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Lecture - 7 

Error Bounds and Iterative Methods for Solving Linear Systems 
 

In the seventh lecture in our series in numerical methods in civil engineering, we are 

going to continue our discussion on error bounds for direct methods in addition. We are 

going to introduce iterative methods for solving linear systems. 
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The bounds we obtained till now on the errors due to our on the errors on the solution of 

linear systems, were due to imperfect knowledge of the coefficient matrix, and the right 

hand side. Basically what we what we found was that if the coefficient matrix has an 

error delta a or the right hand side has an error delta b, we try to find bounds on the 

errors that will be introduced to the solution x due to the errors in a and b, due to the 

error delta a in a, and the error delta b in b that is going to result in solutions to errors to 

the solution x. And we try to find the bounds on those errors and what we found was that 

if the matrix is depending on the condition number, if the matrix is well conditioned then 

errors due to in the coefficient matrix, and the errors due to the right hand side will be 

bounded, and it is going the magnitude of the bound is going to depend on the condition 

number of the matrix of the coefficient matrix. 



Today, we are going to talk about errors in Gaussian elimination, because of the large 

number of floating point operations, which take place during Gaussian elimination the 

accumulation of round off errors due to these floating point operations lead to overall 

errors in the solution, and is therefore a problem to obtain a bound on the overall round 

off error, it is necessary to bound the errors due to individual floating point operations. 

Since the Gaussian elimination process is a combination of a large number of floating 

point operations, we have to find bounds on the error of individual floating point 

operations in order to find a bound on the error of overall error, due to in the solution due 

to round off during Gaussian elimination. 
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We consider the floating point decimal representation of a number a suppose we have a 

floating point number a how does the computer represent that number internally, well the 

computer almost always represents the number using this format. It represents it as some 

number m and times 10 depending on the base of the computer, if 10 is the base then that 

will be 10 there if instead of the instead of 10, it is some other number some other base 

then that is going to be the appropriate base. So, 10 to the power q where m lies between 

0.1 and ones m m is a number between 0.1 and 1 and q is an integer. So, m is known as 

the mantissa and q is known as the exponent. So, this is how the computer represents any 

floating point number a, but in reality the computer cannot represent m up to infinite 

precision.  



Because the computer has finite precision for instance if the computer rounds off floating 

point numbers to t decimals, then a will not actually we the computer will not actually be 

storing a, it will be storing an approximation to a which is denoted by a bar and the 

approximation arises; because m is only the computer only stores an approximate 

representation of the mantissa m m bar, which is rounded off to t decimals given that the 

precision of the machine is t decimal digits. So, the So, m bar is the approximation of m 

which is stored in the computer. Hence the bound on the absolute error in the mantissa m 

is given by m bar minus m, which is less than or equal to half 10 to the power minus t 

this we have obtained in a previous lecture. So, the error is bounded the round of error is 

bounded by half into 10 to the power minus t. 
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That was the bound on the absolute error in the mantissa, if we look at the relative error 

in a that is given by a bar minus a by a which is by definition the relative error. So, this 

has got to be less than or equal to m bar times 10 to the power minus q minus m dotted 

with 10 to the power q m dotted with 10 to the power q. That is simply because m bar 

minus m is less than or equal to 10 to half 10 to the power minus t sorry. So, we can 

write that as this is the m bar minus m dotted with 10 to the power q 10 to the power q 

divided by m bar 10 to the power q is lesser than or equal to half 10 to the power minus t 

10 to the power 10 to the power q 10 to the power q cancels out, this is we know is lesser 

than or equal to half 10 to the power minus t, and since mod of m if we go back to the 



previous slide and see m is lesser than or equal to point one and greater than or equal to 

point one less than or equal to one. 

So, if we if we replace mod of m by point one this has always got to be greater than, 

because we are taking the smallest possible value of m in the denominator. So, this thing 

has to be less greater than or equal to this thing this thing has to be lesser than or equal to 

this thing, and this gives me a bound half in to 10 to the power one minus t. A correction 

this is this should not be lesser than or equal to this is actually equal to right. So, mod of 

a bar minus a by a is equal to m bar dotted with 10 to the power q minus m 10 to the 

power q divided by this which is equal to this, but this is lesser than or equal to this 

because on in the denominator, we have replace mod of m by its smallest possible value 

which is 10 to the power minus 1. So, we get this bound on the relative error in a. 

