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Welcome to this  lecture of the course computational  hydraulics.  This is  model number 4

surface water hydraulics and in this lecture class I will be covering unit 7 that is unsteady 1D

channel flow.
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Learning objective, at the end of this unit students will be able to solve unsteady channel

network problem using implicit approach.
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Problem definition to solution, this is our total structure. In this case we are considering that

discharge is the function of x and t. At the same time y or flow depth that is also function of x

and t. In our previous lecture class, lecture with steady channel network flow with or without

reverse  flow  situation  we  have  discussed  the  same  problem.  In  that  one  we  have

conceptualized our problem as Q as function of x and y as function of x. So this is essentially

steady problem and this is unsteady problem.

(Refer Slide Time: 02:16)

In steady problem the quantities Q and y these are not varying with t but in unsteady problem

Q and y these two quantities are varying with time. So this is the first assumption that our



discharge and flow depth these two values are varying with time. So what is our hydraulic

system? Hydraulic system is natural maybe channel network. Let us say this is my channel

network and let us consider a problem where I have some specified condition at this point and

this point and end point. This is our junction as per definition.

(Refer Slide Time: 03:17)

Now as per conceptualization in steady state flow situation or steady state channel network

situation we have considered different Q values for different channel reaches. This is let us

say channel  reach 1,  this  is  channel  reach 2,  this  is  channel  reach 3 and for these three

channel reaches our discharge and flow depth this two points it will vary in case of unsteady

case also with time. But in steady state case we will have fixed values for discharge and y.
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Now our steady state problem that was boundary value problem because we need boundary

value  only  to  solve  that  problem.  But  unsteady  problem  we  need  to  specify  the  initial

conditions.  So  during  mathematical  conceptualization  so  hydraulic  system  is  channel

network, this is channel network flow. Governing equation, we need governing equation for

this one. We have two quantities that is Q and y. So we need two governing equations for this

problem.

At  the  same time  we also  need  initial  condition  because  what  is  the  initial  step  that  is

important for any unsteady problem. At the same time we also require boundary condition.

Boundary condition may be fixed or time varying boundary conditions. Either it can be in the

form of  time varying discharge  or  varying depth  or  fix  depth  or  time varying discharge

condition. Now we can discuss our domain which is essentially 1D domain each channel

network or channel reach in this case. We can consider uniform grid.

Also we can solve the same problem for non uniform grid system. And in this case I will be

talking about special kind of finite difference technique. And finally the equations for this

problem is  nonlinear  in  nature.  So  we need to  apply  this  nonlinear  solver  either  that  is

iterative approach or Newton Raphson approach. I am utilizing for solution of this problem.
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So let us see what is the problem we want to solve? Now let us consider this network. So we

have channel 1, channel 2 and channel 3. All these channels are 5000 metres in length. And

we have two specified discharge conditions at upstream. So let us say these red dots, red dot

1,  red  dot  2  these two are  specified  discharge conditions  in  the upstream. And we have

specified  depth  condition  in  the  downstream section.  And  internal  blue  node this  is  our

internal junction condition.
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We have elevation of zero. This is plus 1. For this node we have plus 2, for this node we have

plus 2 for elevation.
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Now for this problem we can see that this discharge is in metre cube per second and it is

varying  from  50  and  it  is  reaching  maximum  value  at  2000  seconds.  And  again  it  is

decreasing from 150 to 50 and after this 4000 seconds we have a constant 50 metre cube per

second discharge for both the inflow sections or inflow junctions.
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So we have two inflow junctions 1 and 2 and for both of these junctions we have specified

discharge condition and this discharge condition is time varying.
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And downstream section that is at this point. We have specified flow depth and interestingly

in this case we have constant flow depth overtime. So 1 point 43 metres this is constant flow

depth at this point.
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So it is not varying with time. Now we need to solve this problem. So for solution as I have

already told we need the specification of initial conditions. So for this problem which is with

these three channels let us say we have a positive flow direction.

