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Since, civil engineering we are going to talk about Error Analysis. First we want to talk 

about the sources of errors in a numerical algorithm, the first type of error we are going 

to talk about a round off errors. All calculating devices perform finite precision 

arithmetic that is, they cannot handle more than a specified number of digits. For 

instance, if a computer can handle numbers up to s digits only where s is a number then 

the product of two such numbers which in reality have 2s or 2s minus 1 digits. For 

instance if I have a number that has two digits for instance 12 if I multiplied by another 

number which has two digits for instance 12 again I get a number with 144 digits, which 

has got two times 2 minus 1 that is 2 s minus 1 that is three digits can one. 
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For a computer however, we will only store it as in s digit number and use it in 

subsequent calculation using only the first 8 digits of that number. The effect of such 

rounding off may accumulate after extensive calculations, for instance if we are doing a 

series of products every time we do a product we instead of storing 2 s digits if each 

number has s digits instead of storing 2 s digits we are storing s digits. 

So, each time we are losing a certain accuracy, so each time we are introducing 

inaccuracy and as this inaccuracy is by law they made these may become significant. In 

an unstable algorithm as we have seen before in our first lecture, this accumulation of 

this round off errors lead to useless and or grossly in accurate results. 
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So, first type of errors we talked about was round off errors, the second type of error we 

are going to talk about are known as truncation errors. Truncation errors occur when a 

limiting process is truncated before it has reached it is limiting value, a typical example 

of this may be a series which of suppose converges after n terms which suppose we 

truncated that is we cut it off after the first n by 2 terms. So, if the series converges after 

n equal to suppose 10 terms suppose we cut it off after we compute only five terms in the 

series that is n by 2 terms.  
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In that case the last n by 2 terms represent the truncation error the last five terms in this 

series, where n is equal to 10 are not being accounted for, so they represent the truncation 

error. For instance, whenever a non-linear function is linearize we get a truncation error, 

whose magnitude is typically governed by the magnitude of the largest non linear term 

typically the quadratic term. When we linearize the function we ignore all terms which 

higher than, linear higher than first ordered term. And if the first non linear term is the 

quadratic term then the error has also dimension are also second order. 
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For instance here, if we are considering a non linear function of x f of x which is 

linearized about the value x 0, we can write f of x is equal to f of x 0 plus the derivative 

of x f with respect to x evaluated at x 0 times x minus x 0, which is the linear term plus 

the quadratic terms, which represent the truncation error. 
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Examples, next we will consider examples of round off and truncation errors we have 

already seen examples of round off errors, when we tried to integrate numerically y n 

equal to x n by x plus 5 over the intervals 0 to 1. When we tried to evaluate this integral 

for various values of n using the following the recursion formula y n plus 5 y n minus 1 

is equal to y 1 by n.  

(Refer Slide Time: 05:28) 

 

In our first lecture, we found that inherent in stability of this numerical algorithm let to 

accumulation of the round off errors and very quickly may be even after just five 



iterations we were getting results which had no relationship with the reality, that the 

results were totally wrong. We started with y 0 equal to 0.182 and the by the time we 

reach to y 4 we reached we got a value of 0.165, which was totally different from the true 

solution and this we found was because of, the inherent instability of the numerical 

algorithm. We used which allowed these round off errors to pile up and lead to be 

essentially meaningless results. 
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In that case round off errors let to meaningless results due to the instability of the 

algorithm. To see an example of truncation error, we consider numerical integration of 

the definite integral y of x integrated between the limits a and b. 
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Suppose we use the secant approximation to evaluate this integral. We recall from our 

last lecture that the secant method, consists of approximating the non-linear function by 

straight lines connecting successive function values. 
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That is given the iterates x n and x n minus one as well as the function values f of x n and 

f of x n minus 1 we find the next iterate using the following update formula x n plus 1 

equal to x n minus f of x n times x n minus x n minus 1 divided by f of x n minus f of x n 

minus 1. Graphically this means that this non-linear curve in blue is approximated by 



straight lines joining points on the curve, which represent each iterate an it is value and 

its function value. 
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We further assume that in our iteration proceed a using the secant algorithm the steps 

size we use is constant that is successive values of the independent variable x for 

example, x n and x n minus 1 differ by a constant step size h. Thus the area between the 

curve y is equal to f of x and the x axis is approximated with the sum i of h of the areas 

