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Lecture - 9 

Conjugate Gradient Method – II 
 

On numerical methods in civil engineering we will continue with our discussion on 

conjugate gradient methods. Last time, we looked at the method of conjugate directions 

and at the end of the lecture; we said that the conjugate gradient method is just a 

specialisation of the method of conjugate directions. 
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So, what was the method of conjugate directions; well, with the why do we need 

conjugate directions well we started with the postulate that the efficiency of any gradient 

based method improve significantly if we do not need to retrace our steps in the solution 

space right. That that was not in that was not a feature of the steepest gradient method; 

that is steepest descent method that is why we found that we often have to retrace our 

steps. 

But the advantage of the method of conjugate directions was that the steps we took we 

do not have to take those steps again; we never retrace our steps the steps we take are 

unique and we take them once only. The conjugate direction method ensures this because 

the search directions are mutually independent and constitute a basis for the ‘n’- 



dimensional solution space. Indeed we found that the search directions are A orthogonal 

to each other, where A is some sort of metric in that solution space right a measure of 

distance in the solution space; which with which we define the inner product in the 

solution space and therefore, the norming the solution space. 

So, these search directions are A orthogonal to each other which ensures that the function 

is minimised along each search directions. So, we found that. So, long as soon as we 

ensure A orthogonality then that automatically ensures that the function is minimised 

along a search directions and we further found that when we take subsequent step; 

subsequent search directions; subsequent iterations there are in the in a previously 

traversed search direction never increases right. So, we systematically keep on reducing 

the error in each of those search directions right and they never they never recur again 

and because of this we had we found that in the that the conjugate gradient method it is a 

conjugate directions method is assured to converge in n iterations. 

Right it is sure to converge in n iterations but that is true in the ideal case and the real 

world nothing is as we plan because of accumulation of round of errors things like that 

the conjugate directions will no longer be exactly satisfy the orthogonality condition 

right. Because of that convergence, will be somewhat lesser the convergence rate will be 

somewhat lesser right we will talk about those things specifically in the context of the 

conjugate gradient method. 
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The method of conjugate gradients is nothing but the method of conjugate directions, 

where the search directions are constructed by conjugation of the residuals by setting u i 

is equal to r i. First let us take a step back, so when we discussed the conjugate directions 

method, I pointed out that a major disadvantage of the conjugate directions method is 

that at each step; at each iteration i need all the previous directions i need all if at a 

iteration i i need all the directions from 0 to i minus 1. In order to find my in order to do 

my Gramm-Schmidt orthogonalization right and because of that we have to store all 

those directions we have to carry all those directions around and at each iteration we 

have to come take the projection along those directions. 

So, its for have large problem the computational cost is enormous and for the conjugate 

gradient method we said its great advantage would be that we do not need to carry the 

old directions around why is that? So, we will see why that right is? so the one the first 

step the key step in achieving that is to make sure that we choose our search directions 

from the residual remember earlier in the conjugate direction method we had this set of 

vectors u i, which formed linearly independent set in my n dimensional space right and 

then I use to compute my conjugate directions from those set of vectors u i but each step 

doing Gramm-Schmidt orthogonalization projecting out the part which is parallel to or 

which has got which has got any components along the previous directions retaining only 

the part which is orthogonal to the previous directions right. 

That is what we did for the conjugate gradient for the conjugate directions method now 

the starting point of the conjugate gradient method is saying that well that set u i is not 

just any arbitrary set of vectors in my n dimensional space any arbitrary set of linearly 

independent vectors in my n dimensional space they are a specific set of vectors and 

what are those specific set of vectors they are my residuals right. 

So, the residuals I am going to chose my conjugate directions from my residual vectors 

right why do we do that well the advantage is that residuals have the property that they 

are orthogonal to the previous search directions we obtained that at the end of our last 

lecture we obtained this result that each residual at step at iteration step i is orthogonal to 

all the previous search directions 0 1 2 3 up to i minus 1 right. 