This is our positive flow direction, this is our positive flow direction, this is 50 metre cube

per second, this is 50 metre per second. On the downstream we have 100 metre per second

and we have uniform flow condition in this channel network with flow depth of 1 point 43

metre for all the channel reaches.
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So  we  have  a  specified  initial  condition  that  is  50  metre  cube  discharge  for  these  two

upstream channels and for this downstream channel of this junction we have 100 metre cube

per second.
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And this is our initial flow directions. So at this junction we can see that 50 metre cube, 50

metre cube, on this side it is going 100 metre cube. So unlike our steady state problem in this

case we need to specify the initial condition by satisfying the continuity condition because

initial condition means it should satisfy the physical problem. So in case of our steady state

problem we have seen that from any arbitrary initial condition we can get the final result

which is steady state flow condition.

So initial condition in case of steady state problem is nothing but initial guess for the steady

state problem. But in case of (ini) or unsteady state problem initial condition is important

because  that  should  satisfy  the  physical  constraints  or  physical  equations.  So  discharge

continuity is one equation that should be satisfied and we have a flow depth for all these

channels as 1 point 43 metres.

That means at this point which is the blue point at the centre it is the internal junction point.

For internal junction point our energy condition is also satisfied because from all sides this

channel ends or the starting of the channel 3 these are at the same elevation.
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So  we  have  energy  continuity  and  discharge  continuity.  These  two  are  satisfied  at  the

beginning  itself.  Now we can  list  other  things.  So  first  assumption  is  our  channel  flow

direction because we need to number our channel sections depending on the flow directions.

So  I  will  try  to  follow the  same convention  that  I  have  used  for  our  steady  state  flow

situation. So in this case we will consider that we have 1, 2 and 3 these are junctions or

boundary junctions and number 4 which is as internal junction point.

(Refer Slide Time: 14:43)

So we have three channel reaches 1, 2 and 3 and four junction nodes. Out of that three are

boundary  junctions.  So let  us  see what  are  the background information for  this  one? So



channel data we have channel number 1, this is 5000 metres length. So this is channel number

1 we have this is inflow, this is also inflow. So we have this as 1 junction node 2, 3 and this is

4. Channel 1, 2, 3. So now for this one for channel 1 length is 5000 metre, width is 50 metres.

So in this case we are considering rectangular channel section. So we have zero slope in m1

and m2 equals to zero. And this is B or width of the channel. But we do not know what is the

depth? That is the function of x and t.

(Refer Slide Time: 16:35)

Now channel reach, that means del x1 for channel reach 1 is 500, del x2, del x3 all are 500 in

this case. N value these are Mannings value and slope for all channels we have considered

this slope.
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Now we need to specify the junction continuity or junction connectivity. For channel 1 it is

connected to 1 and 4. As we have considered the flow direction from 1 to 4 that is why we are

writing the starting node as 1 and ending node is 4. Channel 2 starting node is 2, ending node

or node with the end section that is 4. Again for channel 3 we have 4 3.
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So these are the information that required for our problem. Now next thing is specification of

boundary conditions. This is junction data. In our steady state case we have utilised same

kind of  matrix  structure  but  the  problem is  in  this  case  we have time varying boundary

condition. So we cannot directly specify the values in single matrix. So for depth or flow

depth we will write this is equivalent to 1. And discharge is equivalent to 2.
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Now with this if I see this column 2, 3, column 2 is for depth. Column 3 is for discharge.

Now for  the  particular  junction  this  is  junction  number  1.  Junction  number  1  is  inflow

junction or specified discharge condition. So if there is specified discharge condition we will

write it as 2. Otherwise we can directly write minus 5 9s. And for junction number 2 also that

is again boundary junction we do not have any specified depth, so minus 5 9s. And in this

case again we will write it as discharge equals to 2.

