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Lecture - 39 

Integral Equations-II 
 

In lecture 39 of our series on numerical methods in civil engineering, we will continue 

with our discussion on integral equations. 
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In the last lecture, we looked at the two main classes of integral equations. We looked at 

Fredholm equations and we looked at Volterra equations, and we also looked at 

Fredholm equations of the first kind and Fredholm equations of the second kind as well 

as Volterra equations of the first kind and Volterra equations of the second kind. Today, 

we will concentrate on homogenous Fredholm equations and the reason why we will 

spend some time discussing solutions to the homogenous Fredholm equations is because 

these solutions, particularly these Eigen values and Eigen functions of these Fredholm 

equations turns out to be very useful, and they are very useful in solving general integral 

equations. So, we will concentrate on the homogenous solution because the solution of 

the homogenous problem helps us in solving the general non-homogeneous problem. 

So, what is a homogenous Fredholm equation? A homogenous Fredholm equation recall 

is of this form plus on the right hand side, there is a forcing function F of x. Now, if F of 



x is equal to 0, the integral equation becomes a homogenous integral equation in this 

case homogenous Fredholm equation, and we will first consider the case when we have 

our kernel to this Fredholm equation K of x of xi. It possesses symmetry. It is symmetric 

and moreover, it gives real values for all values of x and xi. K of x of xi gives me a real 

value, right. So, it is a real kernel and it is symmetric. In addition, we will look at both 

the situations where the kernel is separable as well as when the situation arises, when the 

kernel is not separable, right. We will focus on separable kernels.  

First the separable meaning that k of x of xi can be written as a function of x as the 

product of function of x and a function of xi, right. So, it is a separable kernel. So, 

dependence of x and xi of k x and xi on x and xi can be separated out in terms of 

dependence on a function of x, and a function of xi, right. Why we will focus on 

separable kernels first? Well, principally because these separable kernels, they give raise 

to finite number of Eigen values and Eigen functions. So, Fredholm equation with a 

separable kernel has a finite number of characteristic values and finite number of 

characteristic functions number one and number two that the insight we gain at looking 

at these separable kernels will help us solve the non-separable. It becomes much easier to 

understand the non-separable case. 
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So, kernel is separable x and xi when we can split it up into the dependence on x and xi 

can be separated out, that is when K x of xi can be written as the sum of n number of 



terms of this type, where this is a function of x and f n is a function of x and g n is the 

function of xi. So, this is a separable kernel in which case there numbers of Eigen, the 

integral equation possess a finite number of Eigen values and Eigen functions and if it is 

not separable in x and xi, it possesses an infinite number of characteristic values and 

infinite number of characteristic functions. 

Now, as I said why do we concern ourselves with integral equations with separable 

kernels? Well, because they give us insight into the general problem, but we should 

remember it is important to point out that in most real world problems, when do we get 

integral equations as a result of some sort of modeling, right and that model when we do 

some modeling of a physical problem, we generally do not end up with an integral 

equation with a separable kernel in most of the times, right. Most of the times it is not 

possible to write out our kernel as sigma n is equal to 1 to n f n of x g n of xi to separate 

out the dependent on x and xi, but still we focus on this case because it is simple. First of 

all it simplifies things a lot. Number 2, it gives us some insight into the general problem. 
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So, if the kernel is separable, you can see that we can write the homogenous Fredholm 

equation in this form where all I have done is, I have replaced the kernel k of x of xi in 

terms of this summation of these products of these functions of x and xi, right and then 

we regroup terms. I pull out the dependence on x outside the integral and leave the 

dependence of xi inside the integral. So, g n xi y xi, I pull it inside the integral and you 



can see I have a series which is a function in x times, this thing which if I once integrates 

out, it becomes a constant, right and if I denote these constants as c 1 c 2 through c n, 

basically I denote each of these integrals a to b g n xi y xi d xi as a c n, then I can write 

this integral equation as y of x is equal to lambda times sigma n is equal to 1 to N f n a f 

n of x c n, where c n is the constant I get after evaluating this integral. 
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So, somehow we can determine these unknown constants c 1 through c n, you can see 

that I have a solution of my homogenous Fredholm equation because I know my f n of x. 

