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Partial Differential Equation - Numeric Stability of One Dimensional PDE

Welcome to this lecture number 12 of the course computational hydraulics. We are in module

2, numerical methods. And in today's lecture we will becovering unit 8, partial differential

equation, numerical stability of one dimensional PDE.
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What is the learning objective for this particular unit? At the end of this unit students will be

able to analyze the numerical stability of discretized one-dimensional conservation law in

terms of partial differential equation.
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Let us consider our general equationwith general variable phi. We have seen thatinitially with

thisfirst  term  in  the  right  hand  side  we  have  solved  boundary  value  problem.  With  our

temporal term and boundary value problem or right hand term, this one and this one we have

solved  initial  boundary  value  problem.  And  in  these  boundary  value  problem  or  initial

boundary value problems, we have considered Sphi or source sink term.
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Now we need to consider the second term in the left hand side. This is somewhat related to

velocity term. And we should analyze this term before starting our finite volume approach.
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So in this case, one-dimensional conservation law in terms of phi can be written as del phi by

del t and del F phidel x Sphi. S phi is source sink term. This is temporal term and this is

spatial term only in one dimension that is x. So what is this F phi? Fphi is the flux function.

Amount of phi that passes at the abscissa x per unit time due to displacement of phi. And

Fphi does not depend on derivative of phi with respect to space or time. And S phi is source

sinkterm. This  is  amount  of  phi  that  appears per  unit  volume irrespective of  the amount

transported viaflux.
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So with thisinformation we can proceed. We can see that we have phi which is function of x

and t only. So one-dimensional in space and we have one time dimension.
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So for example, in this case phi can be u phi. If phi is equal to u phi and lambda phi equals to

1 and our upsilonphi is equal to 1, then we can get this equation without the right hand first

term and other force term on the right hand side.
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However any derivative in this Fphi is not allowed. So this is related to diffusion. So this

gamma x is like diffusion coefficient. So this is not allowed for this kind ofequation because

we have derivative of phi with respect to space or in one dimensional case.
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Sowe can write the non-conservative form where del phi by del t. And this is actually lambda

into delphi by del x. This is written in terms of ourgeneral variable phi, not in terms of flux

Fphi.
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So what is this lambda? Lambda is equal to del Fby del phi. And we have this modified

source sink term. This is Sphiminusdel phi. This is constant. Soactually we can write our Fphi

del y del x as delphi. This phi into delphi by del x plus del F phi by del x where phi is

constant value. So now this term is lambda and we can change this side for this term. And if

we transfer this term on the right hand side and subtract from the original source sink term

then we can get this modified one.
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So let us utilize our explicit upwind scheme. What is this upwind? Depending on this value of

lambda or sign of lambda, we generally change the scheme. If it is positive or negative we

need  to  change  our  discretization  in  space.  So  we  have  our  original  conservative  form

equation. We are discretizing it at I n level. This is present time level. So if we consider in

this case we have one space access and one time access other level for this one. In this case if

we have I,Iminus1, I, Iplus 1.
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Then for timediscretization we have nth level n and n plus 1. For space discretization we have

Iminus 1,I, Iplus 1. These values are actually unknown values.
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And these are our known values.
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So with this information we can discretize our space derivative for flux. So interestingly in

this case if lambda I n is positive, that means lambda equals to flux. So change in flux with

respect tovariable phithat is positive, then we will be utilizing this derivative I, I minus 1 for

delphi by del x.
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And if lambda is negative then we will be utilizing F Iplus 1 minus I value for this one. And

in this case time discretization is of order delta t and space discretization is of order delta x.

So overall accuracy for this one is delta x delta t.
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And for source sink term this is simple, we will be evaluating at I n level. Now we can write

our final solution like this. If we change the sides for known variables on the right hand side.

This is unknown level.
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This is known level. This flux is also known. These values are known. This is also known. So

we can write like this.
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Now we need to analyze the stability of this particular scheme. But Von Neumann stability

analysis can be performed for linear equations. Let us consider that the flux term can be

written in terms of F phi where F phi equals to Aphi and A is some constant value. So lambda

is delF phi by del phiwhich is A. Depending on the sign of the A, whether it is positive or

negative, we can change the space discretization.
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Now let us considerthat error equation again it can be error term. Epsilon I n can be written in

the terms of amplitude and this face thing forx direction.
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So we have this I n and A n I var phi x corresponding to that direction.
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Now with this information we can proceed for stability analysis. Now we can bring that A

term out of this bracket and we can write like this for A greater than zero and less than zero.
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Now discretize governing equation for this initial boundary value problem. Butin this case

boundary initial condition is a main thing because one side only it is defined. So it is like

initial  value  problem.  Now  this  is  the  solution  which  is  coming  from infinite  precision

computer  and  this  is  the  amount  of  error  involved  in  the  particular  step  and  particular

discretization level.
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With this we can also write the discretized finite difference equation for exact solution. This

is the exact solution think and exact solution  should satisfy our original finite difference

