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Lecture - 8 

Interactive Methods for Solving Linear Systems 
 

Lecture on series and numerical methods in civil engineering we are going to focus on 

iterative methods for solving linear systems. 
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In our previous lecture, we talked about error analysis of linear systems and we showed 

the scaling of the unknowns. The coefficient matrix has no effect on the accuracy of the 

computed solution except by affecting the choice of pivots. By choosing a suitable 

scaling, we can improve the stability characteristics of the equation of the solution 

procedure, but it affects the accuracy only indirectly. 
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When the coefficient matrix is ill conditioned, but it is not excessively ill conditioned the 

Gauss elimination solution can be improved by performing iterations. What do we mean 

basically we can improve the accuracy of the Gauss elimination solution by performing 

relatively cheap iterations on the solution; let us recall that if the matrix is extremely ill 

conditioned. Then, we may get incorrect solutions even though there we have a very 

small residual. Otherwise, if the residual is reduced, the residual we improve the 

accuracy of the solution, so long as the coefficient matrix is moderately ill conditioned 

by reducing the residual we can improve we automatically improve the accuracy of the 

solution. 

However, if the coefficient matrix is extremely ill conditioned, then we have seen earlier 

that even for a totally incorrect solution, we can get a really small residual in that case. If 

the coefficient matrix is extremely ill conditioned, it does not make any sense to try to 

improve the residual because we are not guaranteed that we are improving the solution 

by reducing the residual. Otherwise, if the coefficient matrix is not too ill conditioned by 

reducing the residual, we can improve the accuracy of the solution. What do we mean by 

extremely ill conditioned or moderately ill conditioned, we will talk about those 

definitions later on in this lecture. 

Let us denote our residual r as b minus A x bar where x bar is the computed solution by 

Gauss elimination, if x bar were equal to x, which is the exact solution, then our residual 



would be 0, but since it is in not, we have a residual which is given by b minus x a x bar. 

We can therefore write a x minus x bar is equal to r, basically we are re writing this 

equation, where we are replacing b by A x the exact solution and we are then we can 

write the residual as r is equal to A x minus x bar. 
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Now, suppose we have the decomposition of a bar into L bar and U bar is known, this is 

sort of because we are we are trying to improve the accuracy of the solution which has 

been already computed by Gaussian elimination. So, that means that we have the L U 

decomposition of the coefficient matrix the L U decomposition of the coefficient matrix 

by Gauss elimination is L bar U bar so the assumption is that L bar U bar is known L bar 

U bar being the approximate means that it is there is an error there because of round off. 

We have seen the extent of round off, but L bar and U bar is the correct decomposition of 

a up to the round of error. 

Since, the error due to the decomposition is bounded; we have seen that the error due to 

the decomposition is bounded provided partial pivoting has been performed. It can be 

bounded up priori and we have shown that that error is small the correction the L x 

which is the true solution minus x bar the solution that we have that we have obtained by 

Gaussian elimination, we can write it as L bar U bar del x is Equal to r basically. 
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Let us go back to the previous equation, we have a a x minus x bar is equal to r x minus x 

bar is equal to we have defined as del x and A, we are replacing it by its decomposition 

by its L U decomposition. 

(Refer Slide Time: 05:07) 

 

So, we get L bar U bar del x is equal to r, so we can solve this system sequentially by 

solving two triangular systems by denoting U bar del x as an intermediate vector y, we 

first we solve for y L bar y is equal to r, then once we know y, we can solve for del x. 
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The total computations in this improvement to the original solution involve n square 

operations due to the computation of the residual in order to compute the residual. We 

have to compute b minus A x bar, A is an n by n matrix x bar is a n by 1 vector, so this 

involves n square operations. 
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This n square operations plus we need to solve the two triangular systems L bar y equal 

to r and U bar del x is equal to y. 
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So, each of these solutions of this triangular systems involves half times n square 

operations we have seen that earlier. So, 2 times half n square that is equal to n square, so 

the operations required to improve the solution as of are of the order of the n square, but 

recall what was the total expense in the Gaussian elimination. That was of the order of n 

cube, so the computations the cost of the computation the cost of the number of 

operations. Hence, the cost of the computations involved in improving the solution is a 

