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Hello and welcome to this lecture. Today’slecture is basically the continuation of thelast 

lecture; weare discussing in this lecture aboutregression analysis and correlation. 

Wehave seen in the last class there are some of thisbasiccorrelation, basic regression 

analysis. Wehave seenits mainly that linear regression andthose thingsafter thatwe arein 

today’s class we are going to coverthat remaining part ofthis correlation analysis. 

Firstthing that we will go is that multivariateregression. Inthe last class, we have seen 

that in the simplelinear regression, what you have seen? There is oneinput variableand 

other one is thatindependent variable, that is yversus x. 

So that if the x is yourinput variable and y is your target variable or your independent 

variable then we have seen that how we can estimate theparameters for thisregression 

model and we have done how, what are theoriginal variance for the y and then after the 

regression what is the conditional variance and all. 

Basically, we have also seen that through this regression what we are tryingto do. How 

much, what is the extent of thevariantsof thattarget variable; that is, y is being reduced. 

So, herein this multipleregression what we do is that now this input variables are not 1, is 

more than 1. Inthat waywe have to use the information of all those input variables and 

we have todevelop aregression model for that target variable y. So, here the inputs are 

say x 1, x 2, x 3 andlike that up to; obviously, x m. So, there are, there could be some m 

variables, what should be the input? 

Now, if we just try to extend that analogy of thissimple linear regression to this 

multiplelinear regression, first we will take thatthen from this 1 dimensional to the 2 

dimensional. Aswe are discussing in this last class that it is basically we are trying to 

take astraight line when it was asimplelinear regression. But, in case now, if I just extend 

it instead of one input if it is two input then, basically it is a 3 dimensional space.Thatyou 



can imagine and through that 3 dimensionalscatter plots of those points because, one 

point now will correspond to the three entries. Oneis that from x 1 other one is x 2 and 

the target isy. 

So, basically one point consists of these three a pair. So, that the threeentry, the three 

data point x 1, x 2 and y. So, in the 3 dimensional scatter plot basically we are trying to 

fit asurface; now depending on if it is a linear regression then that surface will be a plane 

surface and now that surface should be the best fit to that through those points. And, 

through for that one following the same principle of this simple linearregression, we 

have to find out that it should befitted in such a way that the sum of square error should 

be the minimum. 

So, this is basicthattransition from the simple linear regression to the multiple linear 

regression and based on this we will see what are the theories involved in this. So, we 

arecontinuing with thatregression analysis and correlation. 
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As we have seen in thislast class, that in thisdifferent types ofregressionthatwe have 

discussed and there in the last lecture we havecovered the linearregression and here we 

will seehere today’s class we will start with this multiplelinear regression. 

After we complete this one,we will see whatis this non-linear regression and this non-

linear regression can also be for both the cases. It may befor the simple linear regression 



and also for the multiple linear regression and then we willgo through this correlation 

and you know that this correlation we havediscussed earlier also. But, here in the context 

of this regression analysis,we will once againsee thisaspect of this correlation. Basically, 

through this measure we aretrying toidentify what is the, how perfectthe model that we 

have selected. So, that we will discuss under thiscorrelation. 
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Well, tostart with for thismultiplelinearregression, as I was justtelling that there will be 

onetarget variable, we generally call is that independent variable, sorry, that dependent 

variable this is our target variable y and there are more than one independent variable 

which are X1, X2, X m. 

So, let Y be the function of m variables X1, X2, up to X m; then the assumptions 

underlyingthe multiple regression are again following the same principle that we have 

discussed for the simple linear regression in the in the last lecture that we are trying to 

find out what is the expected value of this y given the input of this X1, X2, X3 up to X 

m. 

So, this isthe way that we are expressing thatexpectation of this target variable Y when 

the specific values of the input variables are given and this is expressed through 

thisthrough this linear regression as we are now referring to this linear regression and 

thatthe linear regression is that beta naught plus beta 1X1 plus beta 2X2 up to plus beta 

m X m. 



If you recall, that in thatlast one we are having only one input and we areusing this beta 

naught andbeta 1X and there are only two parameters for this regression was there; beta 

naught and this one coefficient with that input variable. So, as you can see here there are 

m different inputs. So, this beta naught beta 1, beta 2, beta 3 up to beta m - these are our 

regression constantsand this is to be determined based on thedata that is available to 

us.You now can see that for this X1 if there are suppose that n numbers ofthat groupdata 

is available. Then, we are having that n numbers of X1 n numbers of X2 n numbers of X 

m. 