of a series of trapezoids, each with the constant base width of h.  
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That is this area between the curve and the x axis is approximated by these trapezoids, 

each trapezoid representing an iteration in our secant update algorithm. So, each 

trapezoid has of course, constant base h since we are we are iterating with a constant step 

size and since, the total area under the curve is obtained by summing up the area of these 

trapezoids we use the name trapezoidal rule for this integration scheme. 
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Let us see what the trapezoidal rule means, if we have five intervals for evaluating our 

function y is equal to f of x between these two limits. In that case, we can write i of h is 

equal to sum of the first trapezoid plus the sum of the second trapezoid plus third and the 

4th and the fifth trapezoid and as you can see the area of the base in each trapezoid is the 

same the constants step size h while the sum of the parallel sides is given by y 0 plus y 1. 

The truncation error, the error due to the approximation of the non-linear variation of y 

which is equal to f of x with a series of linear variation in our case these trapezoids is of 

the order of h square when h is small.  
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Thus, what it means is that the error between i and i 2 h where i is the exact value of the 

integral and i within brackets 2 h is the result of our trapezoidal integration scheme 

where we have used the step s size of 2 h is going to very pro practically with respect to 

the step size.  

So, it is going to be very nearly proportional to 4 h square while, if the step size is h the 

error between the exact value i and when numerically evaluated value using the 

trapezoidal rule with the constant step size of h i minus i h is very nearly proportional to 

h square. Hence, if we take a ratio of the errors i minus i of h divided by i minus i of 2 h 

we see that this ratio goes as h square by 4 h square h square h square cancels out and we 

get a ratio of 1 over 4. 
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Thus we see that by reducing the step size by half we are getting an error which is just 

one 4th of the error with the step size with the previous step size. So, we reduce the error 

reduce the step size from h to 2 h an our error goes down by a factor of 4. We can we can 

see from this that we can achieve arbitrarily high accuracy by choosing the step size h to 

be sufficiently small, as we keep on reducing h are error is going to becomes smaller and 

smaller and the error is going to reduce quadratically that with step size h 

However, reducing h means increased number of function evaluations and higher 

computational expense. This is because, if interval over which we had computing on the 

integral remains the same as we reduce the step size we have more function evaluation 

we have to evaluate the function at more points and this begins to greater computational 

expense. 

In order to avoid having to take very small step sizes h, instead of using a linear 

approximation which we did here one can try approximating y of x by higher order 

polynomial for instance instead of approximating it y of x by a linear polynomial we can 

user higher order polynomial for instance a quadratic function. 
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Quadratic polynomial for instance the area under the curve y of x may be evaluated by 

approximating y a y x with piece wise quadratic function. That would be an example of 

polynomial or p refinement, where we have approximated the function y of x by a higher 

order polynomial 9 in this case a quadratic polynomial similarly, we can use cubic 

quadratic polynomials to approximate the function y over f x over are intervals over are 

step sizes. 

Alternatively, if we continue with our secant that is our piece wise linear approximation 

while reducing the size of the step h that would be an example of h refinement, these are 

very common ideas in numerical analysis polynomial refinement and step size 

refinement or mesh size refinements. So, these are the two main types of refinements 

which people use to get more accurate solutions.  
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However instead of using either h or p refinement there is an alternative and highly 

efficient method for reducing the truncation error, its basic idea is due to richardson and 

it is known as richardson extrapolation. In our particular problem and where we want to 

evaluated integral within a certain bounds what it means is that if we use if we evaluate 

the integral using the trapezoidal rule if instead of reducing h reducing the step size h or 

increasing the order of our polynomial approximation.  

If we cut persist with our linear approximation that is we persist with the trapezoidal 

rule, but use the trapezoidal rule several times that is for several values of h and we 

combined the values of the integral obtained using the several values of h, we can 

drastically reduce the truncation error.  
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 Let us recall that the trapezoidal approximation to i is equal to integral of y of x 

evaluated within the bounds a to b has an error approximately proportional to the square 

of the step size h. Therefore, while evaluating the integral for two step sizes h and 2 h 

and combining the results, we can come up with a vastly improved solution as we will 

see in the next slide. 
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Since the error is of the order of h square we recall that i of h which is i this is the 

integral which is evaluated using the trapezoidal approximation with step size h, differs 



from the true solution by h square. So, the error is of can be writ10 as k times h square 

where k is a proportionality constant since the error is proportional to h square we can 

write that the error is approximately equal to the proportionality constant k times h 

square. 

