Computational Hydraulics Professor Anirban Dhar Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture 43 Steady Channel Flow: Channel Network with Reverse Flow (Contd.)

If I consider this condition now in this case if I open my scilab so I can open this cfg steady 1D channel network with reverse cfg 1 that is configuration 1 which is the base configuration.

(Refer Slide Time: 00:52)

Untitled 1 - SciNotes File Edit Format Options Window Execute ?	° 🌬 🌾 🌾 🦂 🖽 🥖 🍠	🥔 👌 🦌 🚱 💿
		,
	Copen Image: Control of the Learning future, lister, 3 Recent later Image: Control of the Learning future, lister, 3 Recent later Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4 Image: Control of the Learning future, lister, 4	

Now in this case the first line starts with clc, next line is clear that means clearing the console, clearing all the variables here. Next one is area calculation. This is dA by dy calculation. This is general one for trapezoidal section.

(Refer Slide Time: 01:19)

We will be utilising m1 equals to zero, m2 equals to zero for our problem but still we can use this subroutines or functions for our problem. So this is hydraulic radius, this is dR by dy again.

(Refer Slide Time: 01:51)

Now this one is a M L i, this is dM L i divided by dy i or dy L i. Now interesting thing in this M L i is that for Q2 square we are not changing Q2 into abs Q2. Q1 square we are not changing it to Q1 into abs A2 but for friction slope this is changed to Q2 into abs Q2. This is again Q1 into abs Q1. In dM by dy this is the terms which are related to fictions slope. I have changed those values to Q into abs Q. This is Q into abs Q.

(Refer Slide Time: 03:05)

Similarly for dM L i divided dy L i plus 1 again this is changed to Q into as Q, Q into abs Q. But for dM L i divided by dQ L i plus 1 I have changed this Q in the term 2 as abs Q. And dM L i divided by dQ L i I have changed into abs Q here.

(Refer Slide Time: 03:59)

Now after writing these functions I can start the main program here. So channel reach, convention is that channel reach start is plus, it is ending with minus and flow depth condition 1 means that is (condi) number 1 and flow rate or discharge condition is 2.

(Refer Slide Time: 04:32)

steady_10_channel_network_with_reverse_cfg1.sci (C\Users\Administrator\Desktop\Week-10\steady_10_channel	
File Edit Format Options Window Execute ?	🔍 🖾 🥖 🌮 🥔 k 🍾 🚺 🚫
월월월월월월월월월월월월월월월월월월월월월월월월월	
redy_1D_channel_network_wth_reverse_ctg1.sci (C/UsersVidministrator/Desktop/Week-10/steady_1D_channel_network_wth_reverse_ctg1.sci) - SciNotes	*
teasy_D_name_retwork_won_reverse_regisor as	
$\frac{1}{2} = \frac{1}{2} + \frac{1}$	Î
a and unation	
5 endiducción	
40 // Channel Beach: Start + End -	
47 // Flow Depth Condition: 1	
48 // Flow Rate (Discharge) Condition: 2	1
49 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50 //-Given-Data	
51 g=9.81; //m/s^2	
52 global('g')	
53 yd=5; //m	
54 Qd=250; //m^3/s	
55 Qu=250; //m^3/s	
56 eps_max=le-6;	
57	
58 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
59 junn=6;	
60 bjn=2;	
61 chln=8;	
62 // Ch1# Length Width m1 m2 Segment n SO JN1 JN2	0.4
63 chl_inf=[1 200 30 0 0 50 0.0130 0.0005 1 3	
64 2 200 40 0 0 50 0.0130 0.0005 1 6	
65 3 200 20 0 0 50 0.0120 0.0005 3 4	
67 ····· 5 · 100 ·20 · 0 · 25 · 0 · 0130 · 0 · 0005 · 5 · 4	
68 6 100 25 0 0 25 0.0130 0.0005 6 5	(Second
70 9 300 E0 0 0 75 0 0140 0 0005 6 21	
71	VISION
72 jun inf=[-99999 Qu 0.25	
73 vd -0d 0	
74	
75	

Now given data g is 9 point 8 metre per second square, g is global, yd is the flow depth, Qd is 250, Qu which is specified in the upstream that is 250, epsilon max this is required for Newton Raphson iteration 1 into 10 to the power minus 6 here.

(Refer Slide Time: 04:56)

🔁 steady, 10_channel_network, with reverse_clg1.sci (C\Users\Administrator\Desktop\Week-10\steady, 10_channel 🙆 💦 🚁 🐚	
File Edit Format Options Window Execute ?	· · · · · · · · · · · · · · · · · · ·
steady 10 channel network with reverse cfg1.sd	
$term2=2*abs(0)*areav(v, B, m1, m2)^(-2)*HRv(v, B, m1, m2)^(-4/3);$	*
<pre>d dMdOiv=-D1*term1+D2*term2;</pre>	
5 endfunction	
45 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
46 // Channel Reach: Start + End -	
47 // Flow Depth Condition: 1	
48 // Flow Rate (Discharge) Condition: 2	
49 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50 //- Given-Data	1
51 g=9.81; //m/s^2	
52 global('g')	
53 yd=5; //m	
54 Qd=250; //m^3/s	
55 Qu=250; //m^3/s	
56 eps_max=1e-6;	
57	
58 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
59 junn=6;	
60 bjn=2;	
61 chln=8;	
62 // ····· Chl# Length Width m1 m2 Segment n SO JN1 JN2	
63 chl_inf=[1 200 30 0 0 50 0.0130 0.0005 1 3	
64 2-200-40-0-0-50-0.0130-0.0005-1-6	
65	
66 4 100 20 0 0 25 0.0140 0.0005 3 5 //	
67	
68 6 100 25 0 0 25 0.0130 0.0005 6 5	(The)
69 7 100 30 0 0 25 0.0140 0.0005 4 2	
70 8 300 50 0 0 75 0.0140 0.0005 6 2];	0.0
71	
72 jun_inf=[-99999 Qu 0.25	
73 yd -Qd 0	
74	
75	· · ·

Now we have these junction numbers. So we have all total 6 junctions and 2 boundary junctions. So out of this 6 we have 2 boundary junctions. So in this case let us consider this one as red one. This is 1, this is 2. Blue ones, 1 this is 5, this is 6. So obviously if I connect it properly so this is entry exit and if I name it this is junction node number 3, 4, 5 and 6 in this case. This is node number 2 and 1, okay.

