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In lecture 31 of our series on numerical methods in civil engineering, we are going to 

talk about fitting polynomial through a number of grid points. In our previous discussion, 

we know that determining a polynomial Q of degree m through m plus 1 point has a 

unique solution and we have obtained an expression. We also obtained an expression for 

the error term. We found how to find out the coefficients. We said that you can find if 

you know m plus 1 point. You can always fit an m th order polynomial through this point 

by solving a system of equations of size m plus 1, right.  

If you see solve that system of equations, you can find out the coefficients, m plus 1 

coefficients and if you can find out the m plus 1 coefficients, you have your polynomial, 

but solving those m by m plus 1 system, every time is of course enormously expensive. 

One needs to fit a polynomial in any reasonable computation many times, right, many 

thousands of times, many millions of times. So, if we have to solve that m by m plus 1 

by m plus 1 system every time it is not going to be feasible right. So, it turns out that 

there are simple ways of calculating the coefficients of a polynomial of an m th order 

polynomial. If you know the function values at m plus 1 point without having to solve 



that system of m plus 1 by m plus 1 equation, and probably the best known method is 

given by Newton’s interpolation formula, right. 
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So, we are going to talk about Newton’s interpolation formula in somewhat greater 

detail, but before we do that, we want to talk about something which is known as the 

divided difference operator, because the Newton’s interpolation formula is the best. The 

coefficients are most easily calculated using something known as the divided difference 

operator, right. So, before doing that, let us recall that the solution of the interpolation 

problem is of the following form. So, this is my m-th order expansion, this is my m-th 

order polynomial and that is my error term, right. That is my error term which I showed 

last time in considerable detail is of this form, right. 

So, if we denote this term by B of x, it is clear that B of x is bounded when m plus one-th 

derivative of f is continuous in this interval, right. This involves the m plus one-th 

derivative and if m plus one-th derivative is continuous in that interval, so it has to be 

bounded, right. Continuous means that the function values cannot become unbounded. It 

has to grow smoothly, right. It is continuous, right. So, it cannot become unbounded. So, 

B of x is bounded in that interval. That means that the error term is also bounded, right. 

We now define a new divided difference operator. Now, the divided difference operator 

can have any number of arguments, but the most simple form of the divided difference 

operator is denoted like this. Divided difference operator of x 0 x, right where it involves 



the function f is equal to the function evaluated at x minus the function evaluated at x 0 

divided by x minus x 0, right. So, this is with just two arguments, but this operator can 

have any number of arguments mainly depending on the number of grid point, right. 
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So, that is f of x 0 x is given by this. Why? Well, let us go back and take a look. F of x is 

given by this, right. So, f of x 0 is equal to c 0, right, f of x 0 is equal to c 0 f of x minus f 

of x minus f of x 0. Therefore, c 1 x minus x 0 c up to c m x minus x 0, so on plus, this c 

0 terms vanishes because f of x 0 is equal to c 0, right. So, that is then I am dividing by x 

minus x 0. So, I am left with c 1 plus c m x minus x 1 up to x minus x m minus 1 f m 

plus 1 xi m plus 1 x minus x 1 x minus x m. So, this x minus x 0 term vanishes because I 

am dividing it by x minus x 0, right. So, I am left with f of x 0 is equal to that, right.  

Now, if instead of x as we place x by x 1, what do I get? All the terms vanish except the 

first term, right. So, that tells me that f of x 0 x 1 is equal to c 1. So, what does this allow 

me to do? This allows me to express the coefficient c 1 of my polynomial of my m-th 

order polynomial in terms of the divided difference operator with arguments x 0 and x 1. 

So, given f if I know f of x 0 x 1, I can find out c 1, right. So, this allows me to express 

this coefficient in terms of this divided difference operator. 

Next, we define in general. In general, we define f, the divided difference operator with k 

plus 1 with k plus 1 argument from x 0 up to x a k plus 2 arguments actually in this case, 

right. So, k plus 2 arguments as this, so f of x 0 x 1 up to x i x k minus 1 by x x minus f 



of x 0 x 1 x k minus 1 x k divided by x minus x k. So, we take this as a matter of 

definition, right. This is how I divide I define the divided difference operator with that 

many arguments, right. 

So, instead if I have f of x 0 x 1 x, what will I have is f of x 0 x 1 x will be equal to f of x 

0 x minus f of x 0 x 1 divided by x minus x 1, right. So, it will be like that, right. 