So, through those points through those n points we have to fit one plane surface. 

Obviously, when we mention we are towe are referring to the context of these2 input 

variable in a 3 dimensional case and obviously, that concept can be extended to the 

higher dimension.For example, here it will be them dimensionalspace that you can 

imagine. So, these constants are to be determinedthat is thebasic underlying thing in this 

multiple linearregression as compared to the simple linear regression where the number 

of input was only one. 
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Thus, this regression analysisdetermines the estimate forbeta naught beta 1 up to beta m 

and that S y square that is the variance of this y given this X1, X2 up to X m based on the 

given data X1 i, X2 i up to X m i and i varies from 123 up to n. So, this i that the 

substitute that is used here that is basicallyrepresents the number of data that is available 



to us and this 123 up to m represents this. So, this m represents that how many inputs 

that we are having now this S y square given X1,X2,X3 up to X m is that the conditional 

variants of the targetvariable that is y. 

So, this conditional variants should reducewith respect to this unconditional variants 

which is that S y square and how much is this reduction that we canrelate through 

therelate through that. So, more the reduction is betterthe model andat the end of this 

lecture as I was discussing, that at the end of this lecture,we will see that how that 

information is related to thatcorrelation coefficient. 

So, after somerearrangement of this equation that we have seen here that isexpectation of 

y given this X 1, X 2, X m equals to beta naught plus beta 1X1 plusbeta 2X2 plus beta m 

x m this we can rearrange to get the another form of such of the same equation which is 

equals to the alpha plusbeta 1 into X1 minus X1 bar plus beta 2 into X2 minus X2 bar 

like that up tobeta m into X m minus X m bar. 

So, this X1 bar,X2 bar or X m bar is the mean of that particular input of that particular 

variable. So, as I was telling that Xi X1 is that first input variable and this I can vary 

from one to m. So, we are having n data and this that mean of thatinput variable is 

represented this X1 bar. Basically, this alpha what you can see now is basically one 

adjustedconstant. Onceagain, including that beta naught and if you see fromsee that, 

alpha can be expressed like this; thatalpha equals to beta naught plusbeta 1X1 plus beta 

2X2 bar up to beta m X m bar. So, this once we know this data basically this X1 bar X2 

bar X m bar are known and. So, once we get the estimate of this beta 1 beta 2beta3 up to 

beta m and alpha with the help of that we can estimate that beta. 

So, here in this expression what we cantarget is that we will first estimate these 

parameters alphabeta 1, beta 2, beta 3, beta m and with the help of this we will get what 

is the beta naught and we will get the final form of this regression equation like this. 

So, now again we will use that sameprinciple that we usethere in the simple linear 

regression there basically as I was telling we are fitting a straight line and we are trying 

to minimize that error and that error means what is the error with respect to the 

modeledtargetvariable and what is the observe. Herealso, what we will do we will 

estimate these parameters in such a way. So that, thatestimate of thatof that variable Y 

and the observed Y their difference should beminimum. So, thisdifference now what 



isactually observed and what isestimated fromthismodel is basically is your error and 

that error we should make it square and once we make that square and sum them up. 

So, that is thesum of square error and with respect to that we willtake the 

partialderivative with respect to all thisconstant that we are suppose to determine and that 

if we equate to 0 in the sense that we are minimizing thaterror sum of square error and 

we will get some simultaneous equation and we can solve thisthing that we will seenow. 
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So, now here againif we recall that again from this simple linear regression there are two 

cases. Oneis that the variants of Y with respect tothat input variable whether that 

isconstant or that can also vary. So, that in the in case of this simple linear regression we 

have shown one case that where the variantscan even vary with respectto the range of the 

input variable x. 

Similarly, here also with respect to which zone we are talking about with respect to 

thatthe input variables. Ifthe variants of this target variable that is Y is constant 

irrespective of this which zone that we are talking about, the combination of this input 

variable that is y that is X 1, X 2, X m, thenwe cansay thatis either constant that variants 

is either constant or that can evenvary. But, if it varies then that form that is how it is 

varying over this zone; so, that function should beknown. So, now, if we assume that 

first case thatis theconditional variants is constant then the sum of square error of the end 

data set points can be calculated as this. 