small fraction of the total cost obtained in getting the solution, which is of the order of n 

cube, thus the cost of the iteratively improving the solution is not significant. 
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One may argue that new round of errors are introduced during the computation of the 

correction from L bar U bar is del x is equal to r, but those errors are not significant 

because that is mostly back substitution type operations. We have seen that back 

substitution the errors are negligible compared to the errors during the Gaussian 

elimination, so those errors are not significant. 
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So, the new round of errors involved in which occur during the computation of the 

correction delta x are generally much smaller than the error that can appear during the 

computation of the residual. So, basically this process is two step, first step is computing 

the residual like this and then solving this this equation to find del x. The main error 

during this improvement can occur during this operation and why that is it because of 

this product is just because of this subtraction. We are subtracting a x bar from b and 

both a x bar and b are approximately of the same magnitude. 

Since, they are of the same magnitude, there will be cancellation errors and the chances 

of errors occurring here are significant. We have seen that in probably the second or third 

lecture that when we subtract two for instance two scalars in this case we are subtracting 

two vectors with all of whose all of whose components are approximately of the same 

magnitude. In case of scalars, if we subtract two scalars, which are approximately of the 

same magnitude, the chances of errors are very high. 



So, similarly the main error during this during this improvement to the solution occurs 

during the computation of the residual r b minus A x bar, relatively insignificant errors 

occur during this operation during the actual computation of the correction. 

(Refer Slide Time: 09:00) 

 

The residual computation r is equal to b minus A x bar is prone to cancellation errors. It 

involves taking the difference of two vectors each of whose components are very close 

errors can be reduced if the terms of this product a x bar are accumulated in double 

precision storage even though a i k and x bar k are stored as t digit numbers. So, we can 

improve this the error in this computation by storing by doing this computation a i k and 

x bar k are already stored in the computer. 

They are stored as single precision numbers normal precision, they are stored with up to t 

digits, but when we compute A x bar we are storing it as two t digits. So, we try to 

preserve increase the accuracy of this operation by storing it as two digit, two t digit 

numbers and this gives me a more accurate value of the residual. 

Since, I am computing this more accurately, r is the residual is going to be more accurate 

because b is known b is known b is a given vector and since I am computing this product 

more accurately my residual will also be more accurate. 
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So, this process can be carried for carried over for a number of iterations we can perform 

successive iterations in this manner to improve the computed solution, how do we do this 

the scheme is as follows. So, we said in the first iteration we said x bar x 1 is equal to the 

computed solution from Gaussian elimination. Then, we compute for subsequent 

iterations we compute x s, s goes from 2, 3 to as many iterations we want to as r s is 

equal to b minus a x s. So, for the first iteration we compute r 1 is equal to b minus a x 

one just as we saw previously and then we compute our correction del L bar U bar del x s 

is equal to r s. We update our solution the corrected solution x s plus 1 is equal to x s 

plus delta x s, so s equal to 1 for x 2, we get x 1 plus delta x 1. 

Then, go back again and go through this whole thing again until we are satisfied that our 

solution is sufficiently accurate. How do we know that our solution is sufficiently 

accurate when my residual is sufficiently small, so in this case the magnitude of the 

residual gives me a measure of the accuracy of the solution as we discussed in the 

beginning. This is only going to be true when the matrix a is not extremely ill 

conditioned and we note again that only the computation of the residual r s is equal to b 

minus a x s only that requires double precision storage. So, there is not too much 

excessive computational cost due to double precision storage, since only this operation 

requires double precision storage. 
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It is found that x s will converge quickly to the true solution if a is not too ill 

conditioned, what do we mean by too ill conditioned? That is the condition number of a 

that which we defined couple of classes back the condition number of a is lesser than 0.1 

divided by n by U, where n is the order of the metrics a it is the number of rows and 

number of columns in A. 
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Here, U is my machine precision, if my condition number is less than this value, then we 

can say that the metrics is not too ill conditioned and by doing this iterative procedure we 



can improve the solution obtained by Gauss elimination. We can improve the solution, 

why do we need to improve the solution, because the solution has got round of errors, so 

this is how we can try to reduce the round of errors. 