Similarly, f of x 0 x 1 x 2 x would be equal to f of x 0 x 1 x minus f of x 0 x 1 x 2 divided 

by x minus x 2, right. So, this is how I am going to define the generic divided difference 

operator, right. So, f of x 0 x 1 x is going to be this. I just talked about that, right and f of 

x 0 x we know is this. We have already calculated that to be this and f of x 0 x 1 is given 

by that. So, again c 1 c 1 cancels out, right. C 1 cancels out and that c 1 I am dividing by 

x minus x 1. So, I have c 2 plus c 3 x minus x 2 plus c m x minus x 2 up to this, right. 

Again if I evaluate this at x 2 f of instead of x, if I evaluate it as x 2, what do I get? Every 

term vanishes except the first term. So, that allows me to write f of x 0 x 1 x 2 is equal to 

c 2. 
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So, I can write the second coefficient of my m-th order polynomial in terms of the 

divided difference operator with arguments x 0, x 1 and x 2. Similarly, we can show by 

induction that f of x 0, x 1, x k minus 1 k x is given by this, right. You can see that this is 

going to have exactly the same form as this, right. Because of this we can write f of x 0 x 

1 x 2 x k. 



So, again all the terms will vanish except the first term, and that is going to give me c k, 

right. So, f of x 0, x 1, x 2, x k is equal to c k if k is lesser than or equal to m which is of 

course understood, right because we are interested in m-th order polynomial, right. So, if 

k is equal to m, f of x 0, x 1, x m, x is equal to B of x. So, we know that f of x 0, x 1, x 2, 

x m is equal to c m. That we know from this, right, but if k is equal to m, then x 0, x 1, x 

m, x is equal to B of x is equal to f m plus 1 xi m plus 1 factorial. That is not so obvious, 

right.  

This is obvious because we have shown it by induction. In every stage we could write the 

coefficients in terms of the divided difference operator, in terms with the highest term in 

the divided difference operator has the same index as the coefficient, right. We could 

find that out, but if I have a divided difference operator which is f x 0, x 1, x m, x, we are 

going to show, but that is actually equal to my coefficient of my remainder terms, right. 

Let us go back and take a look at the remainder. Our remainder term was like this, right. 

So, all these coefficients have been able to express in terms of the divided difference 

operator, and I am going to show that the coefficients of the remainder is also given by 

the divided difference operator with x 0, x 1 up to x m, x, right. So, that is my coefficient 

of the remainder term. This can be shown like this in the following manner from this 

expression. From this expression I can write that f of x 0, x 1, x m minus 1 x, right. So, if 

instead of k I have x m k equal to m minus 1, then I will have f x 0, x 1, x m minus 2 x 

minus f x 0, x 1, x m minus 2 x m minus 1 divided by x minus x m minus 1, right. 

So, that is what I have here, right and this I know is equal to c m minus 1 because it is a x 

0 x m minus 2 x m minus 1 that is equal to c m minus 1 that is equal to f x 0, x m minus 

2 x and I am dividing by this, right. So, this I know is given by that, right. So, if we look 

at this expression and I replace k by m k minus 1 by m minus 2, if I replace k minus 1 by 

m minus 2, then I get this expression, right, c m minus 1 plus c m this minus c m minus 

1. So, c m minus 1, c m minus 1 will cancel. I am dividing by x minus x minus 1. So, I 

am left with c m plus b x x minus x m x x m, right, x m minus 1 that cancel out. So, I am 

left with this. 
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So, hence f of x 0, x 1, x m minus 1 x m is equal to c m. So, here if I replace x by x m, 

this term vanishes and I am left with c m, right. So, f x 0, x m, x x this is what we wanted 

to evaluate. If you go back and take a look, this is what we wanted to evaluate and that is 

equal to f x 0 x m minus 1 x by definition, right. This is how we have defined our 

divided difference operator x 0 x m minus 1 x minus f x 0 x m minus 1 x m by x minus x 

m, right. 

Now, we know that this thing x 0 x m minus 1 x m is equal to c m, right. We know that 

that thing is equal to c m plus B x x minus x m, right, this thing is equal to that. So, c m 

plus B x x m minus x m, this term minus c m is equal to given B x x minus x m x minus 

x m cancels out. I am left with B x which is my coefficient of the remainder term, right. 

So, I have been able to show that the coefficient of my remainder term I can write in 

terms of the divided difference operator like this. 