So, this y i is our actuallyobserved target variable and y i prime is thatmodeledvariable 

that is we are getting from this regression equation. So, difference between them square 

them up and thensum up for all the individual observation that is n numbers of 

observations are there. 

So, this quantity is giving that sum of square error now if we replace this one thisy i 

prime then it will come that this alpha minus beta 1 into x1 i minus x 1 bar minus beta 2 

into x 2 i minus x 2 bar minus like this up to beta m into x m i minus x m bar and 

fullquantity square. So, this will give you that sum ofsquare error. Now, we have to 

minimize thisdelta square to obtain the estimate for the regression coefficient. 
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So, to minimize this one as we have seen in thissimplelinear regression also that with 

respect to all theseconstant we have to make it equal to 0 similarly that for this 

setdeltathis delta square dou alpha is equals to 0 similarly for this beta 1, beta 2, beta 3 

up to beta m like thatall these partial derivatives should be equals to 0. 

So, if you take this first one thatdou delta squaredou alpha and then we will we can take 

this onethis partial derivative and that if we equate to 0 then the form comes like this 

where we can if we take this summation inside and we can see that this x, x 1 i minus x 1 

bar. Basically, if we take this difference and sum them up; obviously, here power is 1. 

So, if we take that, sum them up, this will become 0. 



So, like that for this x 2, x 3 up to x m all these quantities will become 0 as it iswritten 

here. So, for all these quantities it will become 0. Now, if we just put this expression, 

these values here then, it will reduce to this form like this that alpha cap is equals to 

summation of y i; obviously, i from 1 to n divided by n. So, this is basically the mean of 

thatobserved target variable Y. So, this estimate of this alpha from this way we can see 

that it is the mean of Y now the remainingthere are remainingn equations are there which 

are the partial derivative with respect to all n betas basically this beta 1 beta 2 up to beta 

m and there also we will get that alpha and this one this expression the estimate of this 

alpha if we just put it back. 
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So, we canget a set of equations like this that thisbeta 1 estimate of this beta 1 this hat 

means here the estimate of this beta 1 multiplied byx 1 i minus x 1 barwhole square plus 

beta 2 barthis x 1 x 1 i minus x 1 bar into x 2 i minus x 2 bar like that all these plus and 

up to this beta m which is equals to that particular variable x 1 i minus x 1 bar multiplied 

by y i minus y 1 bar. 

So, this summation for these all in observation and so, this is the first equation. Likethat, 

we can get all other equations and up to that m-th equation will be like this that beta 1 

cap into x m i minus x m bar into x i minusx i bar like that for this beta 2 andat beta m it 

is x m i minusx m bar whole square which is equals to x m i minus x m bar into x y x i 

sorry y i minus y bar multiplication summation for 1to n. One thing thatyou can see here 



when we are taking the partial derivative with respect tobeta 1, that is the first equation, 

this quantity is becoming square. Basically, this quantity is that x 1 i minus x 1 bar is 

basically getting multiplied for all theseleft hand side of this equation for all 

othervariables. 

So, these things x, x 1 i minus x 1 bar this one is there for all these entry and here also 

right side also you can see that this is the targetthis is related to the target variable Y and 

this one is that related to that for which constant we are taking the partial derivative here 

it is for beta 1. So, we can say that this quantity is this. Like that for this last one which is 

the m-th equation the partial derivative taken with respect to the beta m. So, you can see 

that what we have seen for the first expression is here that is x m i minus x m bar square. 

So, this quantity is multiplied with this all otherexpressionin the left hand side and also 

on the right hand side withwhich is this function is related to the target variable which is 

also multiplied by this x m i minus x m bar. 

So, similarly you can see that for other variables also. So, if it is for this beta 2 then the 

first quantity will be that x 1 i minus x 1 bar multiplied by x 2 i minus x 2 bar and the 

second quantity will be x 2 i minus x 2 bar whole square and like that right hand side will 

be x 2 i minus x 2 bar multiplied by y i minus y bar. So, in this way these are the 

simultaneous m equations are there and there are m unknowns. 
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Thus, we have the m linear simultaneous equation with m unknownswhich can be solved 

for thevalues of the coefficient beta i. So, beta 1, beta 2, up to beta m and obtain the least 

squares regressionequation. Once we get this estimate finally, the expression that linear 

regression expression that we are getting isthat alpha cap plus beta 1 cap into x 1 minusx 

1 bar plus up to this beta m hat means that the estimate of beta m into x m minus x m bar 

and now if we write in terms of this first equation that is the beta naught hat plusbeta 1 

hat x 1 plus beta 2 hat x 2 plus beta m hat x m. 