(Refer Slide Time: 06:20)

🥃 steady_1D_channel_network_with_reverse_clg1.sci (C/UsersUddministrator/Desktop/Weeks10.steady_1D_channel 🙆 🔥 💋 🐚 🔹 📥	🛤 🥒 🤌 📣 🔪 i 🔽 💊
The Bill of the state of the s	
/redy_10_channel_network_with_reverse_ctg1.sci (C/UsersV/dninistrator/DesitionNeek-10steady_10_channel_network_with_reverse_ctg1.sci) - Schlotes	
steady_1D_channel_network_with_reverse_cfg1.sci	
55 Qu=250; //m^3/s	
56 eps_max=le-6;	
57	
58 //	
59 junn=6;	
60 bjn=2;	
61 Chin=8;	
62/// Chim Length With min min m2 Segment h S0 JNI JN2	
64 2. 200 40.0.0.50.0.0130.0.0005.1.6	
64 2 200 40 0 50 0.0130 0.0005 1 0	
65	
67	
68 6 . 100 .25 .0 .0 .25 . 0.0130 .0.0005 .6 .5	
69 7 100 30 0 0 25 0.0140 0.0005 4 2	
70 8. 300 50 0 0 75 0.0140 0.0005 6 2];	
71	
72 jun_inf=[-99999 Qu 0.25	
73 yd -Qd 0	
74	
75	161
76	
77	
78 //0: Not Connected	
79 //Positive Sign: 1st section of the 1-th channel rech is connected	
80 //Negative Sign: Nl+1-th section of the 1-th channel rech is connected	
81]Jun_con=[2 1 2 0	
82	
83	
84 3 -3 -5 7 95 3 -4 -6 5	
3 -2 6 81	
07	
ee alnhamones (chln. 1) /	
Time 50 Column 7	

Let us see how we can utilise this during our programming. This is channel in matrix. This is channel, this is junction information matrix. First column is your specified depth conditions, second column is specified, this is 1 2 for discharge and third one this is for elevation.

(Refer Slide Time: 06:54)

Now for this one if I consider here we have this junction connectivity. Then alpha values, alpha values once in to channel number comma 1. That is for each channel reach we have considered alpha equals to 1. Now I can transfer these values directly to Lx. Lx is the second column, B is the third, m1 is the fourth, m2 is the fifth, Lx is sixth, n is seventh, S not is eight

one. Now after transferring these values I can calculate this mnode. Mnode is Lx divided by delta Lx plus 1. So number of segments plus 1.

(Refer Slide Time: 08:02)

Now in this case we need to calculate this z value, this is important. We have zero elevation at this junction point 1. So this is junction information and in junction information we are asking for values from third column and this is for channel information L 9. This is JN1 and JN2. We are asking information for this 9th and 10th column.

(Refer Slide Time: 08:53)

Now let us say that my channel is 1. For 1 if I take this channel information L9, I will get 1. In this case I will get 3. That means junction information 1 3. What is the elevation? This was point 25. This was having a value of point 25. Now for our problem if this upstream elevation is greater than the downstream junction elevation so obviously this is the natural flow direction.

(Refer Slide Time: 10:05)

So we will consider this factor, factor is minus 1. If the elevation is decreasing obviously I should multiply this factor with S not into delta x so that I can reduce this value here. So starting with this elevation which is channel information L9 3 that means from junction information matrix from third column I am considering that at the first node what is the elevation. That is L1. Is that elevation? Now whether I should reduce it now for consecutive section or I should increase to get the downstream section.

So downstream node maybe at a higher elevation or at a lower elevation depending on the direction of flow under consideration. So in this case negative means we are considering as per our channel bed slope. And if we have considered the flow from 3 to 1 here. This is 1 this is 2, 3 to 1 here so obviously natural one was 1 to 3 this will be 3 to 1 so obviously this is at a lower elevation, this is at a higher elevation.

(Refer Slide Time: 11:58)

So I should start from 3 and I should increase the section elevation by S not into delta x. So like that I can calculate the z values for different sections for different reaches. Now in this case after calculating the z values I can assign initial guess value for yv and Qv. This is similar to our previous code that we have utilised in our previous lecture class. But just see this numbers so we have sum into mnode. Sum into mnode considers all sections for all channel reaches. Qv also considers all sections and all channel reaches.

(Refer Slide Time: 12:54)

Now in this case we have a general variable which is gv and gv should be 2 into sum mnode and we can consider this as 2 into sum mnode as unknowns.

(Refer Slide Time: 13:16)

Now in this case we need to define general identification matrix and as per our convention. This general identification matrix is similar to the matrix we have discussed in our previous lecture class which is gid L i. This is for Lth channel and ith section.

(Refer Slide Time: 13:58)

steady_1D_ch	and Lextnorik with reverse of place (6/Uper)Administration/Desitop/Week 5 (0/Iters/place)
File Edit Forma	Options Window Execute ?
steady 1D chaon	and definition of the second
TTO XA X	
119	
120 //Gn	eral variable with y and Q
121 gv=z	pros (2*sum (mnode), 1);
122	
123 //Ge	eral-Identification-Matrix
124 idv=	
125 for	=1;chln
126	or i=1:mnode(1)
127	idv=idv+1;
128	gid(l,i)=idv;
129	nd
130 end	
131	
132 //In	tial-Value
133 for	-1:chln
134	or i=1:mnode(1)
135	gv (2*gid (1, i) -1) = vv (gid (1, i)); //v
136	$qv(2^{a}qid(1, i)) = ov(qid(1, i)); //o$
137	nd
138 end	
139	
140 //De	ived Values
141 for	=1:chln
142	(1)=alpha(1)/(2*g);
143	2(1) = (1/2) * n(1) * 2* delta x(1);
144 end	
145 //	and the second se
146 //	
147	
148 //Ja	obian Matrix Size
149 A=20	cos(2*sum(mnode)+1,2*sum(mnode));
150 r=ze	cos(2*sum(mnode)+1,1);
151	

So we will have unique number for this one gid and we can utilise this information for construction of Jacobian matrix. Now this is the initial value. We can assign these initial values. the y information we can transfer it to 2 into gid into minus 1. So we (ha) have arranged this y1 Q1, y2 Q2. So in this particular case for each channel sections or channel reaches we have 5 sections.

Now all total we will have 1 to 40. So 1 will be the starting gid and ending value will be 40. Depending on the flow direction we can change the numbers but the total number of gid or unique ID that will be up to 40.

🔁 steady_1D_channel_network_with_reverse_cfg1.sci (C\Users\Administrator\Desktop\Week-10\steady_1D_channel	
File Edit Format Options Window Execute ?	· · · · · · · · · · · · · · · · · · ·
teady to channel periods with reverse chiller.	0) - SORKORS 7
	46 1
129 end	
130 end	7.
131 100 (/Teibiel Velve	••
132 //initial value	<u>@</u> .
133 IOF 1=1:Chin	71
134 ··· IOF 1=1:mnode(1)	V
135 gv (2^gld(1,1)-1)=yv (gld(1,1)); //y	72
136 $gv(2^gId(1,1))=gv(gId(1,1)); 7/2$	
137 end	
138 end	9 2
139	-
140 // Derived Values	
141 IOI 1-1:CHIH	
$142 - D1(1) = alpha(1)/(2^g)$	
143 D2(1)=(1/2) Al(1) 2 derca_x(1) /	
	8
145 //	
146 //	
140 //Tagobian Matrix Sizo	
140 // Datobian matrix Size	
149 A-zeros (2*sum (mnode) +1, 2*sum (mnode)) /	
150 1-20105 (2-5000 (001000) +1,117	
151 152 count = 0:	
152 counc = 0,	
153 Inse-17	(SECTION)
155 while rmse > ons may	
155 white inse > eps_max	201
157 ecn=0: //Equation_Number	
150	
150 //Equations Corresponding to Segments (2N1+2N2+2N3+2N4)	
160 for l=l:chln	
14001 Soc & Stollard	

(Refer Slide Time: 15:10)

Now derived values we can calculate this D1 D2 in this case. And in this case we will get equals to 80 plus 1 where 40 into 2 plus 1 unknown. For 1 unknown also we will get equation but we have utilised Qu as specified value in our case. So we have only 80 unknowns in terms of y and Q values. But equation number will be of 81.