(Refer Slide Time: 20:00)

Now junction number 3 again we have specified depth value. That is why here we will write

it as 1 and we do not have specified discharge condition for our problem that is why we have



minus  5  9s  in  case  of  discharge.  And for  junction  node which  is  internal  junction  node

number 4 we have 5 9s because we do not have flow depth or discharge specified for this

junction.
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Now for our problem we have four junctions. Out of this so let us say that N1 plus 1 is the

number of sections in channel reach 1. Channel reach 2 and channel reach 3 we have N2 plus

1, this is N3 plus 1. So in this case for a particular time step we have N1 plus N2 plus N3 plus

3 into 2 unknowns. That means we have depth and discharge. If we add depth and discharge

values we have these many discharge and these many depth values are unknown.
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So all total we need these many equations to solve this problem. So we have 2N1 plus 2N2

plus 2N3 number of equations coming directly from N1 number of segments from channel 1,



N2 number of segments in channel 2 and N3 number of segments in channel 3. So still we

need 6 conditions. Out of that for this internal junction we will get junction continuity.

What is that junction continuity for this problem? For this problem we have this junction and

at this junction this is our channel reach 1, this is channel reach 2 and this is channel reach 3.

So we will have Q1 N1 plus 1 plus Q2 N2 plus 1 minus Q3 and 1, this should be zero.
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So inflow is coming from our channel reach 1, 2 and this flow is coming out from this section

3 1 of the channel reach 3. So we have this discharge condition. Next is energy condition

because we have considered that junction or end sections are at the same elevation at the

junction. So we can consider that y 1 N1 plus 1 equals to y 3 1. And third condition y 2 N2

plus 1 equals to y 3 1.
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So we have three conditions out of this 6. Now still we need three conditions to solve this

problem. So from our boundary conditions we have specified discharge at node 1, note 2 and

specified flow depth at node 3. So from these we are getting extra three conditions. So now

we can solve this problem. So 2N1, 2N2, 2N3 these number of equations will be coming

from individual segments of different channel reaches and three equations for junction node

and three boundary conditions. Two discharge and one flow depth condition for this problem.
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Now  what  is  required  out  of  this  problem?  We  need  to  plot  the  discharge  and  depth

hydrographs at x is equal to 4000 from internal junction node in channel 3 of the network.

That means if we have this is junction node number 4, 4 to this is 3 at x is equal to 4000. That



means this length is 4000 at this length of channel 3 we need to find out what is the variation

of discharge x is equal to 4000, discharge with time. And this is x is equal to 4000 again flow

depth with time.
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Now we need to plot these two values.  To start  with for this one we need to define the

problem. So problem is essentially this is governing equation for 1D channel flow that is

St.Venant  Equations  required.  One  for  continuity  and one  for  momentum.  This  is  initial

boundary value problem and this is our initial condition.

If at a particular junction if you have some extraction or injection into the system we can use

this q. Momentum, this is the momentum equation and what is this H? H is nothing but this is

y plus z. That means y is flow depth and z is our elevation of the channel bottom then H is y

plus z.
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For any channel let us say this is a channel and we have this datum. For this datum at any

section this is our z and this is our y. So the total thing is H or y plus z.

(Refer Slide Time: 29:10)

In this case SF is our energy slope or friction slope. So in this case we have y as flow depth,

SF is friction slope, A is cross sectional area, q is lateral inflow to the system, z is elevation of

the channel bottom with respect to datum, H is water surface elevation, alpha is momentum

correction factor, Q is discharge, g is acceleration due to gravity and we are considering the

flow in x direction only. X direction or one dimensional in space.
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So this is the flow situation for our problem. In this case let us say we have two channel

section i and i plus 1. Then for segment i for Lth channel reach we can write our discretized

form of the governing equation. Now for this discretization I will utilise one special scheme.