Similarly, if we reduce the step size if we use a step size of 2 h then in that case the 

difference between i of 2 h where i is the error with the step size of 2 h and i 2 h is the is 

the integral with the step size of 2 h and i is the exact value the difference between these 

2 values is given by k times 4 of h square. 

Subtracting these 2 we see that 4 times i of h minus i is approximately equal to i of 2 h 

minus i 4 times i of h minus i that is equal to 4 times k h square i of 2 h minus i is again 

equal to k times 4 h square, so these 2 are equal. So, this gives me an equation for the 

exact value of the integral which is i if we solve this equation for i we get three i is 

approximately equal to 4 times i of h, the integral evaluated with the step size of h minus 

i of 2 h that is the integral evaluated with the step size 2 h. This leads me to the 

expression that the exact value of the integral is approximately equal to i of h plus one 

third of i of h minus i of 2 h. 
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Thus by adding the corrective term one third i of h minus i of 2 h 2 i of h we get a much 

better approximation to i with far lesser error than i of h that is, by adding this additional 

term which is one third times i of h minus i of 2 h 2 i of h we get an error we get a 



solution we get a value of the integral which is much closer to the true solution than i of 

h itself.  
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Before entering into further details of error analysis, we would like to define a few terms 

which will need in our discussion. First terms that we want to define we let we let two 

types of errors if we denote a tilde to be an approximate value for a, quantity whose 

exact value is a then we define the absolute error in a is given by the approximate value 

minus to the true value that is the absolute error is a tilde minus a, the relative error on 

the other hand is given by a tilde is equal to a tilde minus a divided by a.  

This of course, assumes that a is not equal to 0 if a is equal to 0 we cannot define the 

relative error. So, the absolute error is just the numerical solution a tilde minus the true 

solution a where the relative error is the numerical solution a tilde minus the true solution 

a divided by the true solution a assuming of course, that the true solution is not equal to 

0.  
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A bound on the magnitude of the error is known as an error bound. Thus a bound on the 

absolute error is a bound on a tilde minus a, it is a bound on the absolute value of a tilde 

minus a, a bound on the relative error on the other hand is a bound on the absolute value 

of a tilde minus a divided by a.  
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The above error definitions hold in general for scalars as well as vectors and matrices. In 

our definition of absolute error and relative error we looked at scalars a is assume to be a 

scalar, but we now, saying that a can as well b a vector or a matrix provided we can 



calculate a value for the magnitude of the vector or the matrix or we can calculate a value 

of the norm of the vector or the matrix.  

Once we can calculate the value of the magnitude of the norm of the vector or matrix we 

can use that norm to define error bounds for the vector or the matrix. 
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That was about errors about relative errors an absolute errors, next we how do we 

measure errors how do we decide how much is the error to decide that, we have to talk 

about the measures of accuracy in order to talk about to measure is of accuracy we want 

to talk about decimals the errors interns of decimals an errors interns of digits, the 

number of digits in a numerical value does not include the zeroes at the beginning of the 

number as these zeroes only help denote where the decimal point should be.  

However, if we are counting the number of decimals one has to include the leading 0es to 

the right of the decimal point. These becomes clear if we considered an examples for 

instance the number 0.00548 has only three digits because, we ignore the two zeroes 

which occur at the beginning of the number however, it has got five decimals since the 

number of decimals include the leading zeroes to the right of the decimal point. 
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If the magnitude of the error whether it be the absolute error or relative error in the 

numerical result does not exceed half times 10 to the power minus t, then we say by 

definition that the numerical approximation, a tilde has t correct decimals. That is if the 

error is lesser than 0.5 times 10 to the power minus t the error is set to have t correct 

decimals.  

Again we considered an example if the absolute magnitude of error does not exceeds a 

half into 10 to the power minus three or 0.0005 then we are certain that the numerical 

approximation has three correct decimals this is evident because, the error is only 

appearing in the 4th decimal place and the a magnitude of the error is less than 0.0005. 