(Refer Slide Time: 16:04)

tendy_10_channel_network_with_reverse_clg1sci_COUDers/Administrator/Desktop/Week-DOutendy_10_channel File_Edit Format_Options_Window Execute ? File_Edit Format_Options_Window Execute ? File_Edit Format_Options_Window Execute ?	a 🖗 4 🖴 🖉 🖋 🖉 🤸 🤴 🕥
C C C C C C C C C C C C C C C C C C C	Scillates
iteady_1D_channel_network_with_reverse_cfg1.sci 📓	
136 gv(2*gid(1,i))=Qv(gid(1,i));//Q	1
137 end	
138 end	
139	
140 //Derived Values	
141 for 1=1:chln	0
142 D1(1)=alpha(1)/(2*g);	
143 ···· D2(1)=(1/2)*n(1)^2*delta_x(1);	72
144 end	
145 //	AVA LI
146 //	
147	
148 //Jacobian-Matrix-Size	
149 A=zeros(2*sum(mnode)+1,2*sum(mnode));	
150 r=zeros(2*sum(mnode)+1,1);	0
151	
152 count = 0;	
153 rmse=1;	
154 //Space-Loop	
155 while rmse > eps_max	
156 rmse=0;	
157 eqn=0; //Equation Number	
158	
159 //Equations Corresponding to Segments (2N1+2N2+2N3+2N4)	
160 for l=1:chln	
161 for i=1:mnode(1)-1	
162 //Continuity	(1997) A
163 eqn=eqn+1;	
164 A(eqn, 2*gid(1,1)-1)=0; //yi	S. K. M
165 A(eqn, 2*gid(1,i))=-1; //Qi	
166 A(eqn, 2*gid(1, i+1)-1)=0; //yip1	
167 A (eqn, 2*gid(1, 1+1))=1; //Qip1	
168 r(eqn)=0;	
1691 //Momentum	

Now I will discuss how to solve this problem. Now in this case this is count equals to zero, rmse equals to 1 and after entering into the loop I have changed it into rmse equals to zero. Equation number starts with a zero value for each channel reach because we have 2N1, 2N2, 2N3, 2N4 plus 2N5 plus 2N6 plus 2N7 plus 2N8.

(Refer Slide Time: 16:50)

🔁 stea	dy, 1D, channel in etwork with reverse of it is confectively the block to Distribute and a Di	
File Ed	it Format Options Window Execute ?	S
1007_	10_channel_retwork_whit_reverse_chit_sci (C-Uters/Udminishrako/CestoopNeek-10atesey_L10_channel_network_whit_reverse_chit_sci) - Schlodes	
steady_	m Gauss Targoor (ma) Targoor (ma) Targoor (ma)	
148	//Jacobian-Matrix-Size	ľ
149	A=zeros(2*sum(mnode)+1,2*sum(mnode));	
150	r=zeros(2*sum(mnode)+1,1);	
151		
152	count = 0;	
153	rmse=1;	
154	//Space-Loop	
155	while rmse > eps_max	
156	rmse=0;	
157	eqn=0; //Equation Number	
158		
159	//Equations-Corresponding-to-Segments-(2N1+2N2+2N3+2N4) + 2N - + 2.N - + 2.N + 2.N - + 2.N - + 2.N - + 2.N	
160	for l=1:chln	
161	for i=1:mnode(1)-1	
162	//Continuity	
163	eqn=eqn+1;	
164	A(eqn,2*gid(1,i)-1)=0; //yi	
165	A(eqn, 2*gid(1, i)) = -1; //Qi	
166	A(eqn,2*gid(1,i+1)-1)=0; //yip1	
167	A(eqn, 2*gid(1,i+1))=1; //Qip1	
168	r (eqn) = 0;	1
169	//Momentum	U
170	eqn=eqn+1;	
171	$A(eqn, 2*gid(1,i)-1) = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), gv(gid(1,i)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \underline{dMdyi}(yv(gid(1,i)), gv(gid(1,i)), gv(gid(1$	
172	$A(eqn, 2*gid(1, i)) = \underline{MMQi}(yv(gid(1, i)), Qv(gid(1, i)), D1(1), D2(1), B(1), m1(1), m2(1)); //Qi = \underline{MMQi}(yv(gid(1, i)), Qv(gid(1, i)), D1(1), D2(1), B(1), m1(1), m2(1)); //Qi = \underline{MMQi}(yv(gid(1, i)), Qv(gid(1, i)), D1(1), D2(1), B(1), m1(1), m2(1)); //Qi = \underline{MMQi}(yv(gid(1, i)), Qv(gid(1, i)), D1(1), D2(1), B(1), m1(1), m2(1)); $	
173	$A(eqn, 2*gid(1, i+1)-1) = \underline{Mdyip1}(yv(gid(1, i+1)), Qv(gid(1, i+1)), D1(1), D2(1), B(1), m1(1), m2(1)); //yi = \frac{1}{2}$	
	p1	
174	A (eqn, 2*gid (1, i+1)) = dMdQip1 (yv (gid (1, i+1)), Qv (gid (1, i+1)), D1 (1), D2 (1), B (1), m1 (1), m2 (1)); //Qip1	
175	$r(eqn) = -\underline{Mli}(yv(gid(1,i)), Qv(gid(1,i)), yv(gid(1,i+1)), Qv(gid(1,i+1)), zv(1,i), zv(1,i+1), D1(1), D2(1))$	
	, B(1), m1(1), m2(1));	
176	end	
177	end	
178	iean=0;	

Now after generating these many 64 equations I can start including the junction continuity conditions. So junction continuity condition for each junction there will be one condition. So j equals to junction number. For each junction number we have one condition. This junction information j2 which is the second column this is not equal to minus 999 5 9s.

So that means we have a specified value present there then we can add that for equation number. Equation number equals to eqn plus 1 and this is a junction equation number. This is r equation number equals to junction information j2. That means we are directly specifying r or right hand side equals to that specified value.

(Refer Slide Time: 18:15)

Now after specifying that value we need to consider starting from L equals to 1 to junction continuity j1. That is first column contains the number of channels present in the junction. So in this case we will get or we have to add these values. If abs junction condition, if absolute value of junction condition L plus 1 starting from the second column we can extract the information about junction connectivity. And this is epsilon max. Obviously if zero value is specified so this condition will not be satisfied.