So, since the residuals have the property that they are orthogonal to the previous search 

directions construction of the search directions from the residual is guaranteed to ensure 



that the new search direction is orthogonal is linearly is a linearly independent search 

direction. It is a new linearly independent search direction right. So, because the 

residuals have this wonderful property that they are orthogonal to all the previous search 

directions. So, if I construct my new search direction at step i from my residual it 

becomes a lot simpler right because of that orthogonality property when will this process 

breakdown well when the residual becomes 0. Suppose during my iteration, my residual 

becomes 0 then I cannot construct my new search direction from the residual but then 

that is not a problem why because the residual is 0; that means, my iteration has 

converged right. I have reached the true solution So, I do not need the residual any more 

I do not need any more search directions right. 
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So, since the search directions are constructed from the residuals, the subspace spanned 

by r 0 r 1 through r minus 1 is identical to the subspace spanned by d 0 d 1 through d d i 

minus 1 right because each of those search directions are constructed from the residuals. 

So, whatever be the space spanned by the residuals right that is the same as the subspace 

as the space spanned by the search directions right. Recall that we showed earlier that the 

residual r i is orthogonal to all previous search directions d j that is r i transpose d j equal 

to 0 for all i greater than j right for all j less than i right. Hence, r i transpose r j is equal 

to 0 for all i greater than j, why because r i is because r i is r i is orthogonal to all the d js 

right. And the space spanned by the d js is equal to the space spanned by the rs like the 

previous r like r r 0 through r i minus 1 right. 



So; that means, each of those residuals must be orthogonal to the previous residuals 

right. So, each of those residuals are orthogonal to the r for the previous residuals indeed 

r i transpose r j is equal to 0 for all i naught equal to j because the subsequent residuals 

are also going to be orthogonal to the current residuals. So, basically all the r residuals 

are going to be orthogonal right. Subsequent residuals, also have to be normal to the 

space spanned by the previous search vectors meaning the previous such residuals right. 

So, r i transpose r j equal to 0 for all i naught equal to j. 
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Let us recall that r i is equal to minus A e i so we obtained that result earlier right so; that 

means; r i is equal to minus a x i the iterate value minus the true solution x, which is 

equal to minus a x i minus 1 plus alpha minus 1 d y d. I have just used the update 

formula for my x minus x right and then i put x i minus 1 and x together that gives me e i 

minus 1. So, I have minus A e i minus 1 plus alpha minus 1 A d i minus 1 and again A e 

i minus 1 is nothing but minus A e i minus 1 is nothing but r i minus 1. 

So, I have r i minus 1 plus alpha minus 1 A d i minus 1. So, what does that tell us? That 

tells us that each residual is a linear combination of the previous residual and A d i minus 

1. So, each residual is a linear combination of the previous residual and the vector which 

i get by taking the product of A and the previous search direction d i minus 1. Now, since 

both r i minus 1 and d i minus 1 belong to subspace d i recall what is the subspace d i, the 

subspace d i consists of all the search directions d 0, d 1, d 2, d 3 up to d i minus 1 right 



up to d i minus 1. and since we know that r i minus 1 and d i minus 1 r’s and d’s belong 

to the same subspace right. 

So, both r i minus 1 and d i minus 1 belong to the subspace d i right the subspace d i plus 

1 is obtained by combining the spaces d i and A d i why just look at this equation right r i 

is equal to r i minus 1 which we know belongs to the subspace d i plus a times d i minus 

one. So, it is d i minus 1 again belongs to the space d i. So, if I have the space d i and i 

operate on that space with the A matrix right then I get another space A d i and I put 

those two spaces together I get my new space d i plus 1 to which my r i as well as my d i 

are going to belong right. 

So, hence by recursion D i is the subspace spanned by the. So, I go on doing this right. 