So, the first three decimals in a tilde in the numerical approximation must be correct, so 

the number has three correct decimals a numerical approximation has three correct 

decimals. 
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The number of digits in a tilde which occupy positions where the unit is greater than or 

equal to, half into 10 to the power minus t of course, we ignore the zeroes at the 

beginning of the number other number of significant digits of a tilde. Suppose, we have a 

numerical solution 0.001234 and we know that, the numerical solution has an error of 

magnitude 0.000004 we can see that 0.000004 is of course, less than 0.000005 which is 

equal to half times 10 to the power minus 5, thus we can see there are error is in this 6 

decimal place because the error is in the 6 decimal place. 
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So, we can see that the we have five correct decimals, that is here in this solution t is 

equal to five and the solution 0.001234 is correct to 5 decimals the number of digits in 

0.001234, which occupy positions where the unit is greater than or equal to, half in to 10 

to the power minus three are the first five digits this should actually be half in to 10 to 

the power minus five I apologized for the type, but the number of digits 0.001234 which 

occupy positions where the unit is greater than or equal to half in to 10 to power minus 5 

are the first five digits. However, out of the first five digits the first 2 digits are 0 the first 

2 digits are 0 hence the number of significant digits is five minus 2 is equal to three. So, 

we have three significant digits in our numerical solution 
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We have seen previously that numerical solutions are severely affected by round off. 

However, the way we do the round off is critical an f can affect the severity of the errors 

arising from round off if, one simply chops of all the decimals to the right of the t th 

decimal place then the round off errors have a 10dency to accumulate, suppose our 

solution our number has s digits.  

but if we suppose if we chop it of after the t th decimal place then we all the numbers 

which followed the t th decimal place get removed from a numerical solution, but if we 

do this chopping arbitrarily if we do this round off arbitrarily then we will see that these 

round off errors have a 10dency to accumulate. 
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This is because the errors consis10tly have a sign opposite to the true value, for instance 

if the true solution a is known to be always positive, after round off by chopping a tilde 

minus a is always going to be negative. Because after chopping a tilde has to be less than 

a because we have got rid of the additional digits which follow the t th digits, so a tilde 

has got to be less than a and a tilde minus a will always be negative, thus the error from 

chop one chopping operation has no chance of canceling out the error from a subsequent 

chopping operation. 
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Similarly, if the true solution a is known to be always negative, after round off by 

chopping a tilde minus a is always going to be positive because, a tilde is going to be less 

negative than a, so a tilde minus a is going to be always positive, so the errors from 

repeated round off operations will keep accumulating. The accumulation of the round off 

errors depending on the number of significant digits may quickly render the numerical 

solution meaningless after a certain number of iterations.  
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A numerical solution can be considered arbitrary or meaningless, when the magnitude of 

the cumulative error approaches the true solution, round off errors due to chopping after t 

decimals can lead to errors as large as 10 to the power minus t. This can be seen for 

instance if we consider the number 0.5559999 up to infinity, then if we chop this number 

after three decimals that is we store only 0.0555 in our computer.  

In that case the error has error is of magnitude 0.00099999 up to infinity and the limiting 

value of the error, we can see is one in to 10 to the power minus 3, that is round off errors 

to due to chopping after three decimals can lead to errors as large as 10 to the power 

minus 3.  
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Thus chopping is seen to have severe problems as an alternative to chopping many 

computers perform what is known as rounding. The rules for rounding are as follows 

there are three rules, the first rules says if the digit to the right of the t th decimal place is 

less than half in to 10 to the power minus t then the t th decimal place is left unchanged, 

for instance if we are considering t equal to three if the digit to the right of the third 

decimal place is less than 0.0005 that is half in to 10 to the power minus three which is 

0.0005 then the third decimal place is going to be left unchanged.  
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If the digit to the right of the t th decimal place on the other hand is greater than half in to 

10 to the power minus t, then the t th decimal place is raised by one, for instance in our 

example if our number is 0.3254 then the first rule would apply the first rule would tell 

me I have to approximate 0.3 to 54 as 0.3 to 5. Because, the digit to the right of the t th 

decimal place is less than 5 in to 10 the power minus 4 however, if my number is for 

instance 0.3256, then we are going to we are going to store 0.3 to 56 as 0.3 to 0.6 

because, the number to the right of the t th. 