This beta naught is now that betathe beta naught hat that is the estimate of this beta 

naught equals to alpha hat estimate of this alpha minus beta 1 hat x 1 bar minus beta 2 

hat x 2 bar minus beta m hat x m bar. So, this is the final expression for this multiple 

linear regression that we will get. 
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Theconditionalvariantsgiven that all those input variables will be that delta square this is 

the sum of square error divided by n minus m minus 1 which you can see that this 

deltasquare is the summation of this y i minus this alpha hat minus beta 1 cap. So, this is 

the sum of square error divided by n minus m minus 1. 

So, now you recall that when there isoneonly oneinput was there in case of the simple 

linearregression if you recall that equationfor this conditionalvariants was delta square 

divided by n minus 2. So, there m was only 1. So, one input was there. So, if you put m 

equals to 1 here you will get the same expression that is delta square divided by n minus 



2. So, ifm increases, here their m is more than 1. You have to put that value and this n is 

this numberofdata points that is available. So, this is one unbiased estimatewhyyou we 

have already discuss earlier that unbiased estimate. So, that number of degrees of 

freedom is lost; that should bereduced. 

So, here you see that n minus m. So, there are m estimates are there for this x 1 bar, x 2 

bar up to x m bar this isthe estimate that we arethere arethose estimates are there. So, m 

degrees of freedom is lost here again one more parameter here the alpha hat is there that 

is that we are calculating. 

So, it is that basically m plus 1 degrees of freedom is lost and in case of simple linear 

regression, there are two constants were there that is two estimates. So, 2 degrees of 

freedom waslost there. So, it wasdelta square divided by n minus 2 in that simple linear 

regression. So, this is the unbiased estimate of the conditional variants of y. 

Similarly, ifthat correspondingstandard deviation is the positive square root you know. 

Thisis delta by square root of n minus m minus 1 where n is the sample size and m is the 

number of dependent variables. So, now we will take up oneproblemhere. So, you can 

see that there aremanyapplications can happen in the civil engineeringproblem. 
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If you just seehere for this particularproblem here, this could beany say for example, that 

we are talking about what should be thetemperaturewith respect to its altitude and 



latitudegenerally the altitude increases. So, we know that the temperature will decrease 

andif the latitude also increases the temperature generally decreases. 

So, suppose that type ofdata if we just takehere. So, this is the number of observation that 

10 numbers of observations are given and the this is the target variable of this Y. So, you 

can see that it is 45.25.1 like this. So, these are the ten observations that you cansee here 

and these are the inputs of this see here we have taken the two inputs only x 1 and x 2. 

So, here m is equals to your 2. I can write that m is equals to 2 here. So, this is your x 1 

and this is yourx 2. So, this is up to this you can see that this is thatdata that we 

aregetting. 

Now, to get that estimate if you want to know that. So, these three columns that you can 

see is the input. So, first thing that you have tocalculate is that this could be used in a 

general trade sheet; just to explain that how these things can happen. First what we 

cancalculate, that this x 1, x 1 i minus x 1 bar that mean that we calculated here. So, 

thatsquare up for this one. So, basically thisx 1 minus this mean is calculatedhere. So, 

this minus this that square will be give you this value andsimilarly, for this allsuchvalues 

we can calculate this one. 

Similarly, this is for thex 2 minus x 2 bar that square that you can calculate and then this 

is yourx 1 minus x 1 mean multiplied by x 2 minusx 2 minus that x 2 mean and their 

multiplication; it is basically is that column end. So, this entry minus this multiplied by 

this entry minus this mean. So, this is your meanrow that you can see here and this is the 

summationand there are ten observations are there. So, this 2 to 10 minus this value 

multiplied by this 38.2 minus this 37.13 this is the mean if you multiply this we will get 

this one. 

Similarly, this column is forthat x 1 minus x 1 mean multiplied by y, yiminus y i mean. 