(Refer Slide Time: 19:20)

🔄 steady_1D_channel_network_with_reverse_cfg1.sci (C\Users\Administrator\Desktop\Week-10\steady_1D_channel	a 🕾 🥒 🗶 🖉 k 🤹 🕅 🔊
steady_10_channel_network_wth_reverse_ctg1.sci (C'UsersWaininstrator/Desktop/Neek-10isteady_10_channel_network_wth_reverse_ctg1.sci) - Schlotes	7
"steady_10_channel_network_with_reverse_cfg1.sci 📓	
180 for j=l:junn	*
181 if (jun_inf(j,2) ~= -99999) then	
182 eqn=eqn+1;	
183 jeqn=jeqn+1;	
184r(eqn)=jun_inf(j,2);	
185else	
186 if (j>bjn) then //For all internal Junctions	
187 eqn=eqn+1;	
188 jeqn=jeqn+1;	
189r(eqn)=0;	
190 end	
191 end	
192	
193 for $l=1:jun con(j, 1)$	
194 $if(abs(jun_con(j, l+1)) > ops_max)$ then	
195 if (jun_con(j,l+1) > 0) then	
jn node=1;	
197 A(eqn, 2*gid(abs(jun_con(j, 1+1)), jn_node))=-1;	
198 $r(eqn) = r(eqn) - Qv(qid(abs(jun con(j, l+1)), jn node));$	
199 end	
200 if (jun con(j, $1+1$) < 0) then	
<pre>jn node=mnode(abs(jun con(j,l+1)));</pre>	
202 $A(eqn, 2*qid(abs(jun con(j, l+1)), jn node))=1;$	
203 $r(eqn)=r(eqn)+Qv(qid(abs(jun con(j, 1+1)), jn node));$	
204 end	
205end T T	
206 end	
207 $r(eqn) = -r(eqn)i$	
208 end	
209	
210	
211	
212 //Junction Energy Condition	
213 for j=1:junn	
3 occurences found.	

Now if junction continuity j L plus 1 this is greater than zero. Obviously if it is greater than zero that means we are starting from the starting node. That means j underscore node this is 1

and we can specify this condition and this should be negative because we are starting at that junction. So it should be negative discharge value as per our convention.

(Refer	Slide	Time:	19:52)
--------	-------	-------	--------

🔁 stead	y_1D_channel_network_with_reverse_cfg1.sci (C\Users\Administrator\Desktop\Week-10\steady_1D_channel		
File Edit	t Format Options Window Execute ?	A =	- to 🔽 🚫
Patendy	D_channel_network_with_reverse_ctp1_tot (C. Uters volumetricor bestroppingen - Distreacy_tD_channel_network_with_reverse_ctp1_tot) - Schooles		
1801	for h=linunn	1	
181	if(jun inf(j,2) ~= -99999) then		
182	ean=ean+1;		
183	jeqn=jeqn+1;		
184	r (eqn)=jun inf (j, 2);		
185	else		
186	if (j>bjn) then //For all internal Junctions		
187	eqn=eqn+1;		
188	jeqn=jeqn+1;		
189	r (eqn)=0;		
190	end		
191	end		
192			
193	for l=1:jun_con(j,1)		
194	<pre>if(abs(jun_con(j,l+1)) > eps_max) then</pre>		
195	$if(jun_con(j, 1+1) \ge 0)$ then		
196	jn_node=1;		
197	$A(eqn, 2*gid(abs(jun_con(j, l+1)), jn_node)) = -1;$		
198	r (eqn) =r (eqn) -Qv (gid (abs (jun_con(j,l+1)), jn_node));		
199	end		
200	$if(jun_con(j, l+1) < 0)$ then		
201	jn_node=mnode(abs(jun_con(j,1+1)));		
202	$A(eqn, 2*gid(abs(jun_con(j, 1+1)), jn_node))=1;$		
203	$r(eqn) = r(eqn) + Qv(gid(abs(jun_con(j, l+1)), jn_node));$		
204	end		1
205	end		
206	end		
207	r(eqn) = -r(eqn);		
208	end		Per
209			- Sh
210			
211	//Tunction Energy Condition		SSARE
212	for delighter		
213	tor j=rijum		

This junction connectivity if this is negative so obviously we are talking about the terminating node here. So junction node equals to mnode absolute junction connectivity jL plus 1 and we are adding discharge to our junction. So that is why coefficient is 1 and this is r eqn plus Qv in this case. Interesting part is that if this junction condition is not specified here obviously j greater than bjn.

Bjn means number of boundary junctions. If j value crosses for boundary junctions then we should start calculating the discharge conditions for other nodes.

(Refer Slide Time: 20:54)

So in this case r eqn equals to zero in this case. At the end we should write r eqn equals to minus r eqn. Obviously minus of function value is required on the right hand side. That is why I have written it. Now let us consider junction energy condition. Energy condition if some value is specified if junction information j1 this value is not equal to minus 5 9s then eqn equals to eqn plus 1. And if it is positive first node, in the second column if it is negative obviously it is mnode. So accordingly we can specify our conditions.

(Refer Slide Time: 22:05)

Now after considering this we can include this junction connectivity j1 greater than 1. If it is greater than 1 then only we should iterate. This is starting from L to junction connectivity j1

minus 1. And this is the first node or the element which is there in the second column we will consider that as a fixed and we will start our calculation by considering the elements from the third column.

So from the third column we will get information about the starting or ending node. Accordingly we can enter the values there and finally we need to perform this operation.

(Refer Slide Time: 23:12)

So obviously in this case we have calculated all the things. Now interesting part here is that A the size is we have 81 equations but we have our 80 unknowns because I have already specified Qu value there. So in this case this is del yQ which is of size 80 into 1 and right hand side is r again 81 into 1.

(Refer Slide Time: 24:02)

What I can do? I can just multiply A transpose on both the sides so obviously this is A transpose. Now after multiplying A transpose obviously the size will be 80 into 81. So the resultant size is 80 80. Now del yQ 80 into 1 this is equals to A transpose A inverse into A transpose r. So size is 80 into 1. So after considering this, this is the calculation here.

(Refer Slide Time: 24:52)

We are considering inverse of this one. Now finally we need to transfer these gv values. Gv values we should add gv previous or value del yQ i. And subsequently we need to transfer these values or update these values for next iteration. So yv should be gv in to gid minus 1 and this is yv is gv 2 gid.

(Refer Slide Time: 25:31)

Now let us run this one because last thing is rmse calculation count rmse values and final thing is print L 1 to channel number. This is channel number then section, distance, depth, discharge values.

(Refer Slide Time: 25:55)

So if we consider these discharge values. Now if I run this what I am getting? For all sections that means whether it is depth or discharge all values are positive. So obviously y should be positive but if our direction for flow under consideration is incorrect then I should get a negative value.

In this case I can see that for first channel I am getting 97 point 74, second channel 154 point 25, third channel I am getting 55 point 09, fourth channel 40 point 65, fifth channel 52 point

66, sixth channel 12 point 01, seventh channel 107 point 76, eight channel 142 point 23. Now if I change the direction of flow, direction of flow means if I conceptualize the problem by changing the direction of flow let us see this configuration. Now in this configuration natural gradient is in this direction.

