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Welcome to this lecture number 11 of the course computational hydraulics.We are in model

number  2,  numerical  methods.  And  in  this  lecture  we  will  be  covering  unit  7,  partial

differential equation, numerical stability of initial boundary value problem.

(Refer Slide Time 00:32)

So what is the learning objective for this particular unit? At the end of this unit students will

be able to analyze the numerical stability of the discretized partial differential equation.
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In lecture 10 we have discussed the initialboundary value problem, IBVP in terms of this

temporal derivative and 2, second order spatial derivatives and one source sink term.

(Refer Slide Time 01:22)

In  this  case  we have  discretized  the  equation  and  we  have  utilized  3  schemes,  explicit,

implicit and Crank Nicolson. All these themes, we need to definethis del x, del y and del t for

each schemes. So depending on the value of del x, del y, del t whether there will be changed

in thefinal result, we need to see that thing from numerical stability.

This  is  the  initial  problem  definition.  Initial  condition  and  boundary  condition  for  the

problemwith rectangular domain.
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Now  we  have  errors.  We  can  define  this  discretization  error  as  the  difference  between

analytical solution of the PDE which is the closed form solution and the exact solution of the

finite  difference  equation  obtained  on  hypothetical  infinite  precision  computer.  This  is

involves truncation error, error due to treatment of boundary condition.
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Now if you consider the round off error, round off error is numerical solution of the finite

difference equation obtained from finite precision computer and exact solution of the finite

differences equation obtained on a hypothetical infinite precision computer.
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So  for  any  problem  if  we  discretize  equation  and  we  are  solving  the  equation  infinite

precision computer there will be some amount of error involved due to round off error. We

need  to  see  few  things.  For  this  numerical  errors,  every  algorithm  requires  repeated

operations that is plus, minus, or addition, subtraction, multiplication, division. So there will

be accumulation of round off error. And in time stepping algorithm whatever we have seen in

our lecture number 10, accumulated round off error may magnify or reduce with every step.

Error may increase exponentially. It is known as numerical instability.Numerical stability or

(in) instability is a property of the algorithm and discretization of partial differential equation

plus boundary conditions. And it does not depends on the computer used. We need to check

our discretization scheme to check the numerical instability for the problem.
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Stability analysis. In stability analysis of linear PDE, we analyze only one arbitrary Fourier

mode.Let  us  consider  that  error  can be represented in  form of  Fourier  Series  and single

arbitrary term can be written as,epsilon ij n and An is the amplitude. in this case, the omega x

and omega y are the wave numbers corresponding to X and Y directions respectively. And

square root of minus 1 is the imaginary number. And i and j, these are corresponding toX and

Y directions.
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With this information we can say that if we take modulus of this error, obviously this depends

on the amplitude term. Not on this term because modulus of this term will be obviously 1.
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So with this we can simplify the error term. We can write it in the form of face values where

phi x, where phi y for X and Y directions. And this is basically our omega x into del x and

where phi y is omega y into del y.
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We can define this amplification term. It governs the growth of the Fourier components and

in this casewe can define Von Neumann stability condition. This is modulus of G should be

less than equal to 1. If modulus of G is greater than 1, error grows. This is unstable scheme. If

we  have  modulus  of  G less  than  one,  error  reduces.  This  is  stable  scheme.  If  we  have

modulus of G equals to 1, error remains same. This is neutrally stable scheme.
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Now we have discretized our initial boundary value problem using explicit scheme.We can

write the same thing here. Now phi ij n plus 1 or phi ij n, this is obtained from finite precision

computer.
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Sowe can write the general variable phi in terms of this phi hat ij n and epsilon ij n where phi

ij n is a numerical solution obtained from finite precision computer and phi hat ijn is the exact

discrete solution obtained on hypothetical infinite precision computer. And epsilon ij n is the

accumulated round off error at level n.
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With this we can write our discretized governing equation with explicit scheme as, we can

replace this phi ij n with phi ij hat n plus epsilon ij n. So this is actually our discretized

governing equation.
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But we have discretized our governing equation with assumption that we will get the infinite

solution from infinite precision computer. So we can writeour governing equation with this

exact discrete solution phi hat ij  n plus phi ij n. So ideally this should be satisfied. This

equation number 2.
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So  if  we  subtract  equation  number  2  from 1,  then  we can  getthis  error  equation.  Error

equation is similar to our originaldiscretized form but without source sink term, because there

will be no error involved there due to discretization. So in simplified form we can write it as

epsilon ij n plus 1 and other terms on the right hand side with alpha x, alpha y like this.
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Now in explicit scheme, we can define this epsilon ij n plus 1as An plus 1. Only change in