Now, using the fact that coefficient c k in terms of divided difference can be written like 

this. The solution of the general interpolation problem can therefore be written like this. 

So, everywhere we will go back to, let us go back to our solution of general interpolation 

problem which was like this, right. So, every time I am going to replace my coefficients 

by the appropriate divided difference operator, right. If I do that I can write it like this Q 

of x is equal to f 0 plus sigma j equal to 1 to m f x 0 x 1 x j, right. So, if j equal to 1, I 

will have f x 0 x 1, right and this will be from x minus x 0. The second term will be j 



equal to 2 and that will be f x 0, x 1, x 2 times x minus x 0 into x minus x 1 and so on 

and so forth, right.  

So, that is the first part of my coefficient of my polynomial expansion and the remainder 

then equals f x minus Q x which is equal to this which we already know which is this. 

This is the remainder and that is equal to this term and this term from here we can write 

as f of x 0, x m, x times x minus x 0 x minus x 1 up to x minus x m, right. So, we get this 

thing is equal to that thing, right which we actually already shown, right. Is that clear? 
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So, later on we will show that these coefficients, they can be calculated recursively. It is 

very easy to calculate these coefficients, right, but before we do that let us talk little bit 

more about this. So, each of the coefficients of the polynomial expansion can be 

expressed in terms of divided differences. Thus, if we can find a way to compute the 

divided differences easily in a recursive manner, then finding the polynomial Q x is a 

relatively easy task, right. 

So, given these m m plus 1 point, right and given these m plus 1 function values, it will 

turn out that I can find out all these coefficients relatively easily using a recursive 

relationship without having to solve that m plus 1 by m plus 1 equation, right. We will do 

that using the divided difference operator, but in order to do this, we have to show 

something before we do that and that is we have to show that the divided difference 

operator f x 0, x 1 up to x m is the symmetric function of its m plus 1 arguments where m 



is an arbitrary natural number. What do I mean by a symmetric function? That means, 

the order in which these x 1 x m appear in this divided difference operator is not 

important. Why? Recall that this is given by this, c m is given by this, right. 
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But c m is the leading coefficient of the polynomial Q x which is the unique solution of 

the interpolation problem. It is the leading coefficient because it is a coefficient of the 

largest term of the highest order, right. It is the leading coefficient of the polynomial. 

However, the solution Q x to the interpolation problem made no assumptions about the 

ordering of the points where the function values are known. We just said that the 

function values are known at x 0, x 1, x m plus 1, x m, x 0, x 1, x 2 up to x m, right. We 

did not say anything about whether how those points are ordered, whether x 1 is greater 

than x 0 or x 0 is less than x 1. We said nothing about that, right. 

So, these points can be ordered arbitrarily, right. So, as long as the function values at 

those points are known, it does not matter. Their order does not matter. So, similarly 

their order in the divided difference operator should not matter since the solution of the 

interpolation problem is independent of how the points are numbered, right. I can call a 

point x 1, I can call it x m, I can do anything, right it does not matter. So, long at that 

point, the function value is unique, right. So, I can call a point x 1 as the function value 

remains the same when I call it x m, right. That does not matter. The polynomial is not 

going to change because I change the name of the grid point, right. 
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So, I just showed a little picture here. Suppose, I fit a polynomial like this where I 

initially had the points ordered like this. Now, if instead of calling this point x 0, I call 

this x 3 and instead of calling this x 1, I call this x 7, nothing changes. I still get the same 

polynomial because the function value at this point is the same. This function value is the 

same here, this is the same here, this is the same here. 

So, ordering the index by which I refer to those points is not important. Since, the 

solution of the interpolation problem is therefore independent of how the points are 

numbered, right. Same is the symmetric functions of the points, that is whatever the 

ordering of the points, whatever the numbering of the points, since the function values at 

the points do not change, c m does not change, right. So, what does this mean? So, c m is 

equal to f x 0, x 1, x 2, x m, right, but c m is also equal to f of x 2, x 0, x 1, x m, right.  

So, however, I order those points, the divided difference operator. My coefficients are 

not going to change because what is c m? C m is the coefficient of the term with the 

highest power in my polynomial expansion. My polynomial expansion is unique. That 

means the coefficient of the term with the highest power is also unique, right. It cannot 

change, right. It should not change with how I call the points, right. So, is that clear? So, 

that is very important, right c m is the symmetric function of the divided difference 

operators, right. C m is its coefficients are a symmetric function of divided difference 

operators. 
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So, let us recall again that f of x 0, x 1, x k minus 1 x k, x is given by this definition. 