Next, we want to talk about iterative methods in proper the last the iterative scheme, 

which we talked about just previously was improving the solution direct improving the 

solution from a direct method. That is Gauss elimination iteratively, but now we are 

going to talk about iterative methods proper which are which do not involve any metrics 

inversions at all. Now, we have considered direct methods that involve a fixed number of 

iterations, so we perform a fixed number, I am sorry this is this should not be iterations 

this is operations. Now, we have considered direct methods that involve a fixed number 

of operations iterative methods, however do not have a fixed number of operations. 

They start from an initial assumption that is successively improved until a sufficiently 

accurate solution is obtained. So, we start with a guess to the solution and then we keep 

on iterating and then we can show that if our if our iterative scheme is well posed, then 

eventually we get a solution which is almost very close to the true solution. Why do we 

need iterative methods because recall that direct methods if applied to the solution of 

sparse systems often destroy the sparseness. We have seen particularly when there is 

pivoting required then direct methods are going to destroy the sparseness of the system. 
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So, thus direct methods cannot take advantage of the sparseness of the system in terms of 

reduced storage and operation. So, if we have a sparse matrix, you would like to limit the 

number you would like to take advantage of this sparseness of the system by reducing 

the number of operations, but direct methods because of pivoting because of pivoting the 

sparseness gets lost. We cannot take advantage of the sparseness of the system that is 

why iterative methods are useful. 

Large sparse systems are particularly suited to iterative methods, since they do not 

introduce any additional non 0 elements to the coefficient matrix, why is that because in 

iterative methods the coefficient matrix as we will see does not change. It remains 

constant throughout the iterations for all the iterations the coefficient matrix remains the 

same. So, the coefficient matrix does not change, so there is no increase in the sparseness 

of the coefficient matrix, so we can take advantage of the sparse structure of the 

coefficient matrix. 
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Let us consider the system A x is equal to b and for the time being, let us suppose that all 

diagonal terms of the coefficient all elements on the principal diagonal are non 0 that is a 

i i is not equal to 0 for all i. In that case, we can write the solution of the system as x i is 

equal to any let us constitute any equation. In this system of n equations and that 

equation we can write x i as minus sigma a i j x j j is equal to 1 to n except j is not equal 



to i plus b i divided by a i i. Basically, this is the same equation this is exactly if we bring 

the a i i to the left hand side, we will get a i i x i. 

If you bring this the rest of the terms to the right hand side, we will just get a i j x j is 

equal to b i. So, that is my usual any row in that equation in that system of equations 

except that I have moved one of the terms x i to the left hand side and divided the right 

hand side by its coefficient. So, this is identical to my usual any equation in that system 

of equations corresponds to that. One of the most straightforward and widely used 

iterative methods Jacobi’s method uses the above expression to find the sequence of 

operations x 1 x 2 and so on and so forth. So, what does it do well what it does is that it 

starts with a particular assumption it starts with a particular assumption and then it keeps 

on improving the solution. 
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So, it starts with an assumption for the initial values of x, x 1, x 2, x 3 up to x n, it starts 

with an assumption of the initial value which we call which we denote with a super script 

0. We start with that assumption and then for each variable x 1, x 2 and so on and so 

forth, we solve these equations, we solve these equations to obtain updated values of 

these quantities. 

So, basically look at compare this equation to the previous equation, all we have done is 

that to the left hand side we have added a subscript of k plus 1 and to the right hand side. 



We have put, sorry we have added a superscript of k plus 1 and to the right hand side, we 

have added a superscript of k. 
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So, all we have we are saying that if we know the solution from the previous iteration 

which I am denoting with a super script k and I put them on the left on the right hand 

side. Then, I can get the new as new values of iterate from the left hand side because I 

am writing this equation by isolating it. I am writing re-writing each equation by 

isolating one of the independent variables and putting it on the left hand side. So, the one 

on the left hand side that is going to give me the new value of the iterate, the one on the 

on the left hand side is going to give me the new value of the iterate in terms of the old 

values of the iterate, which appear on the right hand side. 