In this case the third decimal place is 0.0006 which is greater than 0.0005 which is half 

in to 10 to the power minus 3 then because of, that we have raised that t th decimal place 

we have change 0.325 to 0.326, if the digit to the right of the t th decimal place is exactly 

equal to half in to 10 to the power minus t then the t th decimal place is raised by one if it 

is odd and left unchanged if it is even. So, these are our three rules for rounding. 

We can we will see that these rules result in lower error magnitudes for instance, let us 

consider rule three the rule three says that if the let us go back and look at rule three 

again which says that if the digit to the right of the t th decimal place is exactly equal to 

half in to the 10 to the power minus t. Then the t th decimal place is raised by one if it is 

odd and left unchanged if it is even. 
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Since the probability of the t th decimal place being odd or even is equal each probability 

being equal to half, if rule three is followed the resulting error will be positive or 



negative equally of10 because, the possibility of the t th decimal place being odd or even 

is equal. So, the resulting error we get is also going to be positive or negative equally 

of10 the errors will thus 10d to cancel off and not accumulate, if the above rules are 

followed then the error due to rounding off lies in the interval minus half in to 10 to the 

power minus t to half in to 10 to the power minus t. 
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This is to be compared with the fact that if we do chopping instead of using around of 

algorithm which we just described we can get errors as large as 10 to power minus t, 

instead of 10 to the power minus t. Now, are errors lie in the range minus half 10 to the 

power minus t to half 10 to the power minus t, the superiority of rounding over chopping 

is thus clearly established in addition rounding errors have a greater tendency to cancel 

each other out. We should this explicitly in case of rounding rule three however, the 

combined effect of rules one and 2 also favor the cancellation of errors. 
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This is because, the probability of the t plus 1 th decimal being greater than the t th 

decimal is equal to the probability of the t plus 1 th decimal being less than the t th 

decimal. The errors arising from rules one and 2 therefore, have opposite signs and 

therefore, have a tendency to cancel each other out.  
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However, irrespective of whether rounding or chopping is used, for a numerical 

algorithm with a large number of operations round off errors due to one computation are 

bound to propagate to subsequent computations. The errors in one computation are going 



to affect the results of the subsequent computation this is known as propagation of errors 

or error propagation the subject of error propagation is complex  

However, it is possible to come up with relatively simple bounds on the error for basic 

operations such as addition subtraction multiplication and division. The idea being that if 

we can come up with simple bounds for the basic operations and since all numerical 

methods, are basically a combination of the simple operations of addition subtraction 

multiplication and division. if we know the errors due to each of these individual 

operations we can come up with an error for the entire numerical algorithm. 
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So, if we can again going back if we can bound these errors for the simple operations we 

can establish bounds for our final numerical solution, in case we compute the error for 

each intermediate step if we compute the error for each intermediate step and we keep 

adding we keep track of those errors. If we do some book keeping and if keep track of 

the those errors then we can get the final error in our numerical solution consider for 

instance x1 tilde and x 2 tilde which are approximate numerical solutions for x 1 and x 2. 

Supposing also that the magnitude of the error for x 1 is epsilon 1 and the magnitude of 

the error in x 2 is epsilon 2. This we know that the magnitude of the error in x 1 in is in 

epsilon 1 and the magnitude of the error in x 2 is epsilon 2 now, suppose knowing those 

two values knowing the magnitudes of the error in x 1 and x 2. 
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We can write x 1 is equal to x 1 tilde plus minus epsilon 1 and x 2 is equal to, x 2 tilde 

plus minus epsilon 2 that is x 1 can be can be as low as x 1 tilde minus epsilon 1 and can 

be as high as x 1 tilde plus epsilon 1 similarly, x 2 can be as low as x 2 tilde minus 

epsilon 2 and can be as high as x 2 tilde plus epsilon 2. Hence the smallest possible value 

for x 1 is equal to x 1 tilde minus epsilon 1 and the largest possible value for x 1 is equal 

to x 1 tilde plus epsilon 1.  
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Similarly, the smallest possible value for x 2 is also x 2 tilde minus epsilon 2, where 

epsilon 2 recall is the error in x 2 and the largest possible value for x 2 is x 2 tilde plus 

epsilon 2. Since x 1 minus x 2 cannot be greater than the largest value of x 1 minus the 

smallest value of x 2 the magnitude of x 1 minus x 2 cannot exceed the largest value of x 