This limiting value on the relative error due to round off is denoted as the machine unit 

as you can see this is totally dependent on the machine precision t. So, the relative error 

due to round off in a floating point number cannot exceed the machine unit of the 

computer denoted as this whole thing denoted as u. 
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Next let us consider the effect of operating on two floating point numbers x and y, and 

let as denote the true result of the operation as x op y, and the floating point 

representation as float of x op y. So, x op y is the true solution and this is how the 

computer is going to represent this. 



So, the relative error due to since the relative error due to round off is bounded by u, we 

can say that f l x op y minus x op y is lesser than or equal to mod of x op y times u; 

which is exactly what we get if we replace a bar here a bar here by f l x op y, and a 

which is the true solution by x op y right. So, this is what we get this is the bound on the 

relative error now; because this is less than x op y times u we can be sure that, there is a 

there is number delta with mod of delta lesser than or equal to u such that this becomes 

equal this is lesser than or equal to mod of x op y times u. So, there must exists a number 

for which this becomes equal to that right, and this gives this gives rise to this expression 

floating point of x op y is equal to x op y one plus delta. So, this is how the computer 

represents x op y, this is the true solution and the true solution times this error one plus 

delta is the floating point representation of the result of the operation of x op y. 
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Next let us go back to the Gaussian elimination, and let us recall that in the k-th step of 

the Gaussian elimination of symmetric matrix the elements are transformed as the 

following a i k k plus one is equal to a i j k minus m i k, where m i k is the multiplier 

times a k j k at the k-th iterations k-th step; which is equal to a i j k minus a i k k by a k k 

times a k j k, and you can see that we have summing we have j j goes from k plus one to 

n, where we have taken advantage of the fact that the matrices symmetric, because of 

round off the computed values of each of the quantities on the right hand side will differ 

from this true values and result in additional errors. So, instead of a i j k what is actually 

stored in the computer is a bar i j k right, where a bar i j k includes the floating point 



errors right it includes the round off errors. So, it is the floating point approximation 

right.  

So, a bar i j k plus one is equal to a bar i j k minus m bar i k a bar k j k. So, here when we 

when we compute m bar i k from a bar i k divided by a bar k k. Since this is the floating 

point operation, we introduce certain errors certain round off errors right, and this round 

off error is denoted by one plus delta one. So, this is the error in the computation of m 

bar i k then we subtract m bar i k a bar k j from a bar i j k. So, this operation the 

subtraction operation introduces additional floating point error, which is denoted by one 

plus delta two and then on top of let me let me take a step back. 

So, this subtraction operation introduces additional floating point error which is given by 

1 plus delta 3, and this operation m bar i k a bar k j k introduces floating point of error 

which is given by m bar i k a bar k j k one plus delta two. So, this operation introduces of 

floating point error which is given by one plus delta two this subtraction operation 

introduces a floating point error, which is given by 1 plus delta 3 and this division 

operation introduces a floating point error which is given by 1 plus delta 1; and we are 

guaranteed that each of these errors it must be less than or equal to the machine 

precision. 
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Now, we say that if we do these operations, then we are going to get these floating point 

errors right. So, instead of that we say that let us see if we can get exactly the same 



transform values of the end of step k; by performing the exact computations on perturbed 

values of a i j. So, the idea is like this. 

So, we operate on the values that a stored in the computer and we operate we go through 

this operation this operation, and we end up with additional errors due to the which are 

governed by this delta 1 delta 2 delta 3. So, now, we are saying we are saying that 

instead of working with the instead of assuming that there are instead of assuming that 

there are operating on two float no sorry. I am going back I have instead of getting 

instead of performing on the exact values a i j k, what I am saying is that I am going to 

operate on the some perturbed values on the perturbed values; and I am going to going to 

go through the exact same transformation equations, but I will assume that I am not 

introducing any additional floating point errors during the transformations right.  