So, we start with an initial guess to the solution we start with an initial guess to all the 

components of x and denote it by x 0. We put it on the right hand side and then we find 

out improved guesses to each of the components of x on the left hand side and denote it 

by x 1 and so on and so forth. We go on doing it over and over again, so once we know x 

1, we put that on the right hand side and we compute x 2 and again we do the same thing 

for x 2 and so on and so forth. So, how long will it take for me to converge the accurate 

solution, it depends on what starting guess I choose for x 0, if I choose x 0 to be close to 

my true solution, I will converge in relatively fewer number of iterations. 
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However, in most linear System solutions for linear systems, we do not know what is a 

good guess what a good starting guess is. So, a safe starting guess is to assume that x 0 is 

equal to 0, so we start with assumptions that all the components of my solution are 0, put 

that on the right hand side of this equation find out my improved guesses for each of the 

variables and do this over and over again. 
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So, in Jacobi’s method, the updated solution is not used until after a complete iteration, 

for example Jacobi’s iteration goes as follows for instance we start with all the 0 values 



we know x 1 0, x 2 0 so on and so forth x 3 0 up to x n 0. So, we compute x 1 1 from this 

equation, but now we know x 1 1, so when the time comes to compute x 2 1, we could 

have put in this here we could have put x 1 1, but we actually put the initial the values 

from the previous iteration. So, we persist with the value of x 1 0 rather than using x 2 1 

is equal to minus a 2 1, x 1 1, the value that is known, but x 3 we do not know yet the 

updated value for iteration. 

Once we use the x 3 0 value, so we could have used this scheme the bottom scheme. We 

could have used this scheme instead of this scheme, but Jacobi’s iterations says that we 

use the same the same values for all the variables dividing the iterations. The values from 

the previous iteration we have used the values from the previous iteration to get the 

updated values of the variables for the new iterations, we do not use any of the updated 

values until the whole iteration is complete. 
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On the other hand, there is something known as Gauss Seidel’s method in the Gauss 

Seidel’s method the updated variables are used as soon as they are found. So, once we 

know x 1 1 we are going to use x 1 1 in the equation for x 2 1, so if we go back to the 

previous slide for Gauss Seidel says we are going to use this while Jacobi says that we 

are going to use this. The advantage is that any at any point of time only one in Gauss 

Seidel at any point of time we are storing only one value of these variables x 1 through x 

n. So, either we have x 1 0 or we have x 1 1, so we can we can overwrite that value of x 



1 0 by the value x 1 1 as soon as we compute it because once we have computed x 1 1 

we are not going to use x 1 0 anymore in our subsequent computations. 

We are always going to use x 1 1, so we can overwrite x 1 0 by x 1 1, so this is an 

advantage of Gauss Seidel. We do not need additional storage, but in case of Jacobi we 

have to carry along two copies because unless the whole iteration is over we cannot 

throw out the old values. So, we have to carry along two copies of each variable, so that 

is the advantage of Gauss Seidel. 

So, for this Gauss Seidel iteration the algorithm is as follows x 1 k plus 1 is equal to 

minus a i j x j k plus 1 j is equal to 1 i minus 1 minus j is equal to i plus 1 to n. So, for 

this part this part involves for instance we have this is I am sorry, this is i, so x i k plus 1, 

suppose we are interested in finding the value of x i k plus 1 and suppose i is equal to 5. 

Suppose, my hat and I am interested in finding the value of k plus one i th iteration, so I 

am interested in finding s x 5 k plus 1, but by the time I am trying to find x 5 k plus 1 I 

have already found x 1 k plus 1 x 2 k plus 1 x 3 k plus 1 and x 4 k plus 1. 

I have no idea what is x 6 k plus 1 x 7 k plus 1, x 8 k plus 1 up to x n k plus 1, so for up 

to x 4 k plus 1, I can use the updated value the k plus 1 value, but be for x 6 and so forth 

I have to use the old value the k value. So, this part I use the updated values this part the 

terms which are below the principal diagonal I use at that row below. I do not mean 

below the principal diagonal term of that row, we use the old value the terms which are 

above the principal, sorry below the principal diagonal, we use the new values above the 

principal diagonal we use the updated values. 

