values and take average of that.
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Actual variables now can be calculated after this step. So what is that actual variable? Actual

variable is for pth cell UP 1 is the actual variable. But UP 2 is not the actual variable. We

need to divide it by P1. Again vP we need to divide it by UP 1. So after this corrector step

calculation we need to update this.
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So in our predictor corrector step for both the cases we can use the same del E or del P these

values because that will lead to numerical stability of the scheme in this case. Now we need

to provide or specify no flow boundary condition. We know that if we have no flow boundary

from all sides obviously uh e, uh w, vh n, this vh s these quantities will be zero individually.

And if we want to implement this with our governing equation then let us see.
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For east boundary obviously at east boundary we will have this flux component. We need to

calculate at east boundary what will be the value for this case? Only this component will be

there.
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So at east boundary u is zero which is normal to this boundary. So this term is zero, this term

is zero, this term is zero. Obviously E will be zero half gh square and zero. And G again this

can be calculated for north and south boundaries. So there will be no change in this case.
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Similarly for west boundary again these quantities will be zero. So approximately to calculate

the east face value we can specify half g P square which is the cell centre value there but this

is approximate specification of boundary condition. We need proper characteristic or method

of characteristics to specify the boundary condition for the explicit case.
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North boundary obviously north boundary case v is zero. So these quantities are zero. So G

will be zero-zero half gh square for no flow case.
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Now in case of our south boundary this is again north boundary. If I have a south boundary

on this side we can have south boundary here. And for south boundary the thing is same. This

GS this quantity will be zero for some components for no flow case.
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This next to east boundary we need to implement our governing equations there. Next to west

boundary, next to north boundary, next to south boundary. Next to south boundary again we

need to implement it. And north east corner, so obviously in this case for north corner this

will be having zero components. East corner this will be having zero components.
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So north west then south east and south west corners we can have similar situations. So for

our surface water flow specification of boundary condition and more or less the solution it is

difficult due to nonlinearity present in the equation. So what we can do for basin flooding or



simplified modelling case we can reduce our shallow water equations and we can drop some

terms like acceleration terms and we can solve that equation for simple flooding situations.

So this is our usual shallow water equation. I have written it in terms of this qx qy. Qx qy is

nothing but this uh and vh.
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Now SF and Sy these quantities we can directly write here. Now what we can do we can drop

some of the terms. Drop some of the terms and we can get the reduced form of the equation.

So what is that? That is we can retain our continuity equation and we can drop other terms in

our momentum equations by neglecting acceleration terms like this.
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Now if I combine this Sy and Sx these are related to water surface slopes. And water surface

slopes if I equate it with energy slope then I can write this simple equation there. And finally

by combining discharge and continuity equations final form of inertia equation can be written

like this and you can see that this has got similarity with our groundwater flow equations.
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It  is  near  to  or  it  is  more  or  less  equivalent  to  that  equation.  If  I  simplify  with  this

consideration which is alpha h which is function of h only and zero inertia equation can be

further simplified like this. I can transfer this h term on the right hand side. Obviously this

has got only one variable for zero inertia model.
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Usual surface water flow equations we need to solve huv but with a zero inertia case we can

reduce our problem to one variable case and we can solve that problem. So again if I apply

our finite volume method here I can directly write this integration or integrate a form of the

equation.
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And we can discretize that for solution of different kinds of problems. But obviously in this

case the movement or acceleration terms we are neglecting. Obviously in that particular case

we have to consider slow movement of water. So slow flooding or irrigation application of

water through canal system can be considered as one can example for this particular equation.



This is my irrigation system and for this irrigation system I can (sup) supply water from the

canals. So the movement of water from this canals will be slower. So I can model this using

this simplified version of our shallow water equation or 2D surface flooding equation as zero

inertia model. So after flooding obviously the water will move from one cell to another cell

and there will be flooding situation in the total area if water is applied through this canal

outlets.
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So this kind of problem can be solved with zero inertia model and we can directly apply our

numerical approach for solution of that. So this is all about our 2D surface water hydraulics

with unsteady term. This is the flooding situation in a typical canal system. So obviously

there will be slow moment of water. 
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And this can be model using zero inertia. Thank you.