So, I am going to operate on some perturbed values instead of operating on the exact a i j 

k a i j superscript k. I am going to operate on certain perturbed values, but I will assume 

that after by I will get the same results by performing exact operations on the perturbed 

values. So, the perturbations; however, only applied to the elements belonging to the 

rows that are transformed by the step k that is rows with index greater than k. So, 

basically I am saying that instead of operating on a i j k. I will operate on a bar i j k plus 

epsilon i j k. So, now I am get I am going to get a bar i j k plus 1 is equal to a hat i j k 

minus a hat i k k divided by a bar k k k times a bar k a k j a bar k these I have already be 

obtained. So, they have superscript k right. So, they have already been obtained from the 

previous step in the Gaussian elimination right. 

So, these values are known now what I am saying is that the values that I am going to 

transform right, I am going to I am not going to operate on those values themselves. I am 

going to operate on those values plus some perturbed values, and I am going to assume 

that my floating point operations. I am not going to introduce any errors. So, I am going 

to get the exact solution by operating on these perturbed values perturbed values and I 

am going to get the exact same solution. I hope that is cleared but basically the idea is 

that instead of looking at the effect of the floating point operations, we say that we are 

trying to get this same solution by considering perturbations in my original matrix 

components. 



So, I get some value after my operations right those operations, typically include floating 

point operations operating on the original numbers original numbers that was there on 

the matrix. So I say that instead of operating on the original numbers on the matrix, I will 

operate on some original numbers plus perturbations on some perturb numbers, but 

during the operations I will not introduce any floating point operation any floating point 

errors, and I want to get the same values as a result of this operation. So, the idea is that 

instead of we are transferring the problem to the perturbations. So, we want to find what 

perturbations in my original system will give me the same errors same floating point 

errors, as I would get during round off right. So, so what changes should I make to the 

my original matrix elements, in order to get the same error which I would have got due 

to round off. 
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From this expression m bar i k is equal to a bar i k by a bar k k 1 plus delta 1. We 

therefore, get epsilon i k k is equal to a bar i k k times delta 1 how do we get this well we 

compare this expression this expression with sorry, this expression this expression with 

this expression right, when we compare this expression with this expression we get 

epsilon i k k is equal to a bar i k k times delta 1. Then we can rewrite this expression this 

expression as this is just a question of substitution right we are going to substitute those 

values here and we get this and finally, substituting all this in this expression we are 

going to get finally.  



This expression which you can see gives me an expression for the perturbation epsilon i j 

k, which gives me an expression for the perturbation epsilon i j k. So, that is the basic 

purpose of this exercise the basic purpose of this exercise is to try to find bounds on the 

perturbation epsilon i j k, because we know that the perturbations are equivalent the end 

result of the perturbations is going to be the same errors, which would have a proved if I 

had the floating point errors right. So, instead of finding try to find bounds on the 

floating point errors themselves, I am going to try to find bounds on the perturbations. 

So, this is just I am transferring the problem transferring the problem of finding the 

bounds on the perturbations, because I am saying the end result of the perturbations is 

equivalent to the floating point errors in the operations.  

So, we get this and then if we take bounds on both sides we get an expression like this 

and this must be lesser than or equal to. So, this is a bar i j k plus one times this term 

minus a bar i j k times this term. So, this has to be lesser than or equal to maximum of 

this and this times this term right, because this is maximum this and this must be larger 

than this minus this times this minus this times this must be lesser than the maximum of 

this and this times this minus this right. So, this is lesser than that. 
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So, we get the same expression I have written here. So, mod of epsilon i j is lesser than 

or equal to max of this times this and then we know that since delta 1 delta 2 delta 3 are 

less than the machine precision u. So, these must be small numbers. So, I can do a 



binomial expansion of this and if I do that I can write 1 plus delta 3 minus 1 as 1 minus 

delta 3 one plus delta 2 minus 1 as 1 minus delta 2 and this is approximately equal to 

delta 2 plus delta 3. Where I have ignored terms which involved 2 delta is delta 2 times 

delta 3. Similarly. So, if I take bounds on that I get this is approximately equal to mod of 

delta 2 plus delta 3 which is lesser than or equal to mod of delta 2 plus mod of delta 3. 