Now, let us call the first point x i plus 1 instead of x 0, right. I can call it anything. So, as 

long as the function value at that point does not change, my polynomial is not going to 

change. Since, my polynomial is unique; my coefficients are unique, right. So, instead of 

calling it x 0, I can call it x i plus 1. In that case what do I have here? I have x i plus 1, x i 

plus 2 and so on up to x k minus 1 x k x and that is equal to again instead of 0, I have i 

plus 1, i plus 2, x k minus 1 x. 

Here, I have again x i plus 1, x i plus 2, x k minus 1, x k and I am dividing by x minus x 

k, then I said x is equal to x I, right and then I use the symmetric property of the divided 

difference operator. Because of the symmetric property f x i plus 1, x i plus 2, x k minus 

1, x k x, I have replaced x by x i. I can move the x i in front, right. I can move this x i 

right here and I get f of x i, x i plus 1, x k minus 1, x k, right. So, this if I replace x by x I, 

I have i plus 1, i plus 2, k minus 1, x k x i. Then I use the symmetric properties, so that I 

can interchange the arguments. Any way I like interchange. I put x i plus 1, right in front, 

right. So, x i right in front. 

So, I have x i, x i plus 1, x k minus 1, x k. Similarly, here I replace x by x i and move the 

x i right in front, right. So, I have x i, x i plus 1, x k minus 1, right and this I leave and 

change x i plus 1. Here there is no x. So, I did not replace it with x i. So, I have f x i plus 

1, x i plus 2, x k minus 1, x k, right and then I just changed, interchange this. So, I move 



this here and I move this there. That gives me a negative sign, right. So, I get x k minus x 

i to cancel the negative sign, interchange the order of these arguments, right. So, I move 

this here, move this there and I get that, right. So, now what do I have? I have x i, x i plus 

1, x k minus 1, x k is equal to f x i plus 1, x i plus 2, x k minus 1, x k minus this divided 

by x k minus 1, x k minus x i. It turns out that this is what we need. This yields the 

recursion formula. Why? Let us take a look. 
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So, we know by definition f of x 0, x 1 is equal to f of x 1 minus f of x 0, x 1 minus x 0. 

Similarly, f of x 1, x 2, I know f of x 2 minus f of x1. So, all these I can evaluate by 

definition, right. This I know I can. So, if I know the function values at x 0, x 1 and x 2, I 

can evaluate these divided difference formulas. The second order divided differences, 

right. Now, I am going to use this relationship to evaluate the higher order divided 

differences. Suppose, I want to find out f of x 0, x 1, x 2, right. Let me go back and take 

a look at my recursion formula. So, I have f of x 0, x 1, x 2. So, how am I going to do 

that? I will have f of x 0 up to x 1, right, x 2 right. So, that is k minus 1. 

So, if f of x 0, x 1 minus f of x 1, x 0, x 1, x 2, the next term x 1 up to x 2, right. So, I 

have f of x 0, x 1 minus f of x 1, x 2 divided by this thing, divided by that, right x 2 

minus x x 0 or is that right. Let us see, x 0 minus x 2 that is x 0 minus x 2. So, what do I 

get? So, I can evaluate f of x 0, x 1, x 2. If I know these terms and these I already know 



from definition, right and then I use my recursion formula to find out the third order 

divided difference formula, right. 

Similarly, I can find out f of x 1, x 2, x 3. How am I going to get that? So, I have x 1, x 2, 

x 3. So, that will be f of x 1, x 2 minus f of x 2, x 3 divided by x 1 minus x 3, right. So, 

that is x 3 minus x 1, right. So, that is exactly what I am going to get, right. So, now, if I 

know these, f of x 0, x 1, x 2, f of x 1, x 2, x 3, then I can find out f of x 0, x 1, x 2, x 3. 

So, remember my coefficients are c 1 is equal to f of x 0, x 1, c 2 is equal to f of x 0, x 1, 

x 2, c 3 is equal to f of x 0, x 1, x 2, x 3. 

So, I can find these coefficients really simply by using these divided difference formulas, 

right. So, I do not need to solve my m by m plus 1 by m plus 1 system. I can find out 

given any number of points, right. I can find out the highest degree of polynomial to pass 

through those points. I can find out the coefficients using this little table, right and if you 

code it in a computer, this can be done in fraction of a second, right. 
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So, continuing in the above manner, it is possible to compute all the coefficients c k. 