(Refer Slide Time: 27:43)

So I have kept the flow direction for all other channels that means channel 1, 2, 3, 5, 6, 7, 8 same but I have changed the direction of flow for this channel 4. That means I am considering channel is flowing from 5 to 3. Obviously 3 is higher elevation 5 is having the lower elevation in this case.

(Refer Slide Time: 28:20)

Now if the connectivity is from 5 to 3 obviously I should change my numbering or section numbering scheme. So for all other channel reaches the section numbering scheme is same. But now from 5 to 3 this is flowing so I should start channel section 1 at section or channel junction 5 and it should end at 3 with N4 plus 1.

(Refer Slide Time: 29:07)

Now this is a numbering scheme that means now I am considering the flow is from 1 to N4 plus 1. So that is my convention that from 1 to N4 plus 1 it should be positive. Now I have to change this channel information. In this case I have changed it to 5 3 next level. There is no change in this particular matrix but now for section or channel junction 3 this end section of channel 4 is connected. So this is minus 4, this is plus 4.

(Refer Slide Time: 30:06)

	Prob	lem Statemen		> 12 - 13 - 1	þ 👌 📇 ·	🐔 🔬	k 😧 🔽 🔕
]	Prot	blem Definition Discretization Reference	1		1.1.7	Г. Kharag	pur 🙀
Program Imple Configuration 2	ement	ation					
chLinf =	$\begin{bmatrix} 1 & 200 \\ 2 & 200 \\ 3 & 200 \\ 4 & 100 \\ 5 & 100 \\ 6 & 100 \\ 7 & 100 \\ 8 & 300 \end{bmatrix}$	$\begin{array}{cccc} 30 & 0 \\ 40 & 0 \\ 20 & 0 \\ 20 & 0 \\ 20 & 0 \\ 25 & 0 \\ 30 & 0 \\ 50 & 0 \end{array}$	0 0 0 0 0	50 0.013(50 0.012(25 0.014(25 0.013(25 0.013(25 0.013(25 0.013(25 0.014(25 0.014() 0.0005) 0.0005) 0.0005) 0.0005) 0.0005) 0.0005) 0.0005	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
jun_inf = [99999 5 - 999999 - 99999 - 99999 - 99999 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.25 0 .15 .05 .10 .15	jun_con =	$= \begin{bmatrix} 2 & 1 \\ 2 & -7 \\ 3 & -1 \\ 3 & -3 \\ 3 & 4 \\ 3 & -2 \end{bmatrix}$	$ \begin{array}{c} 2 & 0 \\ -8 & 0 \\ 3 & -4 \\ -5 & 7 \\ -6 & 5 \\ 6 & 8 \end{array} $	
Dr. Anirban Dhar	NP	TEL		Co	omputational Hy	draulics	New Y

Now if I implement this same thing here so let us see what will be the problem or what will be this case? In this case obviously everything is same. Gv again I am considering 1, this is same. Only change is there this is 5 3.

(Refer Slide Time: 30:44)

a ste	ady_1D_channel_network_with_reverse_cfg2.sci (C/USers/Administrator/Desktop)Week-10/steady_1D_channel 🙆 👞 🚕 🐚	
File E	dit Format Options Window Execute ?	/ = / / / / / /
		Mouse Pointer
1000	D drame period with severe englished of the source of the source of the source of the severe of the severe of the source of the	
L	Tranceron andreselars () mainteneous (and and a second condense ()	
2	term1= $(2*Q/areav(y, B, m1, m2)^3);$	
3	term2=2*abs(Q)*areav(y, B, m1, m2)^(-2)*HRv(y, B, m1, m2)^(-4/3);	
4	dMdQiv=-D1*term1+D2*term2;	
5	endfunction	
45	// ** ** ** ** ** ** ** ** ** ** ** ** *	
46	// Channel Reach: Start + End -	
47	// Flow Depth Condition: 1	
48	// Flow Rate (Discharge) Condition: 2	1
49	// ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
50	//-Given-Data	
51	g=9.81; //m/s^2	
52	global('g')	
53	yd=5; //m	
54	Qd=250; //m^3/s	
55	Qu=250; //m^3/s	
56	eps_max=le-6;	
57		
58	// ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	
59	junn=6;	
60	bjn=2;	
61	chln=8;	
62	//Chl#- -Length- -Width- -m1- -m2- -Segment- -n- -SO- -JN1- -JN2	
63	chl_inf=[1 - 200 - 30 - 0 - 0 50 - 0.0130 - 0.0005 - 1 - 3	
64	2 200 40 0 0 50 0.0130 0.0005 1 6	
65	3 200 20 0 0 50 0.0120 0.0005 3 4	
66	4 100 20 0 0 25 0.0140 0.0005 5 3 //	
67	5 100 20 0 0 25 0.0130 0.0005 5 4	
68	6 100 25 0 0 25 0.0130 0.0005 6 5	
69	7 100 30 0 25 0.0140 0.0005 4 2	
70	8 300 50 0 75 0.0140 0.0005 6 2];	
71		
72	jun_inf=[-99999_Qu 0.25	
73	·····yd −Qd 0	

And this part this is minus 4 and 4.

(Refer Slide Time: 30:51)

stea	dy 10. O channel network with reverse of 2020s (CUUsers Vedministration Desistop) Week & Outstep Week & Outstep	
		_
- 907_	10_channel_petwork_with_penerse_ctq22.sci (C-UsersVulaministratorDestiopVMeek-10/ateau/_10_channel_petwork_with_penerse_ctq2.sci) - Schlotes	7
steady_	_BD_channel_network_with_reverse_cfg1.sci 🔣 *steady_LD_channel_network_with_reverse_cfg2.sci 🛞	
62 63	// Chl# Length Width m1 m2 Segment n S0 JN1 JN2 chl inf=[1 200 30 0 500,0130 0.0005 1 3	^
64	2 200 40 0 0 50 0.0130 0.0005 1 6	
65	3 200 20 0 0 50 0.0120 0.0005 3 4	
66	4 100 20 0 0 25 0.0140 0.0005 5 3 //	
67	5 100 20 0 0 25 0.0130 0.0005 5 4	
68	6 100 25 0 0 25 0 0 130 0 0005 6 5	
69		
70	8 300 50 0 0 75 0.0140 0.0005 6 2];	
71		
72	jun_inf=[-99999 Qu - 0.25	
73	yd -2d 0	
74	-99999-99999-0.15	
75	-99999 -99999 0.05	
76	-99999-99999-0.1	
77	-99999 -99999 0.15];	
78	//0: Not Connected	
79	//Positive Sign: 1st section of the 1-th channel rech is connected	
80	//Negative sign: Ni+1-th section of the 1-th channel rech is connected	
81	Jun_con=[2 1 2 0	
82	2 - 1 - 3 - 4	
0.3		
85	3 4-6 5	
86	3 -2 6 81;	
87		
88	alpha=ones(chln,1);	
89		
90	//Derived Information	
91	Lx=chl_inf(1:chln,2);	
92	<pre>B=chl_inf(1:chln,3);</pre>	
93	ml=chl_inf(1:chln,4);	
94	m2=chl_inf(1:chln,5);	
95	delta x=chl inf(1:chln,6);	

Other values are same. Now if I run it I can see that at channel 8 I am getting 142 which is the same as previous configuration. Channel 7 which is 107 this is same as previous configuration because we have considered the same direction for flow for 7 and 8.