If I know my c n’s I have solved, I have got my y in terms of f n fn of x and c n. So, that 

is the solution of my homogenous Fredholm equation. So, how do we find out these c 

n’s? So, since there are n constants c n, we obviously need n equations to evaluate those 

n constants and we do that by multiplying both sides of this equation successively with 

each of the g’s, right. So, we multiply both sides of this equation. First by g 1 of x, we 

get one equation and then I integrate over the limits a to b, right and then I multiplied by 

that equation by g 2 again. I integrate over the limits a to b and in this manner, I do this n 

times and I end up with n equations. 

So, we will see that, but let us first look at some notation. We denote integral of a to b, g 

m x f n f n of x d x is alpha m n, right. We denote this as integral as alpha m n. So, 

basically we are looking at this equation and we are multiplying both sides, say by g 1 of 

x and we will integrate between a to b. We multiply the right left right hand side by g 1 



of x. We are going to integrate between a to b, even integrate g 1 of x f n of x between a 

to b, right and that we are going to call alpha 1 g 1 of x integral of g 1 of x f n of x is 

going to give me alpha 1 n, right. 
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So, g integral of g m of x f n of x d x is going to give me alpha m n, right and if I do that, 

I end up with the system like this. First in equation integral of g 1 of x y of x d x is equal 

to c 1, right. That is c 1 because of the definitions of my c is just this, right. So, c 1 is 

equal to integral of g 1 xi y xi d xi and if I multiply both sides of this equation by g 1 of x 

and integrate, I am going to get c 1 on the left hand side. So, I am going to get c 1 and on 

the right hand side, I have lambda integral of g 1 of x f f, whatever it is f of x and then I 

get it if its f 1, then I get alpha 1, right. If it is say f 2, I get alpha 1 2. If it is f 3 integral 

of g 1 x f 3 of x, that is going to give me alpha 1 3 and so on and so forth until I get c N 

alpha 1 N.  

Similarly, I do for all. I multiply it again with g 2 and integrate between a to b, I get this 

equation and finally, I multiply by g N of x integrate between a to b and I get this 

equation and grouping pulling all the terms to the left hand side, we look at the first 

equation. So, there is c 1 here and c 1 here. So, I get 1 minus lambda alpha 1 1 c 1. So, I 

get that term and when I bring this term to the left hand side, I have minus lambda alpha 

1 2 c 2 minus lambda alpha 1 3 c 3 and finally, minus lambda alpha 1 and c N is equal to 

0, and do it for all the equations. So, I get n equations in terms of my n unknown c 1 



though c N. 
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I also have a coefficient matrix which can be written in this form. So, basically my 

coefficient matrix is 1 minus lambda alpha 1 1 minus lambda alpha 1 2 minus lambda 

alpha 1 3 minus lambda alpha 1 n. So, I can write it as the identity matrix minus lambda 

times the alpha matrix, right. So, the identity matrix minus lambda times, the alpha 

matrix which I denoted by a here, right. So, I get in matrix vector notation, I get a system 

like this, I minus lambda A c is equal to 0, right and you know that for this system to 

have non-trivial solutions requirement is that the coefficient matrix must have 0 

determinant, right. It cannot have full rank. 

So, it has 0 determinants, and that means, its crank cannot be full. That means, if I have 

n, if I had if I had n equations, then that means, its rank must be less than N. So, the rank 

r must be less than N and if the rank of the matrix is r, then N in that case n minus. This 

should be familiar to all of us because we have looked at this. We have looked at linear 

systems in detail earlier on. So, if the rank is r, so N minus r of the coefficients can be 

assigned independently arbitrary values and the remaining coefficients can be determined 

from them. The remaining c’s can be determined from them. 