Since, we know c k is equal to this, right c k is given by that for k lesser than or equal to 

m, right. So, up till this point, we have not said anything about how my grid points are 

located in space, right. It is not necessary up to from whatever we have done up till now. 

Assume that those grid points are equally spaced, right. It is not necessary, right, but now 

if you make further simplification, if you assume that my grid points are equally spaced, 



right that is if x 0 is my initial point, x 1 is equal to x 0 plus h, x 2 is equal to x 0 plus 2 h 

and x 3 is equal to x 0 plus 3 h, x k is equal to x 0 plus k h, then it is possible to establish 

a relation between the divided difference operator and the forward difference operator 

that we encountered earlier, right. It is possible to do that, right. I have not shown that, 

but it can be shown that f of x i plus 1, x i plus j is nothing but divided by the forward 

difference operator operating on f a f i j times, right.  

So, if I start with the forward function value at i, right and if I operate with that on that 

with the forward difference operator j times, I divide it by h to the power j by factorial j, 

then I get my divided difference operator, right. It sort of makes sense, right because here 

you can think of it that first if I have f i, right I operate on that with the forward 

difference operator. What do I get? I get f i plus 1 minus f i. I operate it again. I do it j 

times. I get this thing, right. It can be shown, right. It is best shown by induction, right. 

So, I would show that it can easily be shown for j equal to 1, right and then I can show it 

for j equal to 2 and then I assume that it is true for j equal to k and then I can show that if 

it is true for j equal to k, it is always going to be true for k plus 1, right. 

So, then that can be proved. So, if the points x 0, x 1, x m plus 1 can be spaced equally 

apart, then in that case Newton’s interpolation formula for the equidistant case can be 

written like this in terms of my forward difference operator taking advantage of this 

equivalence between the forward difference operator, and between the forward 

difference operator and the divided difference operator, I can write my Newton’s 

interpolation formula in this form where it involves the forward difference operator 

instead of the divided difference operator.  

Earlier, we showed it for the divided difference operator for the most general case, right 

where there was no restriction on how the points were on the x axis, right. There was no 

restriction. The intervals could be anything, large, small, equal, unequal anything, but 

then we said that if those intervals on the x axis are equal, then instead of having to use 

the divided difference operator, you can write Newton’s interpolation formula using the 

forward difference operator like that, right and I am going to show that in a relatively 

simple way, right. 
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So, we recall that x minus x 0, x minus x 1, x minus x j minus 1 can be written like that. 

Why can it be written like that? Because x is equal to x 0 plus p h, right. I just said that x 

is equal to x 0 plus p h, right. Since, x is equal to x 0 plus c p h, x minus x 0 is equal to p 

h, right, p h x minus x 1 is equal to x x 0 plus p h minus x 0 plus p h plus h, right. So, 

that is going to give me p minus 1 h and so on and so forth. So, this I can write in terms 

of powers of h. I can bring out all h’s and together I can write it in powers of h to the 

power j p times p minus 1 up to p minus j plus 1 and we know that f of x, x 0. Let us see 

f of x 0, x 1, x j minus 1 x j, right and that can be written like this. 

So, since i plus 1, i plus j is that, so that is nothing but delta j f 0 h to the power j by 

factorial j, right, delta j f 0 h to the power j by factorial j, right. I have just used that 

formula where instead of using i, I have replaced i by 0 and then I can write f of x 0, x 1, 

x j minus 1, x j is equal to delta j f 0 h j by factorial j, right and we also recall from 

earlier that this expression f of x 0, x 1, x j minus 1, x is equal to f j x i by factorial j. 

Where did we see? Well, let us go and see. I do not remember, but I think let us go back 

right here, right. 

This is where we showed that, right. So, we showed that to be true. Now, let us go back 

to Newton’s general interpolation formula that is written terms of the divided difference 

operator, that is Q x is equal to f 0 plus sigma j equal to 1. This we have already seen in 

terms of the divided difference operator and this on substituting this here, this term with 



this, right and this term with that, we get the desired result which is equal to that which 

shows that in case you have equidistant grid points, you can write Newton’s interpolation 

formula in terms of the forward differences, right. 
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So, it is clear that fitting a higher degree polynomial of order, m requires a knowledge of 

the function values at a sufficient number of grid points, b, computation of the 

coefficients of the polynomial using divided difference recursive form of the divided 

difference algorithm or some other recursive algorithm. There are other recursive 

algorithms as well, but I am just showing one particular one, right. However, even if we 

use the divided difference operator to compute the coefficients, if we do it several times, 

if we have to do this over and over again, it is still non-negligible expense because every 

time we have these many points, you know the function values to compute it is much 

cheaper than inverting the matrix. That is for sure, but still the cost is non-negligible, 

right.  