discretization. So we have written phi hat I n plus 1 and others are at known time level.
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Now if we subtract our exact solution equation discretized form, from this one, we can get the

corresponding error equation.
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So error equation can be returned like this where this one is unknown.
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And these are known level things.
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Now as per our definition we can write this epsilonI n plus 1 where only change in the

amplitude, no change in this index for I. I n this is A and I varphi x minus 1, only change in

index for I. I plus 1 only change in the index for I.
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So with this expressions if we write our growth factor by dividing epsilon on both sides. This

is epsilon I n plus 1 divided by epsilon I n and interestingly this is equal to A n plus 1 divided

by A n. Now for A positive we have this form, A negative we have the second equation.
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Now if you further simplify this one, we can write like this where this e to the power minus

part is there. So minus I the minus this imaginary number into var phi x. And this is 1 plus 1

minus e to the power, imaginary number var phi x again for negative value.
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Now in this casewe can define a number which is Cr. And Cr is defined like this. Modulus of

A into delta t divided by delta x. So always Cr is positive. Now the problem with this one is

that in this case if A is negative we can write this equation as, 1 minus modulus of A into

deltat divided by delta x 1 minus e to the power minus 1 var phi x. Only for negative value.
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Now with this Cr we can proceed and we can define our amplification factor in terms of real

and imaginary part of G in simplified form.
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Now as per our Von Neumann stability criteria,this modulus of G should be less than equals

to 1.
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Now we need to evaluate the modulus of G. So if we evaluate the modulus of G in this case

so  basically  we  are  taking  square  of  real  and  imaginary  part.  Now  this  comes  to  this

simplified form, 1 plus 4 Cr, Crminus 1 sin square phi x by 2.
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In this caseimportant point is that this quantity is always positive. Now as per our condition G

Mod square should be less than equal to 1. If Cr equals to zero then we have 1. If Cr equals to

1, againthis is equals to 1. And for values less than1 and greater than zero. For Cr we can get

G modulus square less than equal to 1. So we can say that for this condition where Cr is

greater than zero,  less than equal to 1.  This scheme is  stable.  This is  known as Courant

Friedrich Lewy condition or CFL condition.
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Thus we can say that explicit scheme is conditionally stable. And this is the actual condition.
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Now from geometrical point of view if we see, we can represent our G where G is equal to 1

minus Cr plus Cr cos var phi x plus square root minus 1 and within bracket minus Cr sin var

phi  x,  this  quantity.  So this  part  is  represented in  the real  axis  or  ReG. And this  part  is

represented in the imaginary axis.
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So this part is 1 minus Cr and this one is the projected one.
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So this length is Cr into cos phi. So total length, this part is actually our real of G.
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Now and in this case, this part is imaginary component of G. So this thing, this modulus of G

should be within thiscircle with unit radius for stability. So we can say that in this case if Cr

value is within 0 to 1, this condition will be satisfied. That means the circle will be within this

bigger circle. So our stability criterion will be satisfied.
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Now if we consider implicit upwind equation, we are discretizing it at n plus 1 level.
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Nowif we consider our time discretization, this is our time discretization. We have truncation

error of orderdel t. For space discretization again values are at nplus 1 level. For lambda I n

plus 1 greater than zero, lambda I n plus 1 less than equal to zero. This is again of order delta

x. Overall accuracy of the scheme is delta x delta t.

(Refer Slide Time 24:01)

This is for source term and this source term is discretized at n plus 1 level. Now with this we

can get the final solution which is in terms of values at nth level. And flux terms at nplus 1

level, source sink terms are source sink terms at n plus 1 level. This   should be evaluated at

nplus 1 level or at the nth level.
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So stability analysis, again if we consider this, we need to see our final solution. We can

again discretize the governing equationwith a implicit scheme. And in this casewe can write

the exact discrete equation for the finite difference solutions. So in this casewe are getting the

equation in terms of errors.
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For epsilon I n plus 1 and epsilon I minus 1, n plus 1. All these are at nplus 1 levels. Only the

first term is at nth level.
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So we can write our (api) amplification factor by dividing it with epsilon I. Again defining

the Courant number like this where this is always positive. So we can write G like this.
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If we further simplify, we can write G in this format. Now we need to define the modulus for

this G to evaluate the stability of the scheme.
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In this case considering the thing for A greater than zero, we can write like this. And with this

we need to evaluate the G square. This is the conjugate complex number in this case.
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So with this if you proceed and write this thing for (mod) modulus of G square, we can get

this one and further simplification will give this G square condition.
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In this case we can see that Cr is always positive. In sin square phi x by 2 is always positive,

so Cr plus 1 is positive, CR is positive. So 1 by 1plus is something positive. This will give

always this G Square or modulus of G square less than equal to 1. For extreme condition, this

will be less than equal to 1. 
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So we can see that for implicit scheme it is unconditionally stable. Now we have covered the

finite difference thing. In the next lecture onwards we will be starting finite volume. Thank

you.