Thus, now the new algorithm is x 1 1 for x one we have we have to use the old iteration 

values, but for x two for one x 1 1 we are going we are using x 1 1. So, for x 1, we are 

using the updated value, but for x three through X n we are still using the old values. 
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So, even though the Gauss Seidel algorithm uses improved values as soon as they are 

computed, this does not ensure that Gauss Seidel’s method would converge faster than 

Jacobi iterations. It may turn out that for particular problem, the Gauss Seidel may 

actually need more iterations than Jacobi. Only advantage of Gauss Seidel obviously is 

because it is stored computational storage because in Gauss Seidel. We only need to 

carry along one copy of my independent variables while in Jacobi; I have to carry along 

two copies of my independent variables at any iteration so that is the major advantage. 

So, any iterative method n as you can see if it is not true that if you perform any iteration 

we are going to converge to the true solution. Eventually, that is not true, there are only 

certain conditions each iterative algorithm must satisfy certain conditions in order to 

converge. So, after n iterations I know that my solution is going to approach the true 

solution only if only if my algorithm satisfies certain conditions and what are those 

conditions. 

Those are the convergence requirements of iterative methods and in order to obtain those 

convergence requirements. It is convenient to write update algorithm in the generalised 

form of a stationery iterative method. So, this is a generalised form of a stationery 

iterative method which says that my improved estimate to x. I obtained at the k plus 1 th 

iteration is equal to sum operate at b operating my old estimate x k plus some constant 

vector c and k goes from 0 to 2. So, in order to obtain convergence characteristics, we 



write these iterative methods in this general form all of these iterative methods Jacobi 

Gauss Seidel. They fit into this general form, we shall see we shall show how they 

exactly fit into it, but they all satisfy this form. 
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Why are these methods called stationery iterative methods because the matrix B, which 

we have indicated here does not change from iteration to iteration. 
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That is why it is called stationery iterative method. 
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For convenience, we split the coefficient matrix a into a lower triangular a diagonal and 

an upper triangular matrix L d and U d contains the diagonal elements of my original 

matrix a L is the lower triangular part of a scaled by d inverse. So, b d 1 by I mean 

basically b inverse contains the diagonal terms inverse of the diagonal terms on its 

principal diagonal. So, a scale the lower triangular part of L lower triangular part of a by 

d inverse to obtain L, similarly to obtain U i scale the upper triangular part by d inverse 

and I put the diagonal elements of both L and U to 0. So, L contains the lower triangular 

part of a except for the fact that its diagonal elements are 0 and each term is scaled by the 

inverse of d, so it is scaled by d inverse. 

Similarly, for U in that case I can write a is equal to d L plus i plus U you can see how 

why this is true because L is actually d inverse of L if L is the true real lower triangular 

part of A, then L is actually d inverse of L. So, D inverse cancels gives me i, so I have 

this d L is going to give me the lower triangular part of a with the principal with 0 s on 

the diagonal D i is going to give me the diagonal terms. 

Then, d U is going to give me d U is actually d inverse of U where U is the upper 

triangular part of A. So, D D inverse of U that is just going to give me the upper 

triangular part a with that 0 s on the diagonal. 
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So, we if we split it like that then we can write Jacobi’s method as x k minus 1 is equal to 

minus L plus U x plus d inverse of b, if we go back to the statement of Jacobi’s 

algorithm, you will see that this is true. 
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This is Jacobi’s algorithm, so this is k x i k plus 1, this is a i j x j, so it is basically L plus 

U a i j is L plus U times x j except for the diagonal term. The diagonal term is not there 

plus B i by A i, so D inverse B so that d inverse b comes from this b i by a i i is the 

diagonal term, let me go back and look at it again. 
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So, this D inverse B is coming from this b i by a i i. 
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This sigma a i j x j divided by a i is nothing but d inverse times L plus U because a i j x j 

is L plus a i j a i j x j k is nothing but L plus u. 
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So, I can write the Jacobi’s equation in this form x k plus one is equal to minus L plus U 

x k plus d inverse of b comparing it with our standard form for stationery iterative 

methods, it is clear that b is equal to minus L plus U for the Jacobi’s method. The Gauss 