(Refer Slide Time: 31:19)

			PR /			
File Edit Control Applications ?			- -		- N	
Science 6.0.0 Consider	7.7.X Var	istie	Browser			7 7 3
4. 75. 4.8894377 12.013332	^		Name	Value	Turne	Vehity
		11	la.	81x80	Double	local
		=	8	8×1	Double	local
5. 100. 4.9019326 12.013326			D1	8x1	Double	local
			D2	8x1	Double	local
	-		Lx	8x1	Double	local
Channel Number: 7			Qd	250	Double	local
			04	40v1	Double	local local
		=	50	8x1	Double	local
ection Distance(m) Depth(m) Discharge(m~3/s)		=	alpha	8×1	Double	local
			bjn	2	Double	local
			chi_inf	8×10	Double	local
1. 0. 4.9015414 10/./01/			chin	8	Double	local
			count	19	Double	local
2 25 4 9634276 107 76169	New	evs fe	ed			7 7
		6				-
			4			
5. 100. 5. 107.76171						
5. 100. 5. 107.76171 Channel Number: 6 !						
5. 100. 5. 107.76171 Dannel Humber: 8 ! lection Distance(m) Depth(m) Discharge(m*3/s) 1. 0. 4.851932 142.23828						
3. 100. 5. 107.76171 Tannol Humber: 8 ! lection Diarance(m) Depth(m) Diarcharge(m [*] 5/m) 1. 0. 4.8539332 142.23828 2. 75. 4.889471 142.23828						
 100. 5. 107.74171 Channel Humber: 8 ! Section Distance(m) Depth(m) Discharge(m[*]3/s) 0. 4.8519532 142.23828 75. 4.8899471 142.23828 180. 4.8289532 142.23828 						
 100. 5. 107.74171 Channel Humber: 8 ! Jection Distance(m) Depth(m) Discharge(m⁻³/s) 0. 4.6519552 142.23828 75. 4.6889471 142.23828 150. 4.3259552 142.23828 4. 225. 4.3429709 142.23827 						
 200. 5. 107.74171 Channel Humber: 8 ! Section Distance(m) Depth(m) Discharge(m³/s) 0. 4.0519532 142.23828 75. 4.0889471 142.23828 180. 4.9289532 142.23828 225. 4.9429709 142.23827 300. 5. 142.23829 						
 b. 100. b. 107.74171 Channel Hubberri B ! Deution Distance (B) Depth (B) Discharge (B⁺2/8) a. 4.8519832 142.23828 c. 75. 4.8589471 142.23828 d. 225. 4.9429709 142.23827 b. 300. 5. 142.23829 	ţ					
 3. 100. 5. 107.74171 Channel Number: 8 ! Section Distance(m) Depth(m) Discharge(m'3/s) 1. 6. 4.6519552 142.23828 2. 75. 4.6889471 142.23828 3. 150. 4.9239532 142.23828 4. 225. 4.9429709 142.23827 5. 300. 5. 142.23829 	ł					

If we consider 6 this is 12 again, this is same. For channel number 5 this is 52. But interesting thing is visible for this channel number four. Here we are getting the value of minus 40 655. That means whatever flow direction I have considered for my problem that is incorrect and flow should be from 3 to 5 as I have assumed it from 5 to 3 that is not correct.

(Refer Slide Time: 32:17)

Similar thing I can extend for other channel reaches. Now let us consider or let us disturb this flow system for this channel reach 4 and 5. If I change the flow directions. Now in this case I am considering the flow is from 5 to 3 and in this case I am considering for channel reach 5 it is 4 to 5.

(Refer Slide Time: 32:54)

Now what will happen with this configuration? Again I need to change this section numbering scheme. So this is my direction of flow as per assumption.

(Refer Slide Time: 33:10)

In this case this is my direction of flow for channel reach number 5. So obviously in this case I have to change this channel information matrix.

(Refer Slide Time: 33:29)

In channel information matrix I have to change these two entries. This is 5 to 3 and 4 to 5. Now flow is from 4 to 5.

(Refer Slide Time: 33:39)

1	Problem Stat Problem Def Discret i Refe	ement inition zation rences	Þ 🌾 🔅 Þ	4 🛎 4 🔗 🥔 I.I.T. Khara	gpur 🔛
Program Imple Configuration 3	mentatio	n			
chLinf =	1 200 30 2 200 40 3 200 20 4 100 20 5 100 20 6 100 25 7 100 30 28 300 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 0.0130 50 0.0120 25 0.0140 25 0.0130 25 0.0140 25 0.0140 25 0.0140 25 0.0140 25 0.0140 25 0.0140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Dr. Anirban Dhar	NPTEL		Com	putational Hydraulics	

And again I need to consider this that at channel junction 3 this end section of 4 is connected, at channel section 5 starting section of 4 is connected. Channel section 4 starting section of 5 is connected and channel junction 5 ending section of channel reach 5 is connected.

(Refer Slide Time: 34:18)

	Problem Statement Problem Definition Discretization References I.I.T. Kharagpu							
Program Imple Configuration 3	mentatio	on						
$chl_inf =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 0.0130 0.0005 1 3 50 0.0130 0.0005 1 6 50 0.0120 0.0005 3 4 25 0.0140 0.0005 5 3 25 0.0130 0.0005 4 5 25 0.0130 0.0005 6 5 25 0.0140 0.0005 4 2 75 0.0140 0.0005 6 2					
$jun_inf = \begin{bmatrix} -9\\ -9\\ -9\\ -9\\ -9 \end{bmatrix}$	9999 250 5 —250 9999 —9999 9999 —9999 9999 —9999 9999 —9999	$\begin{array}{c} 0.25\\ 0\\ 9& 0.15\\ 9& 0.05\\ 9& 0.10\\ 9& 0.15 \end{array}$	$jun_con = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 2 & -7 & -8 & 0 \\ 3 & -1 & 3 & -4 \\ 3 & -3 & 5 & 7 \\ 3 & 4 & -6 & -5 \\ 3 & -2 & 6 & 8 \end{bmatrix}$	5				
Dr. Anirban Dhar	NPTEL		Computational Hydraulics	24 / 27				

Now with this configuration let us again utilise our program for this calculation. This is configuration cfg 3. Now let us see what is the situation there? Now only change is here this is from 5 to 3 and 4 to 5. In this case minus 4, 4, this is 5, minus 5.