So, the values of lambda for which this determinant I minus lambda a, this coefficient 

matrix, its determinant become 0 are the characteristic values and for each of those 

characteristic values, the corresponding non-trivial c vector, right. The non-trivial 



solution of this system, the corresponding c vector will give us the Eigen functions, right. 

How will they give us the Eigen functions? Well, they will give us the Eigen function 

from this equation, right. Those once we know these c’s we substitute those c’s for that 

lambda and we get y, right. That y is the Eigen function of the integral equation. 
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So, if n minus r of the coefficient c n can be assigned arbitrarily, then N minus r linearly 

independent Eigen functions are obtained corresponding to the Eigen value lambda a k 

and in that case, the characteristic value lambda k has multiplicity N minus r, right. So, 

corresponding to that single Eigen value lambda k, there are N minus r linearly 

independent Eigen functions, right. So, it has multiplicity N minus r and as I just showed 

the Eigen functions, then we will have the form y k of x is equal to lambda k sigma n 

equal to 1 to n c n f n of x. It is clear that the Eigen functions are known only up to the 

arbitrary constants that need to be assumed in order to solve that equation, basically this 

equation, right. 

So, since the determinant is 0, we cannot have unique solutions, right. So, we have to 

assume some of the constants, right. The other constants c are evaluated in terms of those 

constants, right. If we have to assume the values of N minus r constants, then N minus r 

constants can be assigned arbitrary values, right. They can be assigned arbitrarily. The 

remaining r constants are evaluated in terms of those N minus r constants, right. So, that 

means, these Eigen functions are known only up to the arbitrary constants. That need to 



be assumed in order to solve my characteristic equation, right and basically this equation, 

the characteristic equation would be determinant of that, but to solve this equation, that 

the number of arbitrary constants that need to be assumed would lead to the Eigen 

functions being known only up to certain number of arbitrary constants, right. 

So, we have to assume values of those arbitrary constants in order to get those Eigen 

functions, but what is important is that even when I have these arbitrary constants, even 

when I have multiplicity say N minus r, it is possible. So, what did we see? We saw that 

for lambda k, if I have N minus r arbitrary constants, then that means, I have n minus r 

linearly independent Eigen vectors corresponding to lambda k, but even if they are 

linearly independent, but we can make them orthogonal to each other. How can we make 

them orthogonal to each other? Well, remember the Gram-Schmidt Orthogonalization 

procedure which we looked at when we were looking at systems of equations. When we 

said that if you have, say n minus r linearly independent vectors, it is always possible to 

come up with N. It is always possible to orthogonalize them, right.  

How we did orthogonalize them? We took a first vector, right. When it came to finding 

the second vector, we projected out the component of the first vector from the second 

vector, and we make sure that the second vector was orthogonal to the first vector. That 

is called Gram-Schmidt Orthogonalization and we use that for vectors. It is possible to 

do the same thing for functions, right. So, we start with an Eigen function. We assume a 

certain Eigen, one of the linearly independent Eigen functions. The next Eigen function 

we project out the part which we have already assumed, right. So, the next Eigen 

function we make sure that it is orthogonal to the first Eigen function, and we proceed in 

this way. So, eventually we end up with n minus r, not only linearly independent, but 

actually orthogonal Eigen functions. 

So, they can be orthogonalized using a Gram-Schmidt type procedure. So, in general it is 

possible finally to end up with for n orthogonal Eigen functions, right. It is possible to 

end up with n orthogonal Eigen functions, right. We know that if we have multiplicity 

more than 1, those Eigen functions are going to be linearly independent, but then we can 

orthogonalize them, right. We can orthogonalize them using the Gram-Schmidt 

procedure. So, eventually for n by n system, it is possible to end up with n orthogonal 

Eigen functions. 
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So, that is the characteristic value lambda k with multiplicity n minus r can be associated 

with n minus r orthogonal characteristic functions. So, up till now we have dealt with the 

theory, but I think some of the theory will become clear if we look at a specific example, 

right and the specific example we are going to look at is going to be a second 

homogenous Fredholm equation with a separable kernel, and it is going to be of type 

two, right. It is going to be of type two y x is equal to (( )).  