So, d i d 1 is nothing but d 0 plus A d 0 right d 1 is equal to d 0 plus A d 0. Similarly, we 

do we doing that? So, eventually we can see that any space d i is spanned by the basis d 0 

A d 0 a square d 0 a minus 1 d 0 because every time we operate with A and D on the 

previous d i on d i minus 1 we get d i right. So, we continue this and by recursion we can 

see d i you can write it as like this as spanned by these vectors right or equivalently the 

subspace with basis r 0 A r 0 a square r 0 and So, on because these are the same 

subspaces. 
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So, these subspaces which are created by repeatedly applying A matrix to a vector are 

known as Krylov subspaces. So, I start with a single vector and I operate on that vector 



with a matrix and then I operate again with that same matrix and keep on doing it right 

and I am assured that those made those vectors that I form that I get by operating each 

time are linearly independent they are a basis right. So, that sort of subspace is known as 

a Krylov subspace right since r i plus 1 now. So, that that is the just a matter of 

terminology let us take a step back since r i plus 1 is orthogonal to r i which we know 

right from our little result out here right, from my little result out here r i plus 1 is equal 

to sorry r i plus 1 is orthogonal to r i; that means, r i plus 1 must be orthogonal to D i plus 

1 why D i plus 1 has what are those what are the vectors which are the basis of D i plus 1 

r 0 r 1 through r r i minus 1 right. 

Those through r i right D i plus 1 through r i right. So, since r i plus 1 is orthogonal to r i. 

So, r i plus 1 must be orthogonal to D i plus 1 right, but A d i is included in D i plus 1. 

We just found that right because D i plus 1 is nothing but right. So, so hence A r i plus 1 

must be orthogonal to A D i right since r i plus 1 is orthogonal to D i plus 1 D i plus 1 is 

included A d i is included in D i plus 1 right hence r i plus 1 must be orthogonal to A D i 

what this makes finding a new search direction d i plus 1 from my new search direction d 

i plus 1 from the residual at the i plus 1 step r i plus 1 very easy why because r i plus 1 by 

definition it is orthogonal to A D i right and hence a orthogonal to all the D i right what 

does D i, D i consist of D i spanned by these vectors right d 0 d 1 d i minus one. 

So, r i plus 1 is orthogonal to A D i; that means, it is A orthogonal to all these previous 

vectors d i minus 1 right. So, that is that is the key idea right it is because it is a 

orthogonal to all those d i minus 1 vectors by construction. I do not have to carry all 

those d zeroes d 1 d i minus 1 vectors along right this is automatically my new residual is 

automatically orthogonal to all those previous vectors right. 

So, all I need to do is to ensure orthogonality of r i plus 1 with my with D i right with r i 

plus 1 with d i right. So, so that is the Gramm-Schmidt procedure need only ensure A 

orthogonality with d i right i plus 1 has to be orthogonal to all the previous search 

directions. It is orthogonal it is orthogonal to all the previous search directions d 0 d 1 

through d i minus 1. So, the only thing that that will make r i plus 1 D i plus 1 is to 

ensure that r i plus 1 is orthogonal to D i right then I will get r i plus 1 it becomes d i plus 

1 right. So, the Gramm-Schmidt orthogonalization becomes a lot simpler. 
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So, only one of the Gramm-Schmidt coefficients, which normally are given by this right 

I can be anything j varies from 0 to i minus 1 by definition need to be evaluated. we can 

see we can get further verification; we can verify this further by taking the dot product of 

this expression right, r j plus 1 equal to r j minus alpha j A d j which we just obtained last 

here right did we just obtain here.  

So, we take this expression right and take the dot product of this expression with r i right. 

So, what do i get i get r i transpose r j plus 1 is equal to r i transpose r j minus alpha j, r i 

transpose A d j. So, this gives me r i transpose A d j equal to this minus this divided by 

alpha right. Now, we know that this part when i equal to j right this term is going to 

survive this term is going to survive this term is going to be 0 because i is this is i j plus 1 

right. So, this term is going to go to 0 in that case r i transpose A d j will be given by one 

by alpha i r i transpose r i. On the other hand, when i equal to j plus 1 then this term is 

going to go to 0 right and this term is going to survive and this term is going to be equal 

to minus 1 by alpha i minus 1 r i transpose r i right. 