Seidel method can be written as x k plus 1 is equal to minus L x k plus 1 all the terms 

which are below the principal diagonals go gets scaled by L the terms above the principal 

diagonal gets scaled by u. These involve the values from the previous iteration, well 

these have already been found from the new iterations, so that is x k plus one of course, 

there is the term D inverse of B. 
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So, again if you go back and look at our expression for Gauss Seidel, we will see that 

this is how it looks like this is L x j k plus 1 minus U x j k plus b and everything I am 

dividing by a i i, so there is a d inverse, but this is already built into the definition of l. 
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So, that does not show up, so minus L x k plus 1 minus U x k plus d inverse k, therefore 

b for Gauss Seidel’s method is minus i plus L inverse U why is that x k what is the 

general form of the stationery iterative method it is x k plus 1 equal to b x k plus c. So, 

we bring this all the terms involving x k plus 1 on the left hand side, so we get L i plus L 

we take the inverse of that i plus L inverse, we get U. So, that x k plus 1 is equal to this 

times x k plus this, so b for Gauss Seidel’s method is of this form. Now, let us assume 

that our matrix B which is this matrix for Jacobi. This is the matrix for Gauss Seidel has 

Eigen values lambda 1, lambda 2, lambda 3 to lambda n and it has got linearly 

independent Eigen vectors U 1, U 2, U 3 to U n corresponding to those Eigen values. 

Since, these Eigen vectors are independent U 1, U 2, U n form a basis for the space of 

solutions x what do we mean by basis because since these are independent vectors any 

vector of dimension n can be written as a linear combination of these U 1 through U n. 

So, these are the basis these form a basis for that space of solutions, thus the initial vector 

x 0 minus x which is a vector of dimension n can be written as some constant alpha 1 

times U 1 plus alpha 2 U 2 though alpha n U n. So, x 0 minus x where x 0 is my initial 



assumption x is the true solution my initial error my initial error I can write in terms of 

my as a linear combination of the Eigen vectors of B. 
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We can write x x k plus 1 minus x is equal to b x k plus c minus x y because this is the 

form of my stationery iterative method except I have that I have subtracted x from both 

sides. So, stationery iterative method is x k plus 1 is equal to b x k plus c i subtract x 

from both sides. Let us recall that the true solution satisfies x is equal to b x plus c 

because that satisfies that is my true solution. Therefore, we can write x k by plus 1 

minus x is equal to b x k minus x. 

So, we replace x k plus 1 by b x k b x k plus and then we subtract that, so b x k minus x 

and this I can write as equal to b and x k I can again write as b x k minus 1 plus c. So, x 

k, I am replacing by b x k minus 1 plus c minus x, so I eventually get b square x k minus 

one minus b square x. If I take out the b square outside, I get b square x k minus 1 x and 

again if I replace x k minus 1 by b times x k minus 2 plus c, I can do this operation again. 

Eventually, I am going to get b k plus 1 x 0 minus x by performing this repeatedly, I can 

going to get every time I perform I reduce this k by 1, I reduce this k by 1, but I add a 

power to this b, eventually I am going to get B to the power k plus 1 times x 0 minus x. 
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Using this equation here, so x 0 minus x, we know we can write like this, so substituting 

this value here we get B B k plus 1 operating on alpha 1 U 1 plus alpha 2 times b k plus 1 

operating on x 2 alpha 3 or plus b alpha 3 times b k plus 1, x 3 and so on and so forth. 

Remember that U 1, I am sorry this should not be x this should be U, so alpha 2 U 2 

alpha 3 U 3 alpha n U n, I apologise for the typo, but b k plus 1 operating on U 1, what is 

it going to give me b operating on U 1 is going to give me the Eigen. 

Recall U one are the Eigen vectors of B, so B operating on U 1 is going to give me the 

corresponding Eigen value times U 1 corresponding Eigen value. If I denote by lambda 

1, so b operating on U 1 is going to give me lambda 1, U 1, similarly B k operating on U 

1 is going to give me lambda 1 to the power k times U 1. Similarly, B k operating on x 2 

is going to give me lambda 2 to the power k times U 2 and so on and so forth. So, 

eventually we can write x k minus x is equal to b k x 0 minus x is actually b k operating 

on this and b k operating on q 1 is equal to lambda 1 to the power k times U 1 B k 

operating on U 2 is lambda 2 to the power k times U 2 and so on and so forth. 

From the above equation, it is clear that if we can ensure that each of my Eigen values 

have modulus less than one in that case this term is going to go to 0 as k increases. So, 

each of these lambdas are less than 1 that k increases, since this is k power lambda 1 to 

the power k lambda 2 to the power k as k increases. Then, this term the right hand side is 

going to go to 0 it is going to become smaller and smaller and smaller as my k increases. 