So, somebody might say that well, let us step back and take a look. So, I have m plus 1 

points and I have m plus 1 function values, right. Why am I fitting an m-th order 

polynomial at that point? I am fitting an m-th order polynomial at that point because I 

want to find the function value at any arbitrary point in the grid, right. So, I have my 

function values at the grid points, but if I can fit my m-th order polynomial through those 

function values, I can find the value of the function at any point, not necessarily at a grid 



point which is not necessarily a grid point. That is what I want to do, right and in order to 

do that, in order to fit that polynomial, I have to calculate all these coefficients and I 

found out relatively cheap way to calculate these coefficients, but why somebody might 

say why do I need to go. Why do at all need to fit a polynomial through these points, 

right.  

If I know the point, if I have m plus 1 grid points and I want to find the function value at 

a particular point x which does not lie on the grid, if I can figure out between which two 

grid points that x lies, why do not I just do a linear interpolation. I know the function 

values at those two grid points, why do not I fit a line through grid points and why do not 

I get the function value at that point, right. Well, there it turns out that there are 

advantages as well as disadvantages. It is a lot cheaper fitting line through two points is 

much cheaper than fitting a polynomial through m plus m-th order polynomial through m 

plus 1 points, right, but there are problems as well. 
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An alternative approach might be to use linear interpolation. Suppose we know the 

function values at x 0 through x m and we are interested in evaluating the function at x, 

where we know that x lies between x k minus 1 and x k, then instead of going through 

the expensive fitting and m-th order polynomial through the points x 0 through x m, a 

simpler solution might be to calculate f of x by linearly interpolating between f of x k, 

and f of x k minus 1 which are function values evaluated at x k and x k minus 1. When is 



linear interpolation sufficiently accurate? That is a question, right. When is linear 

interpolation going to give me a good estimate? I know that linear interpolation is going 

to be cheap, but is there any condition which has to be fulfilled for linear interpolation to 

give me good results? Well, let us see.  

Suppose we have a table of equidistant correctly rounded function values evaluated up to 

decimals. Suppose I have a grid, equally spaced grid and suppose I know the function 

values that all those grids points up to t decimal places, right and it is rounded off 

accurately up to t decimal places. 
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It can be shown that in a table of equidistant correctly rounded function values like of 

table of values m plus 1 values, right and the m plus 1 grid points, m plus 1 function 

values. If the second derivative, if the second difference, second forward difference del 

square f calculated from the function values satisfies this criteria, how am I going to 

calculate the second difference?  

Well, I know the x 0, x 1, x 2 up to x m plus x m, right. So, I know the function value at f 

0, f 1, f 2, f m, right. I know the function values. I will calculate the first difference f 1 

minus f 0, f 2 minus f 1, f 3 minus f 2 and so on and so forth. That is how I am going to 

calculate the first difference. Then I am going to calculate, I am going to take the 

difference on that again. So, I can generate the second difference and if for a particular 

table of function values, if it turns out that all the second differences are less than 4 into 



10 to the power minus t, then the total error in linear interpolation is going to be almost 

equal to 10 to the power minus t. 

So, what are the criteria? The criteria is that I have a table of function values and then I 

calculate the second difference and if the absolute magnitude of the largest second 

difference is less than the precision level of my calculation times 4, then my total error in 

linear interpolation is almost going to be equal to my precision, right. It is going to be 

equal to my precision. Even here we can realise that this condition is going to be 

relatively very hard to fulfil when in the second I have some function values, right. I 

have equally spaced grid. I know the values of the functions at all those grid points. I 

take the first difference, I take the second difference.  

When is the second difference going to be really small? The second difference is going 

to be small when my grid is small, when the variation is relatively small between, when 

my function does not change much, right. So, if I have very wide wild variations, then 

there is no guarantee that this thing is going to be small, right. So, either my interval is 

very small or my function is very well behaved, right. Either of those conditions has to 

be fulfilled, right. Very well behaved means it is almost very close to a straight line, 

right. So, both these conditions if I have, interval size is very small. Automatically my 

function will become closer to a straight line, right or if my function is very well behaved 

such that these differences becomes smaller and smaller, right. 