In all other cases, this term is going to be 0 right because if r if j plus 1 is not equal to r i 

or j is not equal to i then neither of these terms are going to survive because of the 

orthogonality of my residuals right. So, in the other cases this term is going to be 0 right 

So, what do I get I get that beta i j is equal to and we are not interested in beta i i right we 

are only interested in beta i j, where j is less than i right where j is goes from 0 to i minus 



1 right. So, we are not interested in this term right we are not interested in the first 

expression, we are only interested in the second expression right and because when we 

substitute that second expression out here right. For r i transpose A d j then i get beta i j 

is equal to one by alpha minus 1 r i transpose r i divided by d i transpose A d i minus 1 

and this is this is going to be true, when j is equal to i minus 1 and is going to be 0 for all 

other j s right. 
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So, like we will like to simplify a little bit further because by recalling that alpha i minus 

1 is equal to this, which we obtained earlier right substituting this expression for alpha i 

minus 1 out here right out here. we get beta i i minus 1 is given by this right but we also 

obtained earlier d i minus 1 transpose r i minus 1 is equal to r i minus 1 transpose r i 

minus 1 and hence we can get beta i i minus 1 in this simple form right. 

So, that is the only Gramm-Schmidt coefficient which is going to be non zero and it is 

given by the by the residual and the previous residual right. Since, only beta i i minus 1 

is required it is no longer necessary to store the old search vectors in order to ensure 

conjugacy of the search directions. These not only reduces storage, but also drastically 

curtails the number of computations necessary calculate the new search direction right. 
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So, the final form of the conjugate gradient algorithm is as follows so we have 

summarised it here. So, we start with a certain initial search direction and what is my 

initial search direction it is my initial residual and what is my initial residual that is b 

minus A x 0 right then I compute my step size for instance for 0 I compute alpha 0 equal 

to minus r 0 transpose r 0 d 0 transpose A d 0 all quantities I know right. On the left hand 

side all the quantities I on the right hand side I know all the quantities right. 

So, I know my alpha 0 then I compute my x 1 x 1 is equal to x 0 plus alpha 0 d 0 right 

and once as soon as i compute my x 1 I can compute my new residual right because my 

new residual is nothing but A times x i plus 1 minus b which I can simplify and write it 

like that r r 1 I can write as r 0 minus alpha 0 A d 0 right. So, I compute my new residual 

i find out my new Gramm-Schmidt coefficient using this expression right r 1 transpose r 

1 divided by r 1 transpose r 0 transpose r 0 right that gives me my new Gramm-Schmidt 

coefficient beta 1 0 right beta 1 0 then I will compute d 1 how will I compute d 1? Well I 

compute it from r 1 plus beta 1 0 d 0 right and continue like this. 
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Now, let us look at convergence of the conjugate gradient algorithm we know that by 

construction for the n dimensional problem the conjugate gradient algorithm is bound to 

converge in n iterations right because that is an n dimensional space I am traversing in 

each time in an independent direction and by the time I end up I have spanned the entire 

space. So, I must and every time I go along a direction I make sure that the error in that 

direction is goes to 0 right. So, I systematically chop of my errors right. 

So, the end of n iterations I am bound to get 0 errors normally; however, floating point 

errors accumulate with number of iterations causing the residuals to lose orthogonality 

and hence the search directions to lose A orthogonality right residuals lose orthogonality 

search directions. Since, search directions are search directions are obtained from the 

residuals the residuals also the search directions also lose a orthogonality. 

So, hence, so that is why it is important to improve convergence. So, one might say why 

you need to study convergence of this CG algorithm we know that it is sure to converge, 

but if you converge in fewer number of iterations right instead of taking the full n which 

is of course, I will talk about that. So, by reducing the number of iterations you can 

reduce the accumulation of round of error and the less round of error the better is the 

performance of the algorithm because we are assured of orthogonality of the residuals; 

residuals will be more orthogonal less round of more orthogonal the search directions 

will be more a conjugate right. 