So, we can be assured that if my lambda i’s are less than 1, then x k minus x is going to 

go to 0 as k increases. 

What does this mean that means as I increase the number of iterations my solution is 

going to become closer and closer to my true solution provided my b matrix has lambda i 

which are all less than 1. Thus, the iterations will converge from an arbitrary starting 

approximation arbitrary starting approximation right my starting approximation can be 

arbitrary can be any value may be very different from my true solution maybe of the 

orders of magnitude different from my true solution. Even in that case, I am assured that 

I am going to get to my true solution after certain number of iterations provided my B 

matrix has got a spectral radius which is less than 1. 

What do I mean by spectral radius, it means that my largest Eigen value must be less 

than 1 my largest if my largest Eigen value is less than 1 all my other Eigen values are by 

definition less than 1. So, in that case I am going to get convergence to the true solution. 

Now, we have obtained this this condition under the assumption that b has got linearly 

independent Eigen vectors. However, it can be shown that even if the Eigen vectors of b 

are not linearly independent, this condition still holds, what is that condition? The 

condition is that if the largest Eigen value of B is less than 1, then my iterative method is 

bound to converge to the true solution. 
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Thus, we have a necessary and sufficient condition for a stationery iterative method x k 

plus 1 is equal to b x k plus c to converge. The spectral radius of b, which is basically the 

largest Eigen value max lambda i b for i is equal to 1 through n is less than one b rho b is 

the spectral radius of B from x 0 minus x is equal to alpha 1, U 1 plus alpha 2, U 2 plus 

alpha 3, U 3 plus alpha n alpha n U n. We have seen that we have since the U 1 is formed 

a basis for this space, we can write any vector in terms of this. Similarly, x k minus x can 

be written as alpha 1 lambda 1 k U 1 plus alpha 2 lambda 2 k this we have just seen x k 

minus x can be written like that it is clear that to reduce the amplitude of the error 

component in error component alpha j U j. 

These are my error components right because this is my error vector and these are my 

error components. So, to reduce the error the amplitude of the error component alpha j U 

j and x 0 minus x by a factor of 10 to the power minus m. We have to make k iterations 

where k is the smallest number such that lambda j k is lesser than or equal to 10 to the 

power minus m. 

Basically, for instance I want to reduce this error component by a factor of 10 to the 

power minus m i can that can only happen if lambda 2 to the power k this term lambda 2 

to the power k is lesser than or equal to 10 to the power minus m. So, this means that k 

must be greater than or equal to m minus log of lambda j, this is the same thing except 

that we have taken the log to the base 10 on both sides. So, in that case we get k greater 

than or equal to m by minus log of lambda mod of lambda j. 

It is clear that if the error in all the components U j that is the total error is to be reduced 

by 10 to the power minus m. Then, the largest Eigen value the largest Eigen value must 

satisfy this equation this is for Eigen value lambda j, but if this is satisfied for the largest 

Eigen value. Then, we can be sure that the error in all the components has been reduced 

by a factor of 10 to the power minus m and this factor minus log of the spectral radius 

minus log of rho b is defined as the asymptotic rate of convergence of the iteration 

algorithm. This is defined as the asymptotic rate of convergence of the iteration 

algorithm. 
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So, what have we seen up to here, we have seen that if a stationery iterative method is 

going to converge to its largest Eigen value must be less than 1, but a priori given a set of 

a linear system of equations. Given that, we have no idea what is the spectral radius of b 

right first we have to find out what is B. 
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We have to find out b from this expression if we are doing Jacobi, we can find out b 

from this expression. If we are doing Gauss Seidel, then we have to do a spectral 

decomposition, we have to find the Eigen values of this B matrix to find out what is the 



largest Eigen value. We can probably use Rayleigh’s method or we are going to talk 

about those methods, later on we can use some iterative methods to find out the largest 