amplitude but there is no change in X or Y direction in this values. And for epsilon ij n, only

change in amplitude. Epsilon I minus 1 jn,  change in the index for X. in this case again

change in the index for X. Change for the index for Y, change in the index for Y.
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With this information we can write our error equation. With this simplification, like this.
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This is essentially our amplification term and these are the known things on the right hand

side.
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The  growth factor  or  amplification  term can  be  written  like  this.  Essentially  in  our  last

equation. This is into the power minus imaginary number into phi y. If we combine these two

term we will get 2 cos phi y into alpha y.
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In this case if we combine these two related to X we will get, cosof var phi x. So I can just

write it here this exponential of minus, minus 1 var phi x plus e to the power minus1 var phi

x. This will be 2 cos var phi x.
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Similarly for Y direction. Now we can simplify the right hand side write it like this. And

again for this cos phi var phi y minus 1, we can write it as minus 2 sin square var phi y by 2.

So with this, this is our growth term or amplification factor, 1 minus 4 alpha y sin square var

phi y by 2, minus 4 x sin square var phi x by 2.
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In this caseif you want to check the Von Neumann stability condition,we have mode of this

term here. And this should be less than equal to 1 which is minus 1 less than equal to 1 and

this is withinthis limit.
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We have 2 cases uh or extreme ones, where sin phi x by 2, sin var phi y by 2,these value are

zero. And this means that G is equal to 1.The scheme is neutrally stable.
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However if we apply this condition thatsin var phi x by 2 equals to 1 and var phi y by 2

equals to 1, then comes this G equals to 1 minus 4 alpha x plus alpha y. And this is less than

equal to half. Because minus 1, this is 1 minus 4 alpha x minus 4 alpha y. If we change sides,

this will be 4 alpha x plus 4 alpha y less than equals to 2. And from here it is coming alpha x

plus alpha y is less than equals to half.
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So we can comment on the stability of the scheme here that explicit scheme is conditionally

stable. This alpha x, alpha y, this addition should be less than equals to half. Interestingly this

alpha x is gamma x delta t divided by lambda phi into del x square. So in this case there is

this delta t term and del x square term. Similarly for alphay, we have alpha y, we have gamma

y, del t divided by this lambda phi del y square. So it relates our delt, delx, del y.

(Refer Slide Time 19:16)

So we cannot specify arbitrary values for del t in case of explicit scheme. That should be

related to del x. So that is a condition. Now if you consider implicit scheme again we can

write our main discretized equation in terms of exact discrete value anderror term.
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And similarly we can define our exactdiscrete solution of the finite difference equation in

terms ofthese finite difference equation.
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Now if we subtract 5 from 4, obviously we will be getting error equation here.
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And in simplified form we can getthis thing.Interestingly in this case left hand side, these

values are unknown values. This is known on the right hand side.

(Refer Slide Time 20:37)

With this if  we expand, we can again utilize the information.  The only change is  due to

change in thetime index, n plus 1. But there is no change in these values compared to our

explicit scheme.
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With this if we write our error equation. So error equation becomes, on the left hand side we

have An plus 1 divided by An and minus 1 on the right hand side.

(Refer Slide Time 21:26)

Againwe can combine this term, this term. That means terms related to Y. And if we add these

two terms we will get 2 cosvar phi y. And if we combine this X terms, we will get 2 alpha x

cos var phi x.
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So with this if we simplify our error equation, then growth factor or amplification factor, we

can write like this, minus 1 divided byminus 1 plus 2 alpha cos var phi y minus 1.
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So if we again simplify this,coscar phi y minus 1 equals to minus 2 sin square var phi y by 2.

And this one as minus 2 sin square var phi x divided by 2.
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We can write this growth factor or amplification factor like this. Where alpha y and alpha x,

these  values  are  positive  values  obviously.  So 1 by 1 plus  some positive  values  and sin

square.That means square of any term will be always positive. So 1 plus some positive value

and on numerator we have only 1.
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So obviously this value is always less than 1.From Von Neumann stability condition, 1 by 1

plus 4 alpha y sin square var phi by 2. So with this if we proceedfor the two cases.  if sin

values are zero then we haveG equals to 1. Neutrally stable condition.
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And if we have sin values equal to 1, then we have G equals to 1 by 1 plus 4 alpha y plus 4

alpha x. This is less than 1. This is obviously without imposing any condition, we are getting

this. So we can say that implicit scheme is unconditionally stable. We don't need to put any

restriction on del t compared to del x. Although we need to use small values of del t for this

problems. 
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Now  we  can  extend  this  approach  for  Crank  Nicolson  scheme  and  we  can  check  the

numerical stability of the Crank Nicolson scheme. Thank you.