1 minus the smallest value of x 2. We can write x 1 minus x 2 is bounded on the right 

that is bounded has an upper bound x 1 tilde plus epsilon tilde minus x 2 tilde minus 

epsilon 2 x sorry this should not be epsilon one tilde it is actually epsilon one, so x 1 tilde 

plus epsilon one minus x 2 tilde minus epsilon 2.  
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Similarly, since x 1 minus x 2 cannot be less than the smallest value of x 1 minus the 

largest values of x 2, we can write x 1 tilde minus epsilon 1 minus x 2 tilde plus epsilon 2 

must be lesser than or equal to x one 1 x 2 or x 1 minus x 2 is bounded from below 

bounded. On the left by x 1 tilde minus epsilon 1 minus x 2 tilde plus epsilon 2 because, 

x 1 tilde minus epsilon 1 is the smallest value of x one smallest possible value of x 1 and 

x 2 tilde plus epsilon 2 is the largest possible value of x 2. 

Combining equations 1 and 2 combining this equation with this equation we can get a, 

bound or x 1 minus x 2 which gives me a lower bound as well as an upper bound which 

tells me x 1 minus x 2 is bounded from below by x 1 tilde minus x 2 tilde minus epsilon 

1 plus epsilon 2, while it is bounded from above by x 1 tilde minus x 2 tilde plus epsilon 

one plus epsilon 2 using a similar argument now, instead of considering subtraction, 



which we considered previously instead of considering x 1 minus x 2, if we try to get 

bounds for addition that is we try to get bounds on x 1 plus x 2. By using a very 

similarly, argument we can show that x 1 plus x 2 is also bounded from above and below 

by this by x 1 tilde plus x 2 tilde minus epsilon 1 plus epsilon 2 from below and x 1 tilde 

plus x 2 tilde plus epsilon 1 plus epsilon 2 from above. 

Combining bounds 3 and 4 we get norm of that is absolute value of x 1 minus x 2 minus 

x 1 tilde minus x 2 tilde, must always be less than epsilon 1 plus epsilon 2 and x 1 the 

bound on x 1 plus x 2 minus x 1 tilde plus x 2 tilde is always lesser than or equal to 

epsilon 1 plus epsilon 2, thus the error due to subtraction is bounded by, epsilon plus 

epsilon 1 plus epsilon 2. Similarly the error due to addition is also bounded by epsilon 

one plus epsilon 2. 
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We can write down the above result in terms of the following theorem, which states that 

the bounds for the absolute error due to addition or subtraction of 2 real numbers in our 

case x one and x 2 are given by the sum of the bounds for the absolute error in each 

number, the sum of the bounds on the on the absolute error in each number which is 

epsilon 1 which is the absolute error in x 1 and epsilon 2 which is the absolute error in x 

2.  

A similar bound can be obtained for multiplication or division of 2 real numbers, but in 

this case the bound involves relative rather than absolute error. Till now, we have been 



considering absolute errors in evaluating our bounds, but in order to obtain bounds for 

multiplication or division of two real numbers we have to consider relative rather than 

absolute error.  
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Again recall form our definition of relative error r due to the approximation of a real 

number x by x tilde we can define, the relative error as r is equal to x tilde minus x 

divided by x or x tilde is equal to x times of one plus r. Suppose x 1 tilde and x 2 tilde are 

approximate numerical solutions for x 1 and x 2 and r 1 and r 2 are the relative errors in 

x one and x 2. In that case we can write the product x 1 tilde times x 2 tilde as x one 

times 1 plus r one recall x tilde is equal to x 1 plus r. So, x 1 tilde is equal to x 1 times 

one plus r 1 times x 2 tilde which is x 2 times one plus r 2 which gathering terms. 
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We can write, x 1 times x 2 times 1 plus r 1 into one plus r 2, thus the relative error in x 1 

x 2 is given by again from our definition the relative error will be given by x 1 tilde times 

x 2 tilde minus x one x 2 divided by x one x 2. So, if we take x 1 tilde x 2 tilde we 

subtract x 1 x 2 from it we get x 1 x 2 times 1 plus r 1 times 1 plus r 2 minus x 1 x 2 

dividing the whole thing by x 1 x 2, we get 1 plus r 1 times one plus r 2 minus 1 which is 

equal to r 1 plus r 2 plus r 1 r 2. 