So, the performance is going to be better right. So, that is why it is important to study the 

convergence of the conjugate gradient algorithm. Another point is that the conjugate 

gradient method is typically used for very large problems with very large ends right, 

where my where my direct solution technique is gauss elimination and variance of that 

are going to not going to give are going to be extremely expensive right. 

So, if I have a 100000 by 100000 dimension matrix that I want to solve then; that means, 

that I know that it is going to converge in 100000 iterations and that also if there are no 

round of errors but why go for hundred that also is very expensive right. So, wish we 

wish to cut down that expense also you do not want to take 100000 iterations we want to 

converge in a fraction of those iterations right and let us see how we can do that if it is at 

all possible right. 
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We saw earlier that at each step of the algorithm the error e i is a linear combination of 

my original error e 0 and d 0 through d i minus 1. We saw that last class right we may we 

spend some time in obtaining that expression that what at any iteration e i at any iteration 

I can write the error e i as the error initial error plus a linear combination of my search 

directions up to that point right. 

So, e i and the subspace d i why because subspace d i spans all those directions d 0 d i 

minus 1 but d i is equal to is this is this space spanned by the vectors r 0 A r 0 through A 

i minus 1 r 0 i just showed that little time little while ago right. And it is also this space 



spanned by this why because r 0 is equal to a time e 0 right residual is equal to a times 

the error we know that already right. So, this is the also d i is the space spanned by a is 0, 

a square e 0 a cube e 0 through A i A 0 right you can see there is an additional a here 

right 

So, it is the space spanned by these vectors because of this I can write e i as a 

combination as a combination of these vectors A 0 A square e 0 and. So, on and A i by A 

i e 0 right. So, it is a polynomial in the matrix a right. So, e i is equal to P i A operating 

on a 0. So, where P i A is the polynomial in a because you see all these A powers of A 

appearing here right. 

So, it is polynomial in a operating on A 0 which satisfies the condition p 0 A equal to 1 i 

is the iteration number here right I is the iteration number in the initial I mean at the zero 

th iteration p 0 A has got to be equal to 1 otherwise at this identity is not going to be 

satisfied right and the coefficients of P i A depend on the values of my conjugate 

gradient coefficients basically my step size and my Gramm-Schmidt coefficients right. 
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So, expressing e 0 as a linear combination we can also write e 0 as a linear combination 

of the n orthonormal Eigen vectors of a right we did that earlier right A is a symmetric 

matrix its Eigen vectors form an orthonormal basis. So, I can always write the error e 0 

as a linear combination of my Eigen vectors of a right. So, A e 0 I can write as sigma j 

equal to 1 to n xi j e j v j right, where v j are the orthonormal Eigen vectors of a. 



Therefore we can write e i as e i is equal to P i A e 0, which we just saw right which is 

equal to replacing e 0 by sigma xi j v j. I can write it like that right and then I have this 

polynomial in a operating on v j right, remember what is P i A it is a polynomial in A. 

So, it has got multiples of a right a square a cube A A four A n. So, on A i right up to A i 

right. 

 So, each of those As operating on v j is going to give me lambda j v j the corresponding 

Eigen value because v j is an Eigen vector and if I have a cube operating on v j what am I 

going to get? I am going to get lambda j cube operating on v j right a j a cube operating 

on v j is equal to a square operating on lambda j v j is equal to a operating on lambda 

square v j is equal to lambda cube v j right. 

So, this polynomial in A becomes quickly a polynomial with same polynomial in my 

Eigen value is lambda right. So, from A matrix a polynomial in the matrix say this 

becomes A polynomial in my Eigen values right. So, this is true right. So, let us see what 

A e i becomes A e i becomes xi j P i lambda j operating on a v j. So, I get lambda j v j 

right, A e i is equal to this. So, because just a j operating on v j that gives me another 

lambda j right lambda j v j and therefore the norm of e i by norm I mean e i transpose A 

e i right because whenever i compute norm i do it with respect to that metric right that 

metric is given by a right. 