So, ultimately when is the difference going to be 0? The difference is going to be 0 when 

I get a straight line or when I get a constant, right. If I get a constant, the difference is 

going to be 0. So, if I start with a function which is quadratic, if I take the first 

difference, I am going to get a straight line. If I take the second difference, I am going to 

get a constant, right. So, if I start with a straight line, I get the first difference. That is 

going to be a constant. The second difference is probably going to be 0, right. 

So, this you can see that if the function is very different from a straight line or by interval 

is sufficiently small, so even if the function is nowhere near linear in that little region, it 

behaves like a straight line only, then this condition is going to be fulfilled. Only then 

that condition is going to be fulfilled, but let us try to show this.  

How are we going to show that? Well, I am going to show that by dividing my total 

interpolation error into three parts, right. The first part is the interpolation error due to 



round of error, due to uncertainty in the known function values. So, I know the function 

values at those m plus 1 point, but I do not know them exactly, right. I know them only 

up to the precision of my calculations, right. 

So, I know them up to the 10 up to the t-th digit, up to the t-th decimal place, right. So, 

my function value is there. There is an error due to round off. That is true. Then there is 

the truncation error. Why is there a truncation error? Because approximating my function 

by a m-th order polynomial if the function is a higher order polynomial, if it is an 

exponential function, if it is a hyperbolic function, then my m-th whatever be my m, I am 

not going to approximate that function exactly, right. So, there is always going to be a 

truncation error, right and then there are other rounds of errors which I make during the 

computations, right.  

So, these are the three errors and when we say that if this condition is satisfied, then the 

error due to linear interpolation will be almost equal to 10 to the power minus t. We are 

looking at these two errors only. We assume that error is sufficiently small to be ignored 

and what I want to show is that if this condition is satisfied, the sum of this error and this 

error will be approximately equal to 10 to the power minus t, that is if I use a linear 

polynomial, this will be about 10 to the power minus sum of this and this error will be 

about 10 to the power minus t, right. 

(Refer Slide Time: 45:59) 

 



So, denoting the step size, we are looking at equidistant. Remember, we are now looking 

at equidistant grid and if we denote this step size in the table as h, we want to linearly 

interpolate the function value at an intermediate location say x is equal to x 0 plus p h p 

goes between 0 and 1, where f of x 0 and f of x 1 are known. I know that those simplicity 

I am looking at a point between x 0 and x 1, it can be anywhere in the grid, right, but I 

want to find the function value at a point which lies between x 0 and x 1 and it is at a 

distance p h from x 0.  

From the result f of x minus Q x is equal to that, this we know is true, right. This is the 

error, f of x minus the polynomial approximation to f of x. That is my error x i belongs to 

that interval for linear interpolation. It is clear that this truncation error. This is the 

truncation error f of x minus Q of x mod of that is going to be given by this m plus 1. M 

is equal to 1 because I am using a linear polynomial. So, m plus 1 that is 2 f 2 xi by 

factorial 2 x minus x 0, x minus x 1, right. So, that is my truncation error, but if we go 

back several lectures, when we first started talking about the forward difference operator, 

we were able to show that for the forward difference operator, this relationship is true, 

right. 
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So, I can write that, but before that I want to get an expression for this term in terms of p 

n h. So, x minus x 0, x minus x 1 is equal to x 0 plus p h minus x 0 because x is equal to 

x 0 plus p h minus x 0. That is equal to x 0 plus a h minus x 0 minus h, right. So, that is 



equal to p h into p minus 1 h. Therefore, the truncation error after replacing this thing by 

that thing and replacing that in terms of this, I get that my truncation error is 

approximately equal to that which is equal to this times p into 1 minus p by 2, but since p 

belongs to 0 and 1, why does p belong to 0 and 1. Because it lies between x 0 and x 1, 

right. That is why p belongs to 0 and 1. We can show that this is a quadratic, right and 

the maximum value of this quadratic is one-fourth, right. We are interested in finding a 

bound for this. 