(Refer Slide Time: 30:37)

Before that this is our flow convention that we are utilising that is from L 1 to L NL plus 1 we

have positive flow. If the flow direction or flow value is negative so obviously the direction

of the flow will be opposite in this case.
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And from junction left to right this flow is occurring. So for one junction it is negative for

another  junction  it  is  positive.  For  a  general  variable  in  this  case  I  will  just  define  this

discretization. In this case we have i n is one section, another section is i plus 1 n. This is at

future time level, i  n plus 1, i plus n plus 1. So by considering these four points we can

discretize our governing equation.
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So for any general variable phi this Preissmann scheme can be written as for phi we have this

psi i plus 1 n plus 1, this value and i n plus 1. So weighted addition between these two so

some value in between we will get. Again weighted addition or weighted combination of

these two we will get here and again this is for special combination again in time we can

again check weighted combination here.
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So with theta and psi we can define the problem. So i plus i n plus theta. So in this case again

we  can  use  our  concept  and  what  is  that?  This  is  again  the  combination.  What  is  that

combination? Combination is this psi into our phi i plus 1 n plus 1 plus 1 minus psi into phi i

n plus 1. This quantity minus we have psi into phi i plus 1 n. And plus 1 minus psi into phi i

n. So we can subtract this and divide it by del t. So this will give you this del t derivatives.

Similarly for del phi by del x we will get the weighted combination here.
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Now we need to discretize our continuity equation first. So continuity equation was del Q or

del A by del t plus del Q by del x and minus q equals to zero. So del A by del t we can



discretize like this. This is del A by del t. So again we can take that weighted combination

with respect to psi and get this.
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Similarly for del Q this is weighted combination for del A by del t. For del A by del x we have

this theta weighted combination here, 1 minus theta and the last one this is again our inflow

parameter.
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We can again take a weighted value for this one. So this is the discretization for the continuity

equation. Although this part is linear in nature and the problem is totally dependent on theta

and psi  values in this  case.  Let us say we have psi  equals  to 1.  Then we will  have one

combination here if theta is equal to 1 again that is the changing the special derivative.



If  theta  equals  to  1  obviously  we  are  considering  implicit  case.  If  theta  equals  to  zero

obviously  we are  considering  explicit  case  because  the  explicit  or  implicit  consideration

depends on the time level of the spatial derivative.
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So to utilise this equation in our general Newton Raphson format we need to take derivative

with respect to four variables. So what are these four variables? So for any segment we have

variables yL. For Lth segment i n plus 1, then QL i n plus 1, then yL i plus 1 n plus 1 and QL

i plus 1 n plus 1. These are three variables 1, 2, 3 and 4.
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Now we need to take derivatives of this CL i n n plus 1 with respect to these four variables.

So if you take derivative of our continuity equation we will get these four terms. Obviously in

this case dA by dy this is the derivative of area with respect to y. And area is a function of y

only, it is not a function of discharge in this case.
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So momentum equation discretization, so momentum equation was dQ by A. So for dQ d by

dt of A we can directly write this. Writing Q by A terms. Then we have this del by del x, this

is alpha Q square, this is 2 and A square. Now the last one this is g del H by del x and plus g

into SF this is equals to zero. So for all cases like temporal derivative we are taking weighted

combination with respect to psi.

For spatial derivative we are taking weighted combination with respect to theta and for others

like this one also we are taking weighted combination with respect to theta because it is a

spatial derivative. And SF is the combination of theta and psi. And in this case I have not

written the superscript n plus 1 for z because z is not wearing with time. Z is fixed bed

elevation.
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That means we are considering rigid bed channel here. Now SF can be calculated from nm

square Q square R to the power 4 by 3 A square. And if we consider the sign of discharge

then we can modify this one and modification will be there only in the case of SF. This is nm

square Q Q mod R to the power 4 3rd and A square.