So, norm of e i square is given by sigma i equal to 1 xi j square P i lambda j square 

lambda j right. So, basically just take the dot product of this with this right of this vector 

with this vector and we are going to get this vector sorry this expression by this scalar 

right dot product vector has to be a scalar. So, so this is this is my error expression for 

the conjugate gradient method. 

It says that at any step at any step in my iteration the error the norm of the error right 

squared is given by this expression right some coefficients right some coefficients of my 

initial error basically if i take my initial error project it along my Eigen vectors of a right 

I will get my xi js right i get my xi js. So, that is sigma xi j square P i lambda j square 

lambda j. So, the purpose of the conjugate gradient method is to find that polynomial 

find that polynomial, which minimises this error right because this is my error. So, when 

we when we when we saw if the when we are finding the polynomial, which minimises 

that error right. 
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So, so the way to do that we calculate let us see so we have this expression P i lambda j 

square j is equal to one to n, where n are the Eigen values right. So, this is the sum over 

all the Eigen values of a right. So, now I say that if this is equal to this if I pull this thing 

this polynomial square out of this summation but make sure that I evaluate it at the Eigen 

value, which gives the largest value of the polynomial. So, I am I evaluate this 

polynomial at all the Eigen values right and then I found out the Eigen value for which 

this polynomial is largest right. So, if I pull this expression, this expression out of the 

summation then I am guaranteed that this has got to be less than that right. 

So, this is what I am doing here, I am pulling out that P i lambda j square out of the 

summation I and I am evaluating it at the value at the Eigen value which maximizes the 

value of the polynomial right. And if I do that this equality sign changes to the to a lesser 

than or equal to sign right is that clear because this is a bound right I am taking the 

largest possible value of the polynomial and I am choosing the Eigen value, which 

maximizes the value of the polynomial right and then this becomes like this I get a bound 

on the error right that is what we are interested in getting right we are interested in 

getting bounds right. 

So, the conjugate gradient method finds the polynomial P i that minimises this above 

expression right. So, the polynomial P i if found using conjugate gradient satisfies the 

following condition what is that condition? norm of A i square with respect to a is lesser 



than or equal to min P i belonging to p. So, the conjugate gradient method finds that 

polynomial P i belonging to the set of all polynomials of order i if I am considering the 

iteration at step two at iteration two. Basically, all the all possible all possible quadratics 

right quadratics all possible quadratics and finds the quadratic finds the quadratic, which 

minimises this expression right; it looks at all possible quadratics right at a iteration two 

at iteration two; it looks at all the possible quadratics right quadratics in this there is a P i 

right P i lambda right. This and then it finds the quadratic which minimises this 

expression right. 

So, that it finds P i belonging to the space to the set of all polynomials of order i, which 

minimises this expression. Basically, which means minimises P i belonging to p this term 

remains the same and this term sigma i xi j 0 lambda j is nothing but norm of e 0 square 

right you can show that e 0 is equal to sigma xi j p j. So, norm of e 0 square is xi j v j 

operating on xi j. So, this is orthonormality we use orthonormality of the Eigen vectors 

we get xi j where p. So, so we get that right. 
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So, in words the polynomial P i satisfies the above condition when the mod of P i square 

has the smallest possible value for lambda is equal to lambda max right. So, we find the 

Eigen value So, I look at each polynomial in that space. Suppose, I am at iteration two at 

iteration two i look at all the quadratics all possible quadratics I evaluate each possible 

quadratic for each Eigen value for all my Eigen values then for each quadratic I choose 



the Eigen value which maximises that quadratic I do that for each of those quadratics 

right and then among those quadratics, I choose the one which gives the smallest value 

for its maximum Eigen value right is that is that clear.  

So, I am choosing this quadratics set of all quadratics I evaluate each quadratic for each 

of the Eigen values right I look at I find out each Eigen value maximizes that quadratic 

put that quadratic aside look at the next quadratic do the same thing right and then 

finally, find out which of those quadratics gives the smallest value for the largest Eigen 

value corresponding to it right I hope that is clear. 