And since both delta 2 and delta 3 are lesser than u this must be less than two times the 

machine precision.  

Similarly, the second term 1 plus 1 plus delta 2 inverse I can write it as 1 minus 1 minus 

delta 2, again using binomial expansion taking into account the fact that delta two has is 

very small much smaller than 1, which is going to give me approximately delta 2. So, 

again I take bounds on that this going to be lesser than or equal to delta 2 and again delta 

2 is lesser than the machine precision. So, that is going to be less than u.So, we finally, 

get mod of epsilon i j to the power not to the power mod of epsilon i j at the k-th step is 

lesser than or equal 2 max of this times 3 times u where u is the machine precision.  
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Let us recall this equation this equation, which was my update formula for Gaussian 

elimination and which says that a bar i j k plus 1 is equal to a bar i j k plus epsilon i j k 

minus this if we sum this expression for k is equal to 1 to r, where r is the minimum of i 

minus 1 j i being the row index j being the column index. We are going to get sigma k 

equal to one to r a bar i j k plus 1 minus sigma k equal to 1 1 to r a bar i j k is equal to e i 



j, where e i j is basically I have summing this term from k equal to one to r e i j minus 

sigma k equal to 1 to r m bar i k a bar k j k. 

This everything is going to cancel except the r for except the term which is going to be 

for k equal to r, which is going to give me a bar i j r plus 1 and the term which involves 

one a bar i j 1. So, I have a bar i j r plus 1 minus a bar i j 1 the rest of the terms are going 

to cancel, the rest of the terms from this first term is going to cancel the rest of the terms 

from this second term. So, we are left with a bar i j r plus one minus a bar i j one, but a 

bar i j 1 is going to be a y j; because that is the first that this that is the first the first step 

and the first step there are no round off errors. So, a bar i j one is going to be equal to a i 

j. So, we can get an expression like a i j is equal to a bar i j r plus one bringing changing 

the sides right bringing this to the left hand side. So, we get a bar i j r plus one plus sigma 

k equal to one to r m bar i k a bar k j k minus e i j. 
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For terms at or above the principal diagonal j is greater than or equal to I and since r is 

equal to minimum of i minus 1 and j if j is greater than i. So, r must be equal to i minus 

1, because r is minimum of i minus one in j so, r is equal to i minus 1. So, in that case a 

bar i j r plus 1 is going to be a bar i j I, because r is equal to i minus 1. So, this gives me a 

bar i j r plus 1 is equal to a bar i j i for terms below the principal diagonal the row index 

is going to be greater than the column index i is going to be greater than j therefore, 

minimum of i minus 1 j is going to be j. So, r is going to be j hence in that case a bar i j r 



plus 1 is equal to a bar i j j plus 1, which we know from our Gaussian elimination is 

going to be 0. So, beyond the j-th step the a bar i j is going to be 0 the terms which are 

below the principal diagonal are going to be 0. 

Hence we can write this previous expression this previous expression we can write it as a 

i j which is equal to a i j one is equal to a bar i j i plus this term, which does not change 

this is true for j greater than or equal to i and this is equal to zero plus this term when i is 

greater than j. So, basically I have split it up if split this equation in to two parts one for j 

greater than or equal to i and 1 for i greater than j and if we assume that m bar i i is equal 

to 1, I can put this term inside the summation and change this index from k equal to one 

to i minus 1 to k equal to 1 to i. 