So, you can see this kernel is y 1 minus 2 x xi. It can be written in as a separable kernel, 

right. It can be written as a term 1 minus 2 x xi. So, I can think of that as comprising a 

function f 1 and a g 1, f 1 times g 1 with both equal to 1. That is going to give me the 

first term. One and the second term is going if I consider the x dependence to be equal to 

minus 2 x and the xi dependents to be xi. So, I have minus 2 x xi. So, that is the second 

part of the kernel, right. So, that fits the form which we showed earlier on. 

Basically, it is of this form, right. So, n is equal to 2. Now, f 1 is equal to 1, g 1 is equal 

to 1, f 2 is equal to minus 2 x and g 2 is equal to xi, right. So, that is a homogeneous 

Fredholm equation with a separable kernel and then we evaluate our c 1 and c 2. Recall 

that c 1 is nothing but integral of g 1 xi with y xi over that interval and c 2 is nothing but 

g 2 integral of g 2 xi with y xi. So, c 1 gives me integral of 1 with y xi, c 2 gives me 

integral of xi with y xi evaluated over the limits 0 to 1. Therefore, I get y x is equal to 

lambda c 1 minus 2 x c 2 because remember we can write our equation in this form, right 



c 1 f 1 x lambda 1 c 1 lambda c 1. Basically, this is the form lambda c sigma lambda f 1 c 

1 plus lambda f 2 c 2. So, we can write it like this, lambda c 1 minus twice x c 2 and 

again we want to determine c 1 and c 2. 

So, what do we do? We multiply the left, take this equation, multiply first by g 1 

integrated within the limit 0 to 1. Next, we multiply both sides by g 2, integrate the limits 

and integrate again over 0 to 1. If we do it with 1, we get this equation and if we do it 

with x and integrate with over 0 to 1, we get that equation, right. You can see this x 

square term is going to give me x cube. 

 So, that is going to after integration, it is going to give me x cube. So, there you have 

that here and c 1 x, if we integrate, that is going to give me a square term. If I integrate 

between 0 to 1, I will get a half here, right and if I multiply with 1, so that is going to 

give me x and 0. Once that gives me 1 here, if I multiply with 1 and integrate, that is 

going to give me x square by 2. 2 2 cancels out. So, I have minus c 2, right. So, this is 

what I get after multiplying first with g 1 of g 1 and then with g 2 and integrating 

between 0 to 1. 
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So, I finally end up with a system like this. It is a 2 by 2 system. Again for it to have non-

trivial solutions, the determinant of that coefficient matrix must vanish. That gives me 

my characteristic equation for lambda, right. I solve for lambda, it is quadratic. So, I can 

easily solve it and I get lambda. In this case equal to minus 3.6457 and 1.6457. If I 



substitute lambda is equal to minus 3.46457 in this equation, I get these two equations 

and it is clear that these two equations are actually identical because the determinant is 0.  

So, they are linearly dependent. These two equations are linearly dependent. They are 

identical and all they tell me is that c 2 can be written in terms of c 1 c 2 is equal to 1.274 

and therefore, it gives me if I put c 2 is equal to 1.274 c 1. In this equation, I get my 

Eigen function which is y of x is equal to some constant a times 1 minus 2.548 x. You 

can see there is a constant because I am writing c 2 in terms of c 1. C 1 still stays there, 

right. 

So, there is one constant there, right. You can see that right here the rank is 1, right. So, n 

minus r is 1. So, I have to assume one constant value in order to know both my in order 

to evaluate both my c’s, right. So, I have to assume one of them to be some arbitrary 

value. So, the Eigen function is now known up to a single arbitrary constant. It is known 

up to a single arbitrary constant because my rank is 1. So, N minus r is equal to 1 and I 

know that it is known up to N minus r arbitrary constants. In this case, it is known up to 

one arbitrary constant, right. So, this is the characteristic function corresponding to 

lambda is equal to minus 3.6457. 
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Similarly, I can evaluate for lambda is equal to 1.6457. This equation gives me this 

system. If I solve this, I can get c 2 in terms of c 1 like this and again, I get my Eigen 

function in terms of another arbitrary constant and this is my Eigen value. So, again I 



know the Eigen function up to single arbitrary constant, and this is the Eigen function 

corresponding to lambda is equal to 1.6457. 