So, the conjugate gradient method does all that right. So, basically it finds the quadratic, 

which satisfies this condition right not only the quadratic depending on the iteration the 

cubic the quartic, the quintic and So on and So, forth right thus the values of lambda, 

lambda less than lambda max mod of P i square must be even smaller. we know because 

P i is minimised for the largest Eigen value right. So, for smaller Eigen values P i square 

must be even smaller; obviously, the best possible polynomial that is the one that would 

result in the error norm of reaching approaching is 0 will happen when the polynomial 

becomes 0 at all the n Eigen values of a right because then p when P i square is 0 at 

lambda equal to lambda max right, if it is 0 at the largest Eigen value then it has to be 0 

at all the other Eigen values right. 

So, that is ideal situation. So, this is only possible for a polynomial with atleast n roots 

why because I have n Eigen values right when my matrix A is of size n. So, it must have 

n Eigen values and if my polynomial is has to be 0 at all those Eigen values; that means, 

it must have n roots right it must have n roots right a quadratic has two roots. So, for n 

roots the polynomial must be of order n right. 

So, since the polynomial depends on the iteration number i. So, each at each iteration I 

have polynomial of order i; that means, when will the polynomial have n roots when I 

reach n iterations only then it is possible for it to have n roots right. At previous 

iterations, it cannot have n roots right it cannot have it cannot make all the Eigen values 

it cannot be 0 at all the Eigen values right. So, it is possible, it is possible only when it 

has got n roots it is further confirmation of convergence when i is equal to n right. 
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So, it has people have done lot of studies on this and people are still working on the if it 

is after all a relatively young technique may be not more than 40 or 50 years old right, 

compared to some of the other techniques, which has been around for several 100 years. 

So, people are still working on that and they found that the convergence of the conjugate 

gradient method is faster, when the Eigen values are of A are clustered together which is 

sort of intuitive right because I need to I my convergence will be better when the 

polynomial is small at all the Eigen values as small as possible. 

Now, if all the Eigen values are together it becomes easier for me to make the 

polynomials smaller at all the Eigen values right. Because, if it is small at one Eigen 

value then all the Eigen values are together since the function is continuous polynomial 

is continuous it is not going to be to big at a in a neighbourhood of that Eigen value right. 

So, if all my Eigen values are together it becomes easier to minimise the function right to 

minimise the function the error function right. 

So, when what is going to happen when all the Eigen values are clustered together. Well, 

my condition number is going to be small, what is my condition number it is my largest 

Eigen value divided by my smallest Eigen value. So, when the Eigen values are closer 

together the condition number is going to be small right. So, again we go back to that 

that old criteria, which we have encountered, time and again the convergence depends on 

the condition number. For example, it has been shown for a certain class of polynomials 



known as Chebyshev polynomials that convergence of the conjugate gradient method is 

strongly dependent on the condition number. 

So, we know that it is going to depend on the condition number what is the exact 

dependence will depend on the type of polynomials we are choosing. And for a particular 

type of polynomials I have shown that expression right the dependence on the condition 

number is like this the it depends on the condition number like this right for a different 

class of polynomials it will depend on the condition number but the dependence will be 

of a different form right. For the chebyshev polynomials it is going to depend like this 

and we can see from this expression that for smaller condition numbers for smaller 

condition numbers, this term is going to become smaller this term is going to become 

smaller right. 
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And because of that the condition number improve the condition number of the matrix A 

that is we make it we make the condition number as close to one as possible we can 

improve the rate of convergence. Well, how can we improve the condition number I have 

my matrix a which is already given it is a and condition number of a I cannot change my 

matrix a is defined by the physical problem right I have a physical problem and the 

values in that physical problem is going to it is going to determine my matrix A. So, the 

condition number of a is given how can I change the condition number of A. Well, I can 

change the condition number of a by a process which is known as preconditioning right 



preconditioning; which involves scaling A with a symmetric positive definite matrix M 

that results in this. 