So, in that case we can write a i j is equal to sigma k equal to one to i m bar i k a bar k j k 

minus e i j provided m bar i i is equal to 1 that is true, then we can write combine these 

two equations together to write a i j is equal to sigma k equal to 1 to p m bar i k a bar k j 

k minus a i j, where p is equal to minimum of i and j if j is greater than i then p is going 

to be i when i is greater than j then p is going to be j. So, when p when j is greater than i, 

I am going to recover this first equation, when i is greater than j. I am going to recover 

the second equation. So, i finally get a i j is equal to sigma k equal to one to p m bar i k a 

bar k j k minus e i j. 
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So, in the above equation we can see that only components m bar i k are needed when 

they are m bar i k terms, we only involve the m bar i k terms which are below the 

principal diagonal and a bar k j terms, which are above the principal diagonal we can see 

because k is equal to 1 to p and p is equal to minimum of i j, here p k is the second index 

and k is and k k can be as high as only as p and p is bounded by this. So, this term only 

involves a term, which are at or below the principal diagonal while here this term. Since 

the first index is k and k can be only as high as p and p is bounded by minimum of i j. 

So, this term only involves terms which are above the principal diagonal. So, in that 

because of that this equation only involves components of m bar i k at or below the 

principal diagonal and components of a bar k j k at or above the principal diagonal. 

Since we do not use components of m bar which are which are above the principal 

diagonal and components of a bar, which are below the principal diagonal we can 

assume them to be 0 in which case this expression this expression is a L U 

decomposition this is the lower triangular matrix that is an upper triangular matrix. So, in 

that case we are going to get, a is equal to L bar U bar minus E where E is the matrix is 

components. I given by E i j let us go back to the previous slide this components i given 

by E i j and i bar, what we just discussed from is made of m is components are m bar i k 

and u bar has components a bar k j k. 

Thus the computed matrices L bar and U bar are the exact triangular factors of the matrix 

a plus e. So, LU we thought was the triangular decomposition of a right, but because of 

round off errors, we are going to get L bar U bar and L bar U bar is the exact 

decomposition of a right a plus E it is the exact decomposition of a plus E. So, now we 

are transfer the error into a perturbation in a right. So, a the original matrix a plus some 

perturbation matrix E is going to give me L bar U bar L bar U bar includes the effects of 

all the floating point errors. 
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So, recall that we have defined e i j is the sum of all the epsilon i j k is that is when what 

we defined exactly. Here when we defined E i j equal to sigma epsilon i j k and r is equal 

to minimum of i minus one j. So, it we can write this as the sum of minimum i minus 1 j 

quantities and we also remember that epsilon i j k is has this bound which we obtained 

earlier. So, we can say that mod of e i j is lesser than or equal to three u times minimum i 

minus 1 j times maximum of maximum of mod of a i j k over k basically, we are saying 

that since this is bounded by that right and this is form by the sum of these epsilon i j k s; 

then we get a bound on e i j which is three u times are times are minimum of i minus 1 

time j, because this sum is over r and r is minimum of i minus 1 times minimum of I 

minus 1 and j. So, we are taking this value which is the maximum value of r right r r is 

bounded r is given by this.  

So, this value times the maximum of all these sums right this is the maximum of a i j k a 

i j a bar i j k plus one and that is maximum of a bar i j k over all the k s. So, we are taking 

the maximum possible. So, we have a sum of sum of epsilon i j k which involve terms 

like this right maximum of this and this. So, we are taking we are looking at all the sums 

and we are saying that we are going to take of all the terms which comprise the sums we 

are going to take the maximum value that this maximum of all those values. So, that 

maximum value times i minus one is going to be an upper bound on mod of e i j. 



So, that. So, that is just the absolute upper bound because we this term comprises a 

number of sums. So, we are taking the largest term in that sum we are taking the largest 

term in that sum and multiplying it multiplying that by the number of terms in the sum. 

So, that is going to be greater than or equal to mod of e i j. So, again let me repeat we 

this term comprise is a sum of a number of terms right we are taking the largest term in 

that sum and multiplying it where the number of terms in that sum, and we are saying 

that has to be a bound on the left hand side which is the sum of all those terms. 
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So, that was the bound on the left hand side let us consider, a bound on the right hand 

side since the original system is of the form a x is equal to b, and the right hand side is 

transformed in a it remember we recall from Gaussian elimination the right hand side is 

transformed in exactly the same way as the left hand side right. So, the right hand side 

because the right hand side is transformed in exactly the same way as the columns of a, 

we can develop a bound on the error in the right hand side, because we are performing 

operations on the right hand side every time at every step, we are operating on the left 

hand side as well as in the right hand side. 