So, we are interested in the maximum value. The right hand side can take the maximum 

value of p times 1 minus p is one-fourth and it occurs when p is equal to half. Therefore, 

we know that this must always be less than delta square f 0 times half into 1 minus half 

by 2. So, it is equal to one-fourth by 2. That is equal to one-eighth. So, this is always less 

than or equal to delta square f 0 by 8, but we have said that this is lesser than or equal to 

that, right. Therefore, mod of R T, the truncation error must be lesser than or equal to 4 

into 10 to the power minus 8 minus t by 8. That is equal to 10 to the power minus t by 2, 

right. 

So, this is how we get a bound on the truncation error. Now that we know the truncation 

error, we want to calculate the error due to round off, right. So, we know that for linear 

interpolation Q of x is equal to f 0 plus p f 1 minus f 0, right. So, at x 0 plus p h, the 

function value is going to be f 0 plus p f 1 minus f 0, right. Just by linear interpolation I 

have f 0 here, I have f 1 here. So, at a point p between 0 and h, that has to be equal to f 0 

plus p times f 1 minus f h f 0. So, that is equal to 1 minus p times f 0 plus p times f 1, but 

we know that each of these function values have been evaluated correctly up to the t-th 

decimal place, right. That is what we assumed that each of these function values are 

evaluated correctly up to the t-th decimal place. 
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Therefore, if the error in these function values are denoted as epsilon 0 and epsilon 1, 

then both epsilon 0 and epsilon 1 must be less than half into 10 to the power minus t 

because it is been rounded off after the t-th decimal place. So, whatever the error is due 

to round off must be less than half into 10 to the power minus t, right since we assume 

that the function values have been correctly rounded off after the t-th decimal place. 

The round off error due to uncertainty input data R x is therefore given by mod of R x is 

equal to mod of this, right. So, 1 minus p time epsilon 0 is the error in f 0 plus p of 

epsilon 1, right. We know that because that is my function value. The error in the 

function value will be the error arising out of this and the error arising out of that, right. 

So, 1 minus p epsilon 0 plus p epsilon 1 which is lesser than or equal to 1 minus p times 

10 because that is bound on epsilon 0, that is the bound on epsilon 1 must be less than or 

equal to 1 minus p times 10 to the power minus t by 2 plus p times 10 to the power minus 

2 t by 2 which I add together, I get half into 10 to the power minus t. 

Now, we saw that the bound on the truncation error was 10 to the power minus t by 2. 

We have found that the bound on the round-off error is also 10 to the power t 10 to the 

power minus t by 2. Therefore, if I add these two bounds, so this must be less than or 

equal to 10 to the power minus t by 2 plus 10 to the power minus t by 2 which is equal to 

10 to the power minus t, right. 



So, that tells me that if this condition is satisfied and I have calculated my function 

values correctly up to t decimal places, then if I do a linear interpolation, then I can be 

assured that the error due to the linear interpolation will be of the same order as my 

round-off right error, but the critical thing is not going to be satisfied easily unless the 

interval is really small for an arbitrary function. What does that mean is that linear 

interpolation I can do with very good accuracy if the interval over which I am doing, the 

interpolation is very small. If my interpolation is large, I cannot use linear interpolation 

which is something probably you long knew by intuition, but this is a mathematical proof 

for that, right. 
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So, this assumes that the other source of error due to the computations with f 0 f 1 is 

sufficiently small, that is linear interpolation can be expected to give satisfactory results 

when this condition is satisfied. However, for this condition to be satisfied, the points x 0 

x 1 through x m must be sufficiently closely spaced, right. They must be really small 

interval given, a fixed interval. This requires knowledge of function values in a narrowly 

spaced grid. That means that if my grid has to be really small, right. 

If I am going to interpolate, my grid has to be very narrow. So, again those of you have 

done finite elements, if you think of p refinement versus h refinement where you make 

the size of the element smaller and you get good accuracy, that is h refinement and then 

the other way of getting at it is p refinement. You increase the order of the polynomials. 



So, exactly that same thing is based on this idea, right. It is exactly that idea. If I have to 

get good result with linear interpolation, then I have to use a really small grid, right. If I 

do not want to use a really small grid, I have to use a higher order polynomial fit, right. 

That is for linear interpolation to give accurate results; many more table values are 

needed. I have just given an example here. 
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I will stop with that. For instance, if you are considering a function l n x and desire that 

the total interpolation error not exceed 10 to the power minus 5, then linear interpolation 

would require a total of 450 points, right. On the other hand, if you would like to get the 

same level of accuracy, if we use quadratic interpolation, then we need only 100 points, 

right. So, that is very important. So, we will continue with this discussion in the next 

lecture.  

Thank you. 