So, this was for separable kernels, for non-separable kernels instead of having a finite. 

So, you can see that in this case since I could separate out my kernel into two products of 

x and xi f 1 x g 1 xi plus f 2 x g 2 xi, I got two Eigen functions corresponding to two 

Eigen values, right. In case, I cannot separate it out. I have infinitely many Eigen 

functions and infinitely many Eigen values, right. 

So, in case for non-separable, but real and symmetric kernels, they are infinitely many 

Eigen functions, characteristic functions defined with an arbitrary coefficient 

corresponding to the different characteristic values, right. This need not be one arbitrary 

coefficient depending on the rank. They can be n. There can be n minus r arbitrary 

coefficients as since we are looking at. So, these characteristic values and characteristic 

functions of course are solutions of this system because that is by definition, right. 
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So, the characteristic values and the characteristic functions, they must satisfy this 

system and it turns out that if y m and y n are characteristic functions corresponding to 

two different characteristic values lambda m and lambda n, it turns out that if my kernel 

is symmetric. If my kernel is symmetric, then these Eigen functions are orthogonal to 

each other in the interval a to b. If you remember that for my system of equations, my 

Eigen function for symmetric coefficient matrix, my Eigen vectors were orthogonal to 



each other, right. They were orthogonal to each other. Similarly, here even if I have 

infinite number of Eigen functions. So, long as my kernel is symmetric, my Eigen 

functions are going to be always orthogonal to each other and we can show that quite 

easily. 

So, suppose we have two Eigen functions, lambda m and lambda n called, sorry two 

Eigen functions y m and y n corresponding to two Eigen values lambda m and lambda n. 

That means, they satisfy these two equations, y m and lambda m satisfy this equation 

while y n and lambda n satisfy this equation. So, you multiply the first equation y n of 

with y n of x, that is with this Eigen function and then again integrated over a to b and 

similarly, we multiply this second equation with y m of x and integrated over a to b. So, 

what do I get for this equation? I have on the left hand side integral of a to b, y m of x y n 

of x d x and then here I have lambda m y n of x this and then there is this integral a to b k 

x xi y m of xi d xi d x because I am integrating now with respect to x, right. 

Similarly, the second equation I multiply with y m of x and integrate with respect to x 

within the elements a to b. Let us look at this first. The first equation, basically this one 

after we multiply with y n of x, I get this. Let me focus on this right hand side and if I 

focus on that right hand side, what do I get? 
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So, this is my right hand side and then what am I doing is, I am changing the order of the 

integration because earlier I was integrating first with respect to xi and then I was 



integrating with respect to x. So, I change the order of integration. I integrate first with 

respect to x k x xi y n x d x. You can see I have pulled y n inside, right. Y n was outside; 

right and I have pulled that y n inside. So, f k x xi y n x d x integral over a to b, I have y 

m xi is integral over xi. I have pushed it outside and then I am first integrating with 

respect to x, then with respect to xi. So, I have this, but this is not really in the form of 

my integral equation because this is k x xi y n x d x, right. 

If k x xi, but are actual integral equation was of the form where the second, the integrand 

what we were expecting with respect to that was the second variable in the kernel, right. 

That was the second variable in the kernel, and if the kernel is symmetric, then k of x xi 

is equal to k of xi of x. Otherwise, not right, but we have assumed that our kernel is 

symmetric. So, we can write k of x, xi is equal to k of xi of x because the function k is a 

symmetric function of xi and x. That is why I can interchange xi and x. If k were not a 

symmetric function of xi and x, I could not do that. If k of x and xi was x cube plus xi 

square x plus xi x square terms like that, if it were not symmetric in x and xi, I could not 

have done that because I am assuming that it is symmetric in x and xi. I can write k of x 

of xi is equal to k of xi of x, right. 