(Refer Slide Time: 41:41)

Now again we need to take derivative of ML i n n plus 1 with respect to the four variables

that we have utilised for our continuity equation also. So first one is yL i n plus 1, next one is

QL i n plus 1.
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Now in this case one should know that in this case we are utilising these mod values only for

the derivative terms which are related to SF. So in this case we have Q square term but we

have replaced it with Q into mod Q. In this case also I have utilised this mod Q.
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Another variable this is yL i plus 1 n plus 1, QL i plus 1 n plus 1. Again we can see that these

mod values are utilised or used for this SF calculation or derivative of SF terms. And in this

case we have dR by dy, dA by dy. These values are to be calculated from section dependent

values. In this case we have a rectangular section. So dA by dy essentially that is width of the

base or width of the channel for rectangular case.
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Now for each section we have two nonlinear equations with two NL plus 1 unknown that is

discharge and flow depth.  For trapezoidal section this  is  a general  section because if  we

utilise different values of m1 m2, we can directly get the solution for different cases.
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This is for trapezoidal section dA by dy and this is dR by dy we can directly get that from this

expression. And by changing different values like dA by dy at L i n plus 1 means I should

calculate this term with yL i n plus 1. So I can directly use the value here and I can get the

derivative term.
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Similarly for others we can calculate the values. Now this is the algebraic form. If we have

the  equations  from segments  we  can  write  it  in  general  form in  the  format  of  Newton

Raphson.  So  these  are  increment  values  and  this  is  minus  residual,  minus  residual  for

momentum,  minus  residual  for  continuity  and these  are  the  coefficients.  Coefficients  are

essentially elements of Jacobian matrix.
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Now we can solve this problem with a guess value. And for the problem guess value for next

time  level  should  be  the  value  which  is  specified  for  the  initial  time  level.  And  for



consecutive times steps we can consider guess value as (fut) previous time level value. Now

after getting this we can directly add it.

So we can start with a QL i n plus 1, this is yL i n plus 1, Q this is L i plus 1 n plus 1, this is

again this is yL i plus 1 n plus 1. Now in this case after getting these increment values we can

directly add it with a previous time or previous level iteration values like this, plus del yL i.
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Similarly for other variables this thing is repeated or this expression is repeated. Now for this

one we have only 2NL number of equations. Now I have already discussed that we have three

internal conditions and three boundary conditions. So we need to incorporate those values

within  our  calculation  or  expression.  So  configuration  wise  we  have  started  with  this

configuration starting with three channels.
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First channel linking this node numbers 1 and 4, second channel 2 4, third channel 4 3. So if

we consider our usual discretization approach, so discretization is in the direction of the flow.

So this is 1 1, this is 1 NL plus 1, this 2 N2 plus 1, first one 1 N1 plus 1, this is starting is 3 1,

this is 3 N3 plus 1. So obviously we have these nodes 1, 2, 3.

These  nodes  are  internal  nodes.  We  should  utilise  these  three  nodes  for  specifying  the

junction condition at 4. And these three nodes should be utilised for specifying the boundary

conditions at boundary junction nodes.
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As per our previous program structure from the steady state flow condition we have chl inf

which is channel information matrix. This is 1, 2, 3. This is the same matrix or same table

that we have directly utilised.
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Next is junction information. Only change is there in this junction information. If I compare

this junction information matrix with our steady state case we are not directly specifying the

values in junction information. We are specifying the type of junction information available

at this node with this junction information matrix. And the third column obviously that is our

elevation of junction elevation information. And this is junction continuity.
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Junction continuity in this case it is simple. As per our usual convention we have 1, 2, 3 and

this is 4 junction wise and this is channel number 1, 2, 3. So for (chan) channel number 1 or

node number 1 this is junction continuity. So node number 1 we have only 1 starting from



plus 1. For node number 2 we have only connected channel is 2 and it is starting from plus 2,

channel number 3 which is connected to this node number 3 and the end section is connected

that is why minus 3 is there.

And internal junction we have three channels connected with this particular junction. So this

is plus 3, minus 1, minus 2 because end section of 1, so this is minus 1, end section of 2 that

is minus 2 and starting section or first section of channel 3 connected with this one so this is

plus 3.
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So this is our junction continuity or junction connectivity information.