So, if yousee this onehere also basically, this minus this mean multiplied by this minus 

this mean we will get these values. So, hereagain this column if you see that then this y 2 

minus y 2 bar multiplied by y i minus y bar. So, this x 2 minus this x 2 mean into thaty 

minus y bar that multiplication if you take we will get this value similarly for all these 

ten observations we have calculatedand the last row that you can see is their summation. 

So, up to this we can just calculate first directly based on whatever the data that we are 

having and then you know that estimate of this alpha is equals to your thaty mean. So, 



this is directly the 51.7 that we have seen for the mean for this Y now the variants of 

Yalso you can calculate whatever the we have seen this thethat Y that we can calculate 

thevariants of thatfrom this sample estimate that we discuss earlier you will get this 

22.78. 

Now, this expression if you refer to thisequation here that is that; just here you have 

toput that m equals to 2. So, this value minus this square multiplied by this beta 2 intothis 

one this value will be equal to this one. So, all these quantities have calculated now here. 

Using this information, these quantities that just now what we have calculated we will 

justset. So, here there will be two simultaneous equations. So, these two equations are 

written here. So, this is your that firstquantity multiplied by beta 1 plus this quantity 

multiplied by beta 2 is equals to the right hand side. 

Similarly, this is the first equation; this is the second equation that we get and if we solve 

thesetwo equations and there are two unknowns beta 1 and beta 2. So, you will get that 

this is your beta 1 and this is your beta 2 beta 1 is minus 0.0032 and beta 2 is minus 

0.422. So, with this estimate and that alpha also we know. So, that beta naught we can 

calculate that is beta naught as you have seen here that beta naught is equals to youralpha 

cap minus beta 1 hat x 1 bar minus beta 2 hat x 2 bar. 

So, like if you use that one. So, beta 1 minus thismean of this twothat alpha minus beta 1 

estimate multiplied by the mean of x 1 minus beta 2 estimate into that x 2 bar then we 

will get what is yourbeta naught. So, once we get these three information that is your this 

is your beta naught this is beta 1 and this is beta 2 then we are getting this full expression 

like this that Y is equals to your 72.4 which is your beta naught minus 0.422 this is the 

estimate for this beta 1 multiplied by x 1 minus 0.0032 x 2 is thatexpression. 

Now, if we use this expression and use this what is this inputthen what we are getting 

this is the estimate of this Y basically you can say thatis the expectation of Y given x 1 

commax 2 equals to this. So, this quantity is basically is calculated in this column. So, 

which is the estimate for this Y? So, I can write that y prime and these are the error. So, 

this Y minus Y, Y prime; these are the error and thatsquare. So, if I just square for all 

these 10 observations and sum them up this is basically is your that capital delta square 

that we are getting here. 



So, once we get that capital delta square then we can calculate what is the conditional 

variants. Thisconditional variants means as we have seen that S y is squaregiven that x 1 

comma x 2. So, this if we calculate we will get this 17.274 and the conditional standard 

deviation is thispositive square root of this one which is 4.156 and ther square value 

thatwe get is that 1 minus. 

So, how much is this reduction? So, you can see that these variants of this Y that is 

unconditional variants was 22.78 and the conditional variant is 17.274. So, that we 

canseehere and thisthat r square is the. So, that 22, sorry 24.2 percent has is the 

reduction. 
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If you want to see this one in this larger font, you can refer to thisexcel file which you 

can see here moreclearly whatever the calculation that we have done. 

So, with this wecan say here once again thatnow, when should I say that thismodel that 

what we have whatever we have we got that isstrong enough or not? That we will see 

that in terms of this correlation coefficient that we are going to discuss now and again 

this will be,this is basically a part of this hypothesis testing. 