(Refer Slide Time: 34:56)

🔀 ster File Er	ady.10.channel.network.with.reverse.clg3.sci (b/Users/Administrator/Desktop/Week-10.steady.10.channel 🖉 🎓 🎓 🎓 😓 👌 📇 🥖 🍠 💋 📐 🤹 🛐	0
Seady.	_10_channel_network_with_reverse_ctq3.sci (C. UsersWahninatridor@esistopWeek-10ideady_10_channel_network_with_reverse_ctq3.sci) - Schiktes	7
steady	_1D_hhannel_network_with_reverse_cfg1.sci 🔣 "#steady_1D_channel_network_with_reverse_cfg2.sci 🛞 "#steady_1D_channel_network_with_reverse_cfg1.sci 🛞	
61	chln=87	^
62	// Chl# Length Width m1 m2 Segment n SO JN1 JN2	
63	chl_inf=[1 200 30 0 0 50 0.0130 0.0005 1 3	
64	2 200 40 0 0 50 0.0130 0.0005 1 6	
65	3 200 20 0 0 50 0.0120 0.0005 3 4	
66	······································	
67		
68	······································	
69		
70	······································	- 6
71		
72	jun_inf=[-99999 Qu - 0.25	
73	yd -Qd 0	
74		
75		
76	-99999 -99999 0.1	
77	-99999 -99999 0.15];	
78	//0: Not Connected	
79	//Positive Sign: 1st section of the 1-th channel rech is connected	
80	//Negative Sign: Nl+1-th section of the 1-th channel rech is connected	
81	jun_con=[2 1 2 0	
82		
83	· · · · · · · · · · · · · · · · · · ·	
84		
85		
86		
87		
88	alpha=ones(chin,1);	
89		11
90	//Derivea information	A
91	Lx=ch1_int(1:chin, 2);	BE
92	Bechi inf(1:chin, 5);	E
93	m1=ch1_inf(1:chin, 4);	Ŧ.
91	Im2=ch1 int(l:chin.5);	9 .

We can run this with these two changes. Interestingly I am getting the same result for 8, 7, then 6 I am getting same result and for 4 and 5 where I have change the direction of flow I am getting negative values. In this case this is 40 point 655 and this is minus 52 point 668.

(Refer Slide Time: 35:48)

	A					
Edit Control Applications ?	2		- V - +		- TO	- - - - -
No 6.0.0 Console 7	x V	ariable Browse	м			7 /
		Name	Ve	ah sa	Turne	Vehity
1. 200, 1.92003/0 00.093202		HH IA		81x80	Double	in lar
		B		8x1	Double	ke
5 900 4 0519414 55 009969		D1		8×1	Double	lo
. 2001 119922424 001092203		D2		8×1	Double	lo
		Lx Lx		8×1	Double	lo
		Qd		250	Double	lo
inner wanter, 4 i		Qu		250	Double	lo
		Qv.		40×1	Double	ka
		50		8×1	Double	ka
tion Distance(m) Depth(m) Discharge(m~3/s)		apna		80X 1	Double	R.
		and the set		8+10	Deckle	
11		dia dala		8	Double	10
. 0. 4.9019326 -40.655105		in count		20	Double	-
		He Court				
	N	ews feed				7
. 25. 1.009301 -10.005105						
5. 100. 4.8524521 -40.655108 annel Mumber: 5 :						
8. 100. 4.8524521 -40.655108 annel Humber: 5 ! Ciion Distance(m) Depth(m) Discharge(m*3/s) 1. 0. 4.9512414 -52.669524						
5. 200. 4.8524521 -40.655108 mnnel Humber: 5 : ction Distance(m) Depth(m) Discharge(m ⁻³ /s) 1. 0. 4.9512414 -52.665524 2. 25. 4.9585123 -52.66552	¢					
5. 100. 4.824821 -40.455208 annel Number: 5 : estion Distance(m) Depth(m) Discharge(m ⁻³ /* 1. 0. 4.9512414 -52.465524 2. 23. 4.95192123 -52.665523 3. 50. 4.926565 -52.665522 - 52.*6688						
5. 100. 4.824521 -40.455108 annel Number: 5 : estan Distance (m) Depth(m) Discharge (m ⁻³ /s) 1. 0. 4.9512414 -52.465524 2. 25. 4.9592123 -52.465523 1. 50. 4.926545 -52.46552 1. 75. 4.9142379 -52.46551	¢					
 s. 100. 4.8524521 -40.455108 annel Hubber: 5 ? OLION Distance (m) Depth (m) Discharge (m⁻³/s) 1. 0. 4.951243 -52.465524 2. 25. 4.951923 -52.465525 3. 50. 4.926945 -52.465525 4. 75. 4.9142579 -42.46551 5. 100. 4.901926 -52.465509 	, a					

So we are starting from arbitrary values without satisfying the continuity at the junction but we are getting the desired discharge and depth values. So for other channel reaches channel reach channel reach number 1, channel reach number 2 we are getting positive values because we have not changed the direction of flow in this cases.

(Refer Slide Time: 36:16)