So, when we when we operate on the right hand side we introduce floating point errors 

on the right hand side, and these are the bounds on the similar to the errors we get on the 

bounds on the errors, we get on the bounds we get on the errors in the left hand side we 

can similarly get bounds on error on the right hand side in a very similar fashion, and 



they have a similar form. So, mod of c i is the it is sum of the errors on the right hand 

side and that is bounded by something like this which is very similar to the bound on the 

error in the right hand side. 

So, introducing the intermediate vector y is equal to U bar x we solve the system L bar U 

bar x is equal to b plus c right now l bar u bar include the floating point errors right plus 

b plus c, why do we have this c because c is because of the round off errors in b right. 

So, this is the actual system that we are solving and introducing an intermediate vector y 

is equal to u bar x we get L bar y is equal to b plus, and then we solve for y here we solve 

for y from this equation put y on the right hand side and finally, we solve for x U bar x is 

equal to y. 
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So, summarizing we have obtained bounds on e i j and on the right hand side c i and 

these bounds have the following form. Now, it is clear that if these errors are going to be 

small then these bounds this right these bounding values must be small two right. So, in 

order to bound these errors these terms a bar i j k and b bar i k must be small. So, it is 

very important that the pivoting strategy whatever pivoting strategy we adopt should 

limit the values of mod of a i j k and b bar a bar i j k and b bar i k, but what is interesting 

to note is that these bounds do not involve the multipliers m bar i k, thus the magnitude 

of the multipliers has no effect on the magnitude of the round off errors during Gaussian 

elimination; because these terms these terms do not involve the multipliers they only 



involved coefficients, and the right hand side the approximations to coefficients on the 

right hand side it do not involve the multipliers. 
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We have thus far obtained bounds on the round off error in the elimination step that is we 

have obtained bounds on e where e is equal to L bar U bar minus a. So, L bar U bar is the 

appropriation to L U L U is the exact decomposition of A. So, L bar U bar minus a is 

equal to e write that e matrix and we have obtained Boundson the terms of the e matrix 

each term of the e matrix is E i j. We obtained Boundson the error matrix in the in the in 

the coefficient and we have also obtained errors on c bounds on c where c is the error in 

the right hand side. 

So, that. So, we have obtained bounds both on the coefficient matrix as well as on the 

right hand side errors due to round off, we know now know that those error due to round 

off cannot exceed these bounds right. So, those errors due to round off cannot exceed 

these bounds we have found bounds on those errors. However the full solution of the 

linear system also involves the back substation following Gaussian elimination. So, this 

is the bound on the errors due to Gaussian elimination, there will be additional errors due 

to back substitution which follows Gaussian elimination.  

However, for most matrices that occur practice the round off error due to Gaussian due 

to back substitution is negligible compared to the round off error, due to Gaussian 

elimination thus the errors E and c during the elimination step limit the accuracy of the 



computed solution A x equal to b. So, the most of the errors round off errors occur 

during the elimination step and if we obtained bounds on those errors whatever 

additional errors have proved during back substitution.  

They are going to be negligibly small compared to they are still going to be bounded by 

bound which we have obtained during for Gaussian elimination. So, let us look again at 

those bounds mod of a i j lesser than or equal to three times machine precision U times 

minimum 5 minus 1 j then maximum of a bar i j k, overall the iterations k similarly mod 

of c i less than or equal to three times machine precision u times I minus 1 times 

maximum of b bar i k over all the iterations k these are basically. What are known as 

posteriori bounds why because we cannot predict those bound before, we have actually 

computed these values right because these values are the maximum over all the all the 

steps in the Gaussian elimination. 

So, unless we have actually compute unless we have actually gone through the steps of 

the Gaussian elimination we do not know what these max values are we do not know 

what max k a bar I j k is or max k b bar i k k is. So, these are posteriori bounds posteriori 

bounds and these have to be these can only be obtained after we have perform the 

Gaussian elimination. However it is desirable to obtained a priori bounds that is we want 

to know what my error will be I want to know what my bounds in my what the bounds in 

my error will be before I have actually started doing the computations right. So, a priori 

bounds are always more useful than posteriori bounds. 