I know now that I have done that, it is in the form of my homogenous integral equation, 

Fredholm integral equation of the second kind. So, this term within brackets is nothing 

but y n of x, right. It is nothing but y n where y n of xi is nothing but y n of xi. If we look 

at the term within second brackets, then that is nothing but y n of xi. So, I have in lambda 

m a to b y m of xi y n of xi and of course, I have to divide it by lambda n because this 

term within this bracket is equal to y n of xi divided by lambda n, right. It is y n of xi 

divided by lambda n from the definition of my homogenous problem, from the definition 

of my Eigen problem, right. 

So, this is equal to integral of y n xi y n xi d xi lambda m divided by lambda n and this is 

equal to that. So, then this I can write it as I bring it I can write it as lambda m minus 

lambda n because this you can see these this integral is identical right this integral is 

identical. So, I can write it as lambda n minus lambda n integral a to b y m of x y n of x d 

x must be equal to 0 and since, my Eigen values are distinct that is lambda m is not equal 

to lambda n. After all I assumed that these are distinct Eigen values corresponding to 

distinct Eigen functions, right. So, if I do that, then lambda m cannot be equal to lambda 

n which means that in order to satisfy this integral in y of m must be orthogonal to y of n 



over that interval a to b. Is that clear? 

So, distinct Eigen values correspond to orthogonal Eigen functions, right. So, similarly 

as in case of separable kernels, in case Eigen values have multiplicity greater than 1, if I 

have multiplicity greater than 1, then I know that I have N minus r Eigen functions 

corresponding to a particular Eigen value. Each of those Eigen functions are going to be 

orthogonal to each other. They are going to be orthogonal to each other and similarly, I 

can again do a Gram-Schmidt type, sorry they will be linearly independent and I can 

again do a Gram-Schmidt type orthogonal orthogonalization procedure to end up with N 

minus r orthogonal Eigen functions. Is that clear? 
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So, separable kernels in case of characteristic value have multiplicity greater than 1. 

Then it has as many linearly independent Eigen functions and in such a case, I can again 

orthogonalize using a Gram-Schmidt procedure. Thus, one can generalize that the Eigen 

functions for a symmetric Fredholm integral equation are orthogonal. Symmetric 

Fredholm equation does not matter if the kernel is separable or not even if it is non-

separable. We always end up with Eigen functions which are orthogonal to each other, 

and it can in addition, it can be shown that the characteristic values of a Fredholm 

equation with a real symmetric kernel are all real, right. They cannot be imaginary. They 

are all real. It is very similar to our system of equations, right. For a symmetric matrix, 

we are assured that the Eigen values are all real, right. The Eigen values of a symmetric 



matrix are real. 

So, in this case if I have a kernel which is symmetric, in addition if the kernel by itself is 

real, the kernel by itself is not imaginary. So, if I have a real symmetric kernel, in that 

case my Eigen values are always going to be real, right. My Eigen value of my integral 

equation is always going to be real. That should be quite obvious because let us go back 

and look at that equation. 

Suppose we look at something like this, right. So, if I have real symmetric kernel, then 

this is imaginary. If this is imaginary, it is certain that this has to be imaginary as well, 

right. Is that clear? If this is imaginary, let us go over it once more. If lambda n has an 

imaginary characteristic value, it is clear from the statement of the Eigen problem since k 

of x xi is real, then the corresponding function Eigen function must be imaginary as well, 

right. 