Once we estimate one parameter and that parameter whether that is significant or not that 

can be tested through thishypothesis testing that we havecoveredearlier. So, through that 



hypothesis testing we can see that how significant that estimate is and the hypothesis 

testing was covered in the earlierlecture. 
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So, here we will now we will go to that non-linear regression and this non-linear 

regression is essential when we see that when that linear in case of this simple linear 

regression. Wegenerally get one straight line and for thisif there are two inputs we get a 

straight surface. But, if that straight line or the surface which is linear in nature may not 

express thevariability fully, what we get sometimes is that the predictions based on such 

linear relationship may over estimate in certain ranges of this variable or underestimate 

in other ranges of thisvariable of this expected result. In such cases, a non-linear 

relationship between the variables could be more appropriate thedetermination of such 

non-linear relationship on the basis of the observational data involves a non-linear 

regression analysis. 
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So, basically in this non-linear regression what we do is that the expectation of y on 

condition x is equals to a function like this alpha plus beta g x. So, this g x is a 

predeterminedfunction of this x. What we can do is that whatever the input x is there we 

will transfer;we will get a another newvariable through this g x and thatthat variable I 

can use with respect to this y and follow again thateither the simple linear regression 

ormultiple linearregression because, once we have converted it then you can see thisform 

of this equation is a linearregression form. 

Say for example, that if that g x is equals to thatlog natural of this x then we can define a 

new variable x prime of g xto have thatexpectation of y given x prime. Now, it is the 

convertedvariable is equals to alpha plus beta x prime which is now similar as the linear 

regression equation and can be solved accordingly. 
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We will take up one example. Theaverage all day parking cost in various cities of India 

is expressed in terms of the logarithm of the urban population that ismodeled with the 

following non-linear regression equation.The expectation of Y given x is equals to your 

alpha plusbeta l n x with a constant variant Y given x where Y is the average cost in 

Indian rupees for all day parking cost in hundreds and x is the urban population in 

thousands. 

Thisrelationship issometimes what happens if we just plot the data? Thatis say,for 

example, here the Y and x if we plot it through a scattered plot that time that is nature 

can be visible whether a linear or a non-linear expression should bemore appropriate or 

not. So, these are some initial guess. So, based on that, if we see that thislog transform of 

that x might be the betterestimate for this case, that is why the proposed equation is that 

alpha plus beta of log natural of thatof x. So, we have to estimate that alpha and beta. 

As we have told that we have to firsttransform thatvalues of this urban population 

through this log naturalfunction and then we will get a newset of thisnew variable, new 

observation in place of this x and then we can follow whatever we have seen in the 

linearregression equation. 
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So, here there are 10 cities; thisexpression that is the x i thatin thousands that is what is 

the population that is shown here and this is the y i in hundreds; what is the parking cost 

for all day parking? 
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So, with these two data what we can first do is that, this x i that is the input that is 

converted through this log natural and we get this expression. So, using this one as 

theinput, we have to model this y i. So, all thosequantities that we require for this least 



square estimate that isthat should be estimated only in place of this x i we should use this 

x i prime. 

So, x i prime multiplied by y i then x i prime square then y i squarethis we canwe can 

calculate. So, up to this column whatever the data that is available, we can calculate and 

we can take theirindividual summation also. Now, with the help of this information this 

summation - the summation of x i prime y i summation of x i prime square summation of 

y i square;we can get that. 
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What is their mean of this xprimewhich is 6.545?ybar is 0.808. So, this estimate of this 

beta hat as if you refer to thisexpression of this least squareestimates then we can get that 

estimate of this beta hat will be 0.291 and the alpha hat will beminus point oh sorry 

minus 1.097 and thevariants of this y which is unconditional which is your 0.1047 mow 

using this alpha hat and beta hat. What we can calculate? Thatthismodeledvalues, we can 

get for this y i. So, this alpha and beta whatever we have estimated now and now we will 

use this inputs thisx i prime as this input as this x and we will get what is the model 

estimate of this y i. 

So, that we will get and after we get this one then we can calculate what is their square 

errors. So, this 0.51 minus 0.563 square will give you this value similarly for all 10 

observations which you have been calculated and sumthem up to get that sum of square 

error which is 0.164. 
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Now, using that 0.164 we know that this is conditionalvariants of that target variable Y is 

that sum of square error divided by n minus 2 and here you know that two means thatin 

number of input variable is one. So, 1 plus 1 it is 2 that isfor just now we have seen for 

this multiple linear regression that it is thatsum of square error divided by n minus m 

minus 1. So, m plus 1 degree of freedom is lost; here this 10 minus 2. So, if we calculate 

this one. So, these conditional variants will be 0.0205. So, this conditional standard 

deviationpositive square root of that which is 0.143 and that percentage of that reduction 

of this variants. So, this 1 minus what you got for this conditional 0.0205 and what was 

the unconditionalwhich is 0.1047 which is equals to 0.804. 