Difference Difference <thdifference< th=""> Difference Differen</thdifference<>	Scilab 6.0.0 Console	🖌 📂 🐑 📣 🛤 🥒 🥔 📣 🔪 🤅 💌	0
Image: Control Losses Top Top </th <th>ile Edit Control Applications ?</th> <th></th> <th>~</th>	ile Edit Control Applications ?		~
Sink BO Common P (1) Vent Were Vent Top	2 🖬 🔏 🖸 🏷 📇 🚍 🗶 🔍 🔍		
A - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		7 # X Variable Browser	7 8 3
→ //Filat Output →//Filat Output → //Filat Output → /		 Name Value Type Visibility 	
> //TATE Origin > for 1=10hh > disp(1Channeh Hubberi' string(1)) disp(1(1-1)*delta_x(1))*(gid(1,1)) > disp(1(1-1)*delta_x(1))*(gid(1,1)) > end Channeh Hubberi 1 ; 1. 0. 4.7541989 95.748341 2. 99. 4.7727518 95.748341 2. 100. 4.6273776 95.748345 3. 100. 4.6273776 95.748346 Channeh Hubberi 2 ; 1. 0. 4.7541989 154.23144 2. 100. 4.6273776 154.23144 . 100. 4.7541989 154.23144 . 100. 4.7541989 154.23144 . 100. 4.7764237 154.23144 . 100. 4.7764237 154.23144 . 100. 4.7764237 154.23144 . 100. 4.7764237 154.23144 . 100. 4.775711 <u>5</u> 154.23144		A 81x80 Double	local
<pre>> fer location bit set of the set of th</pre>	> //Print Output	B Bx1 Double	local
Disp((*Channel Buscher)* set10g(1)) Discharge(m*1/s)*) disp('Channel Buscher) Set100 disp('Channel Buscher) Set100 set10 Set100 hannel Buscher: 1 . 0. 4.7561588 95.768361 2. 90. 4.1003118 95.768361 2. 90. 4.7767518 95.768361 2. 90. 4.7075518 95.768364 4. 100. 4.7767518 95.768364 4. 100. 4.7761297 164.25164 2. 90. 4.0033118 55.768364 4. 100. 4.7764297 154.25164 2. 90. 4.7764297 154.25164 3. 100. 4.7764297 154.25164	> for l=lighln	D2 8x1 Double	local
isip:j:section Distance(m) Depth(m) Discharge(m*1/p); isip:(1:(1-1)*delts_(1)) Or(gid(1,1)) Or(gid(1,1)) isin mail isin isin isin	disp(['Channel Number:' string(1)])	Lx 8x1 Double	local
Image: Intermode(1) Image: I	disp('Section Distance(m) Depth(m) Discharge(m^3/s)')	Qd 250 Double	local
disp(1: (1:-1)*da(15.%)(1) (1:-1)*da(15.%)(1) ext iiii ext ext iiii iiii iiiii iiiii iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	for i=1:mnode(1)	Qv 40x1 Double	local
Ind. Image: August and Au	disp([i (i-1)*delta_x(l) yv(gid(l,i)) Qv(gid(l,i))])	50 8x1 Double	local
and Displance (m) Depth (m) Discharge (m ⁻ 3/s) 1. 0. 4.775136 95.746375 3. 100. 4.033116 95.746375 3. 100. 4.033116 95.746376 1. 0. 4.775736 95.746376 1. 0. 4.775736 95.746376 1. 0. 4.775736 95.746376 1. 0. 4.775736 95.746376 1. 0. 4.7524736 95.746376 1. 0. 4.7524736 95.746366 tunnel Buschare(m) Depth (m) Discharge (m ⁻³ /4) 1. 0. 4.7561398 154.23164 1. 1.00. 4.6030079 154.23164 1. 1.00. 4.6030079 154.23164	end	alpha 8x1 Double	local
Annoh Humber: 1 ! ction Distance(m) Depth(m) Discharge(m*3/s) 1. 0. 4.7741388 95.748351 2. 30. 4.7797518 95.748353 3. 100. 4.823921 95.748355 3. 100. 4.824921 95.748355 3. 200. 4.824921 95.748356 4. 130. 4.824921 95.748356 4. 130. Listance(m) Depth(m) Discharge(m*3/s) 1. 0. 4.7741388 154.23164 2. 100. 4.4778437 154.23164 3. 100. 4.4020379 154.23164 3. 100. 4.4020379 154.23164 3. 100. 4.4020379 154.23164	ena	byn 2 Double	local
Cillon Discharge (m ³ / e) 1. 0. 2. 50. 4.778138 95.768361 2. 50. 4.7787318 95.768375 3. 100. 4.0030110 95.768375 5. 200. 4.100. 4.278766 5.768361 0. Cillon Discharge (m ³ / e) 7. 0. 6. 4.7761388 10. 1.921876 10. 1.921876 11. 0. 12. 1.9.748376 13. 0. 14.7781288 114.25164 15. 1.4.272011 15. 1.4.272011 15. 4.4.775011 15. 4.4.775011	annel Number: 1	drin 8 Double	local
ction Distance (m) Depth (m) Discharge (m ⁺)/*) 1. 0. 4.7543980 95.748375 3. 100. 4.003318 95.748375 3. 100. 4.003318 95.748375 5. 200. 4.8278756 95.748375 5. 200. 4.8278756 95.748375 5. 200. 4.8278756 95.748376 1. 0. 4.7784398 154.22164 2. 30. 4.7784397 154.23164 3. 100. 4.0030579 134.23164 4. 100. 4.8270511 1 14.25164		count 20 Double	local
 ci.on Distance (m) Depth (m) Discharge (m⁻¹/e) 1. 0. 4.7741398 95.745361 2. 50. 4.7797518 95.745375 3. 100. 4.6033118 95.745376 4. 150. 4.2727764 95.745375 5. 200. 4.5524521 95.745364 annel Humber: 2 ! oi. 0. 4.7541398 154.25164 2. 60. 4.7754237 154.25164 3. 100. 4.4030579 154.25164 4. 150. 4.4.271611 114.251644 		News feed	7 7
1. 6. 4.7543588 95.748375 2. 50. 4.7787538 95.748375 3. 100. 4.6033118 95.748375 5. 200. 4.6324521 93.748346 annel Number: 2 ! Intian Distance(B) Depth(B) Discharge(m ³ /c) 1. 0. 4.7781398 154.23164 2. 50. 4.7781398 154.23164 3. 100. 4.6030579 154.23164 4. 150. 4.8725011 14.25164	ction Distance(m) Depth(m) Discharge(m^3/s)		
1. 0. 4.7841988 95.748361 2. 30. 4.7787518 95.748363 3. 100. 4.6033118 95.748375 3. 100. 4.6024521 95.748376 3. 200. 4.6024521 95.748364 samel Number: 2 : retion Distance(n) Depth(m) Discharge(n*3/4) 1. 0. 4.7784296 154.25164 2. 30. 4.7784297 154.25164 3. 100. 4.6090579 134.25164 4. 100. 4.8797011 104.25164		Name final concertable	
 b. 200, 4.824321 99.743844 Channel Buekeri 2 1 Section Distance (m) Depth (m) Discharge (m*3/c) 1. 0. 4.7541985 124.23144 2. 50. 4.7794237 134.23144 3. 100. 4.8050375 134.23144 channel Buekeri 2 1 	3. 100. 4.8033118 95.748368 4. 150. 4.8278786 95.748375		
ection Distance (M) Depth (M) Discharge (M ⁺³ /A) 1. 0. 4.7541986 154.25164 2. 50. 4.7754227 154.25164 3. 100. 4.6030379 154.25164 4. 150. 4.6975011 10.154.75164	5. 200. 4.8524521 95.748346 hannel Number: 2 !		
1. 0. 4.7941998 194.23164 2. 00. 4.7948237 194.23164 1. 100. 4.8090379 194.23164 1. 100. 4.8070311 114.23164 1. 100. 4.8070011 114.23164	otion Distance(m) Depth(m) Discharge(m^3/4)	υ.	
2. 50. 4.7784237 154.25144 3. 100. 4.6030579 154.25144 4. 150. 4.6275011_14.25144 , *	1. 0. 4.7541988 154.25164		
3. 100. 4.8030579 154.25164	2. 50. 4.7786237 154.25164		
4. 150. 4.8225011 154.25164			1
	3. 100. 4.8030579 154.25164		

We have changed only the direction of flow for 4 and 5. Now we can say that our code can consider the reverse flow situation in steady channel flow conditions. Now this is the last configuration that we have considered. So we have considered three different configurations

and we are getting our desired value because starting point was that we have allowed the subcritical flow condition in the channel as per the slope or bed slope.

And in case of configuration 2 and 3 we have changed the flow direction and we are getting negative values because that is expected from the program for reverse flow situation. Now these are the three source codes that you can utilise to check the solutions of our channel configuration. Configuration 1, configuration 2 and configuration 3 for this loop channel network.

(Refer Slide Time: 38:12)

In the next lecture I will be discussing about unsteady channel flow condition. Thank you.