So, let us see how we can n obtained a priori bounds on the error in Gaussian elimination 

it has been shown that a priori bounds can only be obtained if mod of m bar I won not go 

into the derivation for that, but let us take it for granted it can be there are references and 

the references I have referred to in this course you can find discussions on this. So, it can 

be shown that if mod of m bar i k k is always lesser than or equal to 1 then we can 

obtained a priori bounds. But when is mod of m bar i k k will going to less than or equal 

to one when are those multipliers going to be less than or equal to one they are going to 

be less than or equal to one. Only when we have performed pivoting when at least we 

have performed partial pivoting right at every step, we choose the largest element in a 

column as the pivot only then can be assured that the multipliers, that we are going to use 

are always going to be lesser than or equal to one and in that case we can obtained a 

priori bounds.  
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So, in the in case we perform partial pivoting then we can show that mod of e i j now be 

it changes. So, it the bound changes the bound becomes narrow instead of this lesser than 

or equal three u times this, now we are going to get this lesser than or equal two u times 

minimum of i minus one j, but most interesting is this part. Let's look at what this was 

this was maximum of a bar i j k over all the steps k ah right. So, now, instead of that I 

have maximum of a bar i j k over i j k. So, not only is the maximum over the steps k it is 

over all the elements of the matrix right it is over all the elements of the matrix i j k. 

So, now I am saying that mod of e i j is lesser than or equal to the largest value in the 

coefficient matrix not only over the steps, but over each element not it is not only 

concerned with each element it is it is the maximum of over all the elements in that 

matrix it is a maximum of i j as well as k. So, it is not only a maximum of over the steps, 

it is also a maximum over the row and column indices. So, basically it is the maximum 

absolute maximum element in that matrix over all the steps. It is the maximum element 

in that matrix over all the steps. So, the last factor on the right is computed as maximum 

of i j mod of a bar i j k. So, at each step k we find the largest element in the matrix and 

then we find the largest over all the steps, so maximum of k over i and j. So, if we can 

bound this computed value in terms of some a-priori values then we can obtain an a-

priori bound on the round off error.  



So, if we can we can bound this in terms of some a-priori values in terms of some values 

which are known which are known before I do my Gaussian elimination typically some 

values, which are part of my original matrix a right using some components of my 

original matrix a if I can obtain a bound on this I am going to get in a-priori bound on my 

error due to Gaussian elimination to do, that is to do that let us denote g n is equal to 

maximum of i j k mod of a bar i j k divided of divided by maximum of i j mod of a i j. 
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If we do that we can write this expression we can re write this expression as mod of e 

mod of e lesser than or equal two u two u remains the same maximum of a bar i j k i j k. I 

am going to replace this by g n times maximum of i j mod of a i j. So, that is going to be 

g n times maximum of i j i j and what is this matrix this matrix is nothing, but minimum 

of i minus 1 j. So, at for each element I have computed I have obtained this element by 

taking minimum of the row index minus one and the column index. So, the row index 

here is one the column index is one. So, I have one minus one is 0 0 and 1 minimum of 0 

and 1. So, that is going to be 0. Similarly, I have computed all the rest of the terms in this 

matrix right which is nothing, but minimum of i minus 1 and j elements of the matrix on 

the right hand side or each given by minimum of i minus 1 j.  

Hence the matrix norm of the maximum norm of the matrix is given by the sum of the 

elements in the last row recall what is the maximum norm it is the sum of the sum of the 

elements in each row maximum of that right. So, I have taken. So, that. So, that the my 



last row is going to contribute that and that is going to be 1 plus 2 plus 3 plus n minus 1 

plus n minus 1. I have group these terms together you can see these are the sum of the 

first n natural numbers which is given by half n n plus one. So, this is the half n n plus 

one minus one. So, we get mod of E infinity why is why have we taken e infinity 

because we have computed the infinite norm of this matrix right. 
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So, mod of e infinity is lesser than or equal to 2 u g n times max i j over mod of i j this 

term remains the same and then the infinite norm of this matrix infinite norm of this 

matrix, which we just calculated to be half of n square plus half of n minus 1 by slightly 

refining the estimate of E, which I am not going to go into again it is slight change 

actually we can show that mod of e infinity is lesser than or equal to 2 u g n max i j mod 

of i j times half of n square.  