Suppose r relative errors in x 1 and x 2 are the much smaller than one in that case we can 

write r 1 plus r 2 plus r 1 r 2 to be approximately equal to r 1 plus r 2. Similarly, the 

relative error in the quotient can be evaluated for instance, x 1 tilde by x 2 tilde which is 

the quotient of x 1 and x 2 in terms of it is numerical solutions x 1 tilde and x 2 tilde can 

be written as x 1 times 1 plus r 1 divided by x 2 times 1 plus r 2, the relative error in the 

quotient will then be equal to x 1 tilde divided by x 2 tilde minus x 1 by x 2 divided by x 

1 by x 2. 

Which we if perform that operation we get 1 plus r 1 divided by 1 plus r 2 minus 1 which 

is approximately equal to r 1 minus r 2 divided by 1 plus r 2, which is not approximately 

which is actually exactly equal to r 1 minus r 2 divided by 1 plus r 2 and which is 

approximately equal to r 1 minus r 2 if r 2 is much less than one.  
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Thus if rho1 and rho 2 are bounds on the relative errors r 1 and r 2 then it is clear that rho 

1 plus rho 2 is the best upper bound for both r 1 plus r 2 as well as r 1 minus r 2. If we 

want to we want to find bounds on r 1 plus r 2 which is the relative error due to 

multiplication and r 1 minus r 2 which is the relative error due to division we know that 

the relative error due to r 1 plus r 2 is bounded by the sum of the errors in r 1 and r 2 rho 

1 and rho 2.  

Thus if rho 1 and rho 2 are bounds on r 1 and r 2 then rho 1 plus rho 2 is the best upper 

bound for both r 1 plus r 2 as well as r one minus r 2. From this we get the following 

theorem, which states that in multiplication and division of real numbers the bounds of 

the relative errors in the operations are added to get a bound on the error due to the 

operation, basically which tells me that the bound of the error due to multiplication 

division is bounded by the sum of the relative errors in x 1 and x 2.  
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Error analysis enables the user to make crucial decisions that have important bearing on 

the accuracy and efficiency of the calculation. For instance if the product x 1 x 2 is to be 

calculated and x 1 is known up to three significant digits and the true value of x 1 is of 

the order 1 and we have to decide to what degree of accuracy we need to calculate x 2 we 

already know the value of x one and we know that it is accurate up to three significant 

digits and then we have to calculate the value of x 2 to in order to minimize the error in 

the product x 1 x 2. We from error analysis it is clear to us that it does not make a lot of 

sense to use numerical methods to calculate x 2 to say six significant digits. 
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Why is that this is because we know that the relative error in x 1 x 2 may be as high as 

half in to 10 to the power minus 3 because, our error in x one is because x 1 known only 

up to three significant digits. So, the error in x one is bounded by half in to 10 to the 

power minus 3 and since the error in the product is bounded by the sum of the errors in 

the operands themselves, in that case the error in x 1 x 2 can be as high as half in to 10 to 

the power minus 3.  

This follows from the fact as we mentioned then the bound on the relative error in x one 

x 2 is given by the sum of the sum on the bounds on the relative errors in x one and x 2. 

So, there is no sense in calculating x 2 to an accuracy greater than three significant digits 

However it does make a lot of sense of ensure that the relative error in the calculation of 

x 2 is not in excess of half in to the 10 to the power minus 3 that is the error in x 2 should 

not be more than three significant digits since that is going to worsen the relative error in 

the product. 
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Since the computational cost involved in the numerical calculation of x 2 tilde depends 

on the degree of accuracy with which we wish to calculate x 2 tilde. Thus error using 

error analysis we can find out to what degree of accuracy we wish to calculate x 2 tilde 

this gives us important information important information which helps us improve the 

efficiency as well as the accuracy of our numerical analysis. 



So, at the end of this lecture let us sum up, so we have looked at different types of errors 

and we have looked at absolute errors we have looked at relative errors, we have looked 

at how bounds on those errors. We have found out how we can bound errors absolute 

errors as well as relative errors and we have shown how we can use those bounds to find 

out the total error estimate for a numerical solution, by bounding individual operations 

such as addition, multiplication, subtract, addition, multiplication, subtraction and 

division. We can actually find bounds on the total numerical solution next time we are 

going to continue our discussion on error analysis and look at how knowing, if we know 

the errors on individual variables x 1 through x n. And we can find out the error on y 

which is a function of individual variables x 1 through x n. 