Since, this is real, if this is imaginary, then the Eigen function has to be imaginary as 

well because the right hand side is imaginary, right. So, it has to be imaginary as well, 

right. Is that clear? So, let us look at a situation where I have an imaginary Eigen value, 

right. I have an imaginary value and I know in that case my Eigen functions got to be 

imaginary as well, right. My Eigen function has got to be imaginary as well. So, I can 

write it in this form, right. So, alpha m plus i b m, that is my imaginary Eigen value and 

this is my imaginary Eigen function, right. 
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So, if I can write it like that and then I group the real and the imaginary terms together 

and I equate the real and imaginary parts and if do that, then I get f of f m of x is equal to 

this. I get g m of x is equal to that, right. By just grouping the real and imaginary parts I 

get that and then if I write f m minus i g m and I use these definitions of f m and g m in 

terms of alpha m beta m, then I am pulling those terms together. I finally end up with 

something like this and by just looking at this, what do you see that corresponding to? 

So, if f m plus i g m is an Eigen function corresponding to an Eigen value alpha m plus i 

beta m, it means that f m minus i g m is also an Eigen function corresponding to an 

Eigen value alpha m minus i beta m.  

So, if I have a complex Eigen value, its complex conjugate is also an Eigen value and 

since for a complex Eigen value I have seen that I must have a complex Eigen function. 

That means, the complex conjugate of that Eigen function is also the Eigen function 

corresponding to that complex conjugate Eigen value, right. 
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So, if lambda m and y m are complex Eigen values and complex Eigen functions and the 

corresponding complex conjugates are lambda bar m and y bar m, the complex 

conjugates are also Eigen values and Eigen functions. We have just shown that, right and 

recall that for distinct Eigen values, we have this condition, right. So, lambda m and 

lambda bar m are distinct Eigen values because they are not equal, right. One is the 

complex conjugate of the other. So, I can always write that equation because I know that 



for any two distinct Eigen values, this condition has to be satisfied. So, this has to be 

satisfied for an Eigen value and its complex conjugate as well because I know that the 

complex conjugate of an Eigen value is an Eigen value also, right. 

So, this condition has to be satisfied and then replacing lambda m and lambda bar m as 

well as y m and y bar m by their real and imaginary parts which are this, alpha m plus I 

beta m and f m plus i g m. In case of y m, we end up with an equation like this and I 

know that both f of m. So, this involves f of m square plus g of m square. The term 

within the first bracket, there can only be 0. If both f of m and g of m are 0, but if both f 

of m and g of m are 0; that means, my y m which is equal to f of m plus i g m has got to 

be 0. That is not true. Y of m is not equal to 0. That means this cannot be 0. So, the only 

way this can be 0 if beta m is equal to 0.  

What does it mean? My Eigen value was alpha m plus i beta m. So, beta m is equal to 0 

meaning that the imaginary part is always going to be equal to 0. So, my Eigen values 

are always going to be real. For real symmetric kernel, I am always going to have real 

Eigen values, right. This implies that a Fredholm integral equation with a real symmetric 

kernel must possess real Eigen values. 
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On the other hand, a Fredholm equation with a non-symmetric kernel may possess Eigen 

values that are not real. That is certain that can happen, right. Non-symmetric kernel can 

always have Eigen values which are not real. So, why do we spend so much time 



discussing the homogenous problem and how to extract the Eigen values and the Eigen 

functions? Well, the reason is because it helps as these Eigen values and Eigen functions, 

they help us find the solutions of the non-homogenous problem as well, right. They help 

us find the solutions of the non-homogenous problem as well usefulness of extracting the 

Eigen values. Eigen functions of an Eigen results from this because this following result, 

right. Any function f of x generated from a continuous function psi of x and a continuous 

real symmetric kernel k of x xi. 

So, suppose I have any arbitrary function psi of x, the only requirement is that psi of x be 

a continuous function and suppose I integrate, I take the kernel and I take the product 

with psi of x and I integrate with a and b within the limits, and I generate a function f of 

x, then I am assured that in that case I can always represent f of x as a linear combination 

of the Eigen functions of the homogenous Fredholm integral equation with k of x xi as 

this kernel, right. You know what is the homogenous Fredholm integral equation? With 

the kernel k of x xi, we have known how to find its Eigen values and Eigen functions. 