Finally, theequation - that final equation that we get the mean valuemean value function 

and the standard deviation is that expectation of Y given x equals to minus 1.097 which 

is the estimate for thisalpha plus 0.291 estimate for the beta into log natural of that x. 

And, conditional variants given the x is constant, sorry, conditional standard 

deviationgiven that x is constantwhich is equals to 0.143.As we have seen and thisr 

square that you got is that 0.804. So, you can say thathere that 80.4 percent of this 

variability has been explainedthrough thismodel. 
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Well, now, we will just take that correlation part that we havediscussed earlier and you 

know that thecorrelation is a statistical technique that can show whether and how 

strongly the pairs of the variables are related. The study of the degree of linear 

association between two random variables is called this correlation analysis and the 

accuracy of a linear prediction will depend on the correlation between the variables. 

Now, we can in this regression context, what we can say is that, if we say that what we 

have modeled and what we have observed is this two are linearly associated and that 

linear association is stronger enough then, we can say that yesthat just now we have seen 

that in terms of this percentage reduction of these variants in through this r square which 

iswe can say that. So, that muchvariability is can be explained through thatdeveloped 

model. So, like that this accuracy of the linear prediction will depend on thiscorrelation 

between thosevariables. 
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In a 2 dimensional plot now, if we just take that only oneinput here in case of the simple 

linear regression the degree of correlation between the values on two axis is quantified 

by so called correlation coefficient which is given by this equation.We have discussed 

earlier that is correlation coefficient is the covariance between x and y divided by 

standard deviation of x multiplied by standard deviation of y and the co-variants of 

x.Youknow that is x minus the is a expectation of x minusmu x into y minus mu y; where 

this e is the expected value of this operator and C o v is thatoperator, means the 

covariance between these two; basically the sum. In that, after we develop this regression 

model we have to see that what is the correlation coefficient between that what we have 

observed Y and what we have modeled through. 

So, basically here even though we are expressing this one, just to relate our earlier 

discussion x and y basically, we have to see it for this y i and that y estimates that is the y 

hat from that regression expression. 
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Now, this correlation coefficient may also be estimated by this rho hat; now this 

estimation that we are getting 1 by n minus 1 i equals to 1to n x i minus x bar y i minus y 

bar divided by S x S y. So, this one you can see thatthis expression can bewritten as this i 

equals to 1 to x I into x i y i minus n into x bar into y bar. Theseare the means of this x 

and y whatever we have observed in this data divided by that S xinto S y where 

thesethings x bar y bar Sx and S y are the sample means and standard deviation of x and 

y respectively. 
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So, we have seen also that this in the simple linear regression that the estimate of this 

beta is equal; is having this form of this. If you just put this one in whatever in the 

expression of this rho then, we can get this expression; that this rho hat is equals to that 

beta hat multiplied by this ratio of this Sx and S y. So, that ratio between the standard 

deviation of x andstandard deviation of x and standard deviation of ymultiplied by this 

beta hat will give you thatestimate of this correlationcoefficient. 
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Now, also what we have seen that the conditional variants of ygiven that x isequals to 1 

by n minus 2 that multiplied by i equals to 1 to n y i minus y barsquare minusbeta hat 

square i equals to 1to ninto x i minus x y bar square. 

This expression that we have seen in thatsimple linearregression to express what is 

theconditional variant. So, if we just put thatestimate of this beta hat in terms of 

theircorrelation coefficient and theirvariance ofthose y and thus and x then 

thisconditional variants that we can write that 1 by n minus 2 this expression and in place 

of thisbeta hat square, we can write that thisrho hat, sorry, this will be rho hat the 

estimate of this correlation coefficient that rho square multiplied by this S y square and S 

x square. 

These are the variants of y and this is the variants of x. So, if we just express thisone then 

we can write that this is n minus 1 divided by n minus 2 s y square into 1 minus rho 

hatsquare. So, this one thispart that we can take and we can express that what is coming 



is that S y square will come. So, this S x and this one we canrelate to this S x square 

variants that you know that this is this divided by n minus 1 will give you the estimate of 

this S x square. So, that canbeabsorbed here and final expression that we are getting is 

that conditional variants of y given this x will be equals to n minus 1 by n minus 2 into s 

y square into 1 minusrho hat square. 