So, it is actually here we have obtained half of n square plus half of n minus 1 actually it 

is less than half of n square this is a sharper bound right it can be shown that we can 

write it like this and then 2 2 cancels out we get n square g n u maximum of i j mod of i a 

i j, but maximum of a mod of a i j i j is lesser than or equal the infinite norm of my 

original coefficient matrix why because the infinite norm is defined as sum of over all 

the columns sum of sum of each row sigma j equal to one to n mod of a i j and then the 

maximum of that right. So, maximum of i j mod of a i j is going to be bounded by the 

infinite norm of a right.  



So, I can replace this replace this on the right hand side by the infinite norm of a because 

this is greater than that. So, I finally, get this mod of e infinity is lesser than or equal to n 

square g n u times a infinite norm of a, but we still have this factor g n right what is this 

factor g n. 
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Let's recall g n we define to be this we define this factor g n to be this and it can be it has 

been it can by just by slowing a large number of problems finding out the typical values 

for g n, it has been shown, that for partial pivoting g n is lesser than or equal to 2 to the 

power n minus 1, where n is the dimension of the matrix and for complete pivoting g n is 

lesser than or equal to 1 point 8 to the power point 25 l n, which gives a narrower bound, 

but even if we do just partial pivoting this bound is sufficiently narrow because g n rarely 

exceeds eight right. 

So, the bound on e is satisfactory, because g n is usually quite small lg n rarely exceeds 8 

g n rarely exceeds 8 so in that case, we have we have obtained bounds on e bar on E L L 

bar and U bar are the computed triangular factors with partial or complete pivoting why 

do we say partial or completing pivoting, because we have try to find a a-priori bound a-

priori bound right, and we have mentioned that we can only obtain an a-priori bound and 

all those multipliers are less than 1. So, partial pivoting is necessary so this bound is 

satisfactory unless the ratio g n is large. 



(Refer Slide Time: 53:38) 

 

So, that was. So, we have found a bound on the Gaussian error in Gaussian elimination 

due to round off some people have often try to improve the solution improve the results 

of Gaussian elimination they often try scaling, basically they either scale the coefficient 

matrix or they scale the right hand side. And they assumed they sometimes think that 

before because their doing scaling they somehow going to get better solutions they are 

going to get smaller errors, but it has been seen that scaling the unknowns or the 

coefficient matrix has no effect on the accuracy of the computed solution except by 

affecting the choice of the pivots. So, it can improve the stability of the solution because 

pivot is going to the size of the pivot is going to determine the stability of the solution. 

So, if the pivots are large we are going to get more stable solution the pivots are small 

the error this solution is going to be less table, but it is not going to effect the accuracy of 

the solution the accuracy of the solution is not going to be effected by scaling. 
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So, that was that was discussion on the error estimate due to round off during Gaussian 

elimination. Next from next lecture onwards we are going to talk about iterative methods 

for solving linear systems, but before we talk about iterative methods for instance Gauss 

Seidel iterations or Jacobi iterations. We will briefly talk about a simple technique to 

improve the solution of direct methods improve the solution of obtain using direct 

methods such as Gaussian elimination by some iterations. So, we solve the problem 

using Gaussian elimination, but then we can improve the solution by doing some simple 

iterations. So, we will talk about that first before going into directly into iterative 

methods for solving Gaussian for solving linear systems. 

And we will find that these iterative methods are particularly suited for problems which 

have coefficient matrix which are very spars right which are very spars because Gaussian 

elimination, we know one of the problem with Gaussian elimination is that it destroys 

sparseness of this system right. So, so we want if the matrix is really spars we want to 

use iterative methods because those methods preserve this sparseness of this system. So, 

we can take advantage of this sparseness in reducing the number of mathematic 

mathematical operations as well as the storage required. 

Thank you.  