It turns out that any function f of x which I can get by doing this integral, I can represent 

this f of x as a linear combination of my Eigen functions of my homogenous Fredholm 

equation, and we will see its use in a few slides. In other words, it is always possible to 

write f of x as sigma n equal to 1 to n c n y n of x, where y n of x is an Eigen function of 

this homogenous Fredholm equation. Remember this f of x, I generated completely 

arbitrarily, right. The only condition is that these functions psi is a continuous function. It 

can be any arbitrary continuous function. It may not have any relation with the Eigen 

functions, right. 

So, if I generate any function, if I take any arbitrary function psi of x a integrated, I 

operate with the kernel k of x of xi, right. Basically when I operate, I mean integrated 

with over the limits a to b, take the product with k x and xi and integrate it and I generate 

a function, right. That function I can always represent in terms of as a linear combination 

of the Eigen functions of this homogenous Fredholm equation, right. This is an important 

and very powerful result. 

Analogously think for linear system, what we know if I have a matrix residual 

symmetric-asymmetric matrix, right and I know that its Eigen vectors are going to be 

orthogonal. What do I know? If I have a dimension n, then I know that the Eigen vectors 



of a are going to form a orthogonal basis for the n dimensional vector space. That means, 

any arbitrary vector of dimension n, I can represent as a linear combination of those 

Eigen vectors. So, similarly here any arbitrary vector f of x which I obtain like this, I can 

represent as a linear combination of my Eigen functions y n of x. It is very important 

that, very similar to what happens in case of linear system. 
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So, this is very similar to the concept that any n dimensional vector can be represented 

by a linear combination of the Eigen vectors of n by n symmetric matrix a, since these 

Eigen vectors form an orthogonal basis, right. So, that is very important result which we 

will use very soon, but at this point we digress and we mention that when we need to 

find. So, you can sort of motivate why it is important to find the Eigen values and Eigen 

functions because then we can use this very beautiful property which allows us to 

represent any arbitrary function f of x generated by operating on the kernel on any 

continuous function. I can split it up in terms of the Eigen functions, right.  

That is why it is very important to find the Eigen functions, but we have seen that we can 

find the Eigen functions for separable kernels. Yes, we can find the Eigen functions 

relatively easily, but remember what do we have do is to find the Eigen functions, find 

the Eigen values. We have to solve this. We have to evaluate determinant of I minus 

lambda a is equal to 0, right and what is going to be the order of that equation is going to 

depend on the size of my matrix A. 



Since, a was 2 by 2, but if a is large, then that characteristic function is going to have 

higher powers of lambda. Since, a was 2 in our example, problem we had a quadratic. 

We had a quadratic there. If a is greater than 4, then we know that we can only find the 

roots analytically only if it is fourth order or less, right. If it is fourth order characteristics 

is 4 or more, I cannot find analytic solutions, right. So, then what happens? Then I cannot 

it enclosed form, right. I have to do it iteratively, right. I have to do it iteratively. 

So, I have to evaluate the Eigen values and the Eigen functions in an iterative fashion, 

right and we will look at how to do that again. The way to do it is very similar. If you 

remember when we were talking about linear systems, we also looked at iterative 

methods to evaluate the Eigen values and Eigen functions, and we found that when we 

do that, when we do these iterations, we first find the largest Eigen value and the 

corresponding Eigen function and then we can progressively find the next smallest Eigen 

value, the corresponding Eigen function, then next smallest Eigen values and so on and 

so forth. 

So, doing a similar iterative procedure, it is possible to find the Eigen values and Eigen 

functions of Fredholm integral equation as well, and we are going to do that in the next 

lecture. Once we do that, we will talk about how to use our Eigen values and Eigen 

functions to solve the non-homogenous problem in whatever time is left because next 

lecture is probably our last lecture. We will look at some numerical methods for solving 

integral equations as well may be we cannot do it in much detail, but we will at least 

introduce some numerical methods for solving integral equations.  

Thank you. 