Eigen value, but that is all quite expensive. So, a priori before hand, we have no idea 

what is the largest Eigen value B and whether that Eigen value is less than 1, which will 

which will make sure that my iterative method is going to converge. So, we need some 

other indicator of convergence which is relatively simpler to obtain than actually doing 

going ahead and doing a spectral decomposition of b. 
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In practice, the spectral radius rho b is difficult to calculate and therefore, the criteria rho 

b is less than 1 is difficult to use in order to determine convergence, so we have an 

alternative criteria. Hence, we need a convergence criteria that is simpler to use, let us 

recall that we can write x k minus x is equal to b k x 0 minus x we have seen that before 

where we have seen that we have seen that here x k minus x is equal to b k x 0 minus x. 
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So, hence we can write mod of x k minus s x is lesser than or equal to mod of b k times 

mode of x 0 minus x from the definition, which we have discussed in probably the 

second lecture, we can write this and b k is nothing but b k minus 1 b and so on. So, I can 

write this is again going to be less than mod of B k, because B k mod is going to be less 

than B k minus B mod of B times k y, because I can write B k as B times B k minus 1. 

So, mod of B times B k minus 1 is lesser than or equal to mod of B times mod of B k 

minus 1. Similarly, mod of B k minus 1, I can split like that and so this thing is going to 

be less than that. 

Thus, if mod of B in some norm in some norm is less than 1, then what do we see we see 

that mod of x k minus x is lesser than or equal to mod of B k x 0 minus, so as we 

increase if mod of B is less than 1 as we increase the number of iterations. This term is 

going to become smaller and smaller this term is going to become smaller and smaller 

therefore, x k minus 1 is going to become smaller and smaller also because s k minus 1 

must be less than this term. 



This term is becoming smaller and smaller with the number of iterations, so x k is going 

to approach my true solution x, thus if we can show that mod of b is less than 1 in some 

consistent norm this is a sufficient condition for convergence note. This is not a 

necessary and sufficient condition the previous condition rho b is less than 1 was a 

necessary and sufficient condition, what is the necessary and sufficient condition. It 

means that it is only going to converge if rho b is less than 1, it is only going to converge 

if rho b is less than 1 if and only if rho b is less than one, but this is a sufficient condition 

for convergence. 

This is not a necessary condition, so long as this is less than 1, we are going to converge, 

but it is going to converge only if rho b is less than 1, so that is these are two different 

things this is sufficient condition that is a necessary and sufficient condition. So, for 

Jacobi’s method we know that b j is equal to minus L plus U, therefore, therefore, b i j i 

can write as minus a i j by a i depending on how have I depending on the definition of L 

and U, I can write b i j is equal to minus a i j by a i i because remember what we have 

defined L and U to be d inverse times the actual L and U from a. 
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So, b i j is equal to this for i not equal to j and b i i is equal to 0 because a i i because L 

and U are the diagonal terms 0. So, b i i must be equal to 0 b i i is equal to 0 since L and 

U are triangular matrices with 0 diagonal terms. Hence, if I want to take mod of b if i 

take the norm of b in the infinite norm what is this equal to? This is equal to sigma a i j 



sigma mod of a i j a i i i sum it over all the all the columns for each row and then take the 

maximum over all the rows that is my definition of my infinite norm. 

So, I have mod of b infinity is given by that, but for a diagonally dominant matrix which 

we also defined earlier a diagonally dominant matrix each diagonal term is greater than 

the sum of the absolute values of all the off diagonal terms. So, this is a definition of a 

diagonally dominant matrix. So if my b matrix is diagonally dominant if my b if my if 

not my b matrix sorry i go back if my coefficient matrix a is diagonally dominant. 

That means that this is always going to be less than one because a i i is always going to 

be less than this. So, each diagonal term in absolute value absolute value of each 

diagonal term is going to be greater than the sum of the absolute values of each of the off 

diagonal terms. So, this term is we are guaranteed that this b j infinity is going to be less 

than one and since b j infinity is less than one what was our sufficient condition. 
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Our sufficient condition was that mod of b must be less than one in some norm and we 

have shown that in the infinite norm b j is less than 1. 
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So, that means that my Jacobi iteration Jacobi method is going to converge as I increase 

the number of iterations. 
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So, next class we are going to look at the convergence of Gauss Seidel, which is slightly 

more complicated and then we are going to move on to a slightly modified version of 

Gauss Seidel. Hopefully, we will round off our next class with some discussion on 

iterative methods for computing Eigen values.  

Thank you. 