Now, if wecan say that this estimate if we say that this nequals to 1, sorry, if we say that 

this n is very large. So, that means, thatwhen we say that there arelarge numbers of 

observation is available. So, for n when n is very large then we can say that thisquantity 

can be equated to unity and that we can say thatthis will be equals to your S y square into 

1 minus rho hat square. 
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This is the final expression that we get which can be approximated. So, this one 

expression for this n equals to large or for any n if we justconsider this factor to be 

multipliedthat which can be approximated to this r square for this large n. 

What we have seen earlier thatthis r square that is we have explained in terms of this 

percentage reduction of these variants which is equals to 1 minusthe conditional variants 

divided by conditional divided by unconditional variants that was ther square percentage 

of the reduction or that there is a percentage. Howmuch is explained through that 

regressionmodel. So, here we can see that for if the n is large than this quantity can be 

approximated to this r square. 
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So, what we have seen so far is that, if we know thatthe correlation coefficient between 

the variables that we are modeling that is what is yourtarget variable and what is your 

input variable if you know, that what is their correlation coefficient between then and if 

we knowthat, what is their respective mean then, basically what we can do? Wecan 

develop,we can get the estimate of thoseparametersof the regression. 

So, we can basically develop theirregression equation. One such example we will just see 

now. Thisexampleis on that; from the following results, obtain the two regression 

equations and estimate the yield of crop when the rainfall is 22 centimeter andthe 

estimate the rainfall when the yield is 600 kg. 

Basically, this is the relation between this yieldof the irrigation and what is the rainfall in 

terms of this depth of the rainfall in centimeter and the mean of this yield? The mean 

yield is 408.4 k g and this mean rainfall is 24.7 centimeter. 

So, the standard deviation of this yield is 31.8 k g and standard deviation of this rainfall 

is 4.5 centimeter and the correlation coefficientbetween the yield and rainfall is point 54. 

So, this informationare available to us. So, if you know this one then we have to develop 

the two regression equations, that is the what is theexpression for this yield given the 

rainfall and what is theexpression for the rainfall given by yield. So, this both this 

equation we can usewith the help of thistheirinformation of this correlation coefficient. 
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Let that Y be yield and X be the rainfall. So, for estimating the yield we have to run the 

regression of Y on X and for the purpose of the estimating the rainfall we have to use the 

regression of X on Y and the information that you know is that mean of this X mean of 

this Y standard deviation of X standard deviation of Y and their correlation coefficient 

between them. 

So, this beta X given Y that is when we arewhen we regressX on Y. So, this is that 

correlationcoefficient divided by their ratio of their standard deviation. So, what we get 

that 0.0764 and on the other handwhen we regress that Y on X then that beta coefficient 

will be 3.816. 
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So, theregression equation for this Y on X will be y minus y bar equals to beta y. So, the 

coefficient when we are regressing Y on X that is thenoted like this that beta y slash x 

multiplied by x minus x bar. So, that we have estimated 3.816. So, after rearranging this 

we can get the equation like y is equals to 3.816 x plus 3, sorry, 314.145. So, this is the 

regression equation for the Y on X similarly we can regress the equation of this X on Y 

which finally, we get that x is equals to 0.0764 y minus 6.502. 
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With this one if we get, if we use this expression and then the question was given that 

when x is equals to 22, what is the yield? Thatis when the rainfall equals to 22 centimeter 

what is the yield? So, putting that in this expression we get that Y is equals to your 398.1 

and when thatyield is equals to 600 then the estimate of this rainfall is your 39.34. So, 

the estimated yield of this crop is 398.1 k g and the estimated rainfall is 39.34 centimeter. 

So, this is whenthis yield is when rainfall is 22 centimeter and this rainfall is estimated 

like this when the yield is 600 kg. 

So, in thislecture or including this last lecture we havediscussedthe regressiondifferent 

regression techniqueincluding their simple linear regression, multiple linear regressions 

then non-linear regression and that in terms of this correlation. How we can estimate 

that? Wehave discussed. So, in this entire module what we whatever we have seen in 

thisprobability and style statistics. Wehavestarted with the sample statistics then we have 

covered thishypothesis testing. Then, how to test what the data follows? Whatdistribution 

through this probability paper and differenttestdifferent statistical test? To test that, what 

is the distribution of this of the parameter and finally, we have covered theregression 

analysis and correlation, thank you. 