So, I had my original equation A x is equal to b, I multiply both sides with M inverse 

right M inverse, where M is a symmetric positive definite matrix .now, if it so turns out 

that the condition number of my new coefficient matrix M inverse A is much smaller 

than the condition number of A then we can iteratively solve this problem much faster 

than my original problem right. 

Because, I know that the rate of convergence depends on the condition number right so if 

somehow if I scale it with scale that with a matrix right. And the resultant coefficient 

matrix the new coefficient matrix is M inverse a right and if the if the condition number 

of the new coefficient matrix is much smaller than the condition number of my original 

matrix then automatically it is going to converge much better right. 

So, that is known as preconditioning. So, almost all implementations of the conjugate 

gradient method are have a preconditioned right to improve the convergence right. We 

can we cannot be satisfied for large problems taking n iterations right I have a 100000 by 

100000 problem I do not want to take 100000 steps right. So, I want to reduce the 

number of steps and what is the key to reducing the number of steps reducing the 

condition number of my coefficient matrix, how am I going to do that? by scaling it right 

by scaling it. 
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But, there is a problem well what is a problem? Well if M, M A has to be the coefficient 

matrix has to be symmetric and positive definite for the conjugate gradient method to 

work if M inverse was A is not symmetric or positive definite than that is the end of the 

story. My whole thing breaks down right; just because M is symmetric and positive 

definite it does not mean that M inverse A is going to be symmetric or positive definite 

right. So, if; however, if M is symmetric and positive definite we have seen earlier 

several classes earlier that it is always possible to decompose a symmetric positive 

definite matrix into a product of a lower triangular matrix and its transpose right L L 

transpose is equal to M right. 

So, instead of solving that previous problem, in case M inverse a is not symmetric or is 

not symmetric and positive definite; we solve an alternative problem what is that 

alternative problem that alternative problem is L inverse AL minus T x hat is equal to L 

L inverse b, where we have done it we have done a transformation of variables you have 

created new variable x hat equal to L transpose x right. So, we can see this is identical to 

this right. Because, L minus T x hat is then equal to L minus T L transpose x which is x 

right. So, I have A x and then I have multiplied both sides by L inverse right. 

So, this problem is identical to this problem right, this problem is identical to this 

problem right. And now this matrix L inverse AL minus transpose is bound to be 

symmetric and positive definite, why? Evaluate you can see that it is symmetric by 

construction right L inverse AL minus t if I take the transpose of that I again get L minus 

T AL inverse. So, this is symmetric by construction right this is symmetric by 

construction matrix A of course, is symmetric. 

So, this is symmetric by construction and it is also going to be positive definite why 

because I know the A is positive definite and L is always going to be positive definite 

right. We have seen that L is going in our if we go back to your notes you will see that L 

is always positive definite. So, in that case this matrix is always going to be positive 

definite. So, I can always use this as a preconditioner and why can I use it as a 

preconditioner well. 
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The reason I can use it as a preconditioned is because the spectrum of L inverse AL 

minus t is the same as M as that of M inverse a right, what good to I mean, well if I have 

L L t is L l transpose equal to M and i construct a matrix L inverse AL minus t then the 

Eigen values of L inverse AL minus T are going to be identical to the Eigen values of M 

inverse A and if the condition number of M inverse a is good; that means, the condition 

number of L inverse AL minus T is also will be good right because they are the same 

Eigen values right. 

So, we can see this is follows this is little proof which shows that spectrum of L inverse 

AL minus T is the same as the spectrum of M inverse a right. We can show that suppose 

lambda is an Eigen value of M inverse a we can show this by little manipulation here 

right that lambda is also an Eigen value of L inverse AL minus T I do not want to go into 

this right. Now, because I want to finish this let us continue. So, the condition number of 

L inverse AL minus T is the same as M inverse a hence L inverse AL minus T is as 

effective a preconditioner as M inverse A right. 

But, we see that preconditioning may involve a certain extra computational expense right 

because I have got to I have got to find that matrix M right I have got to I have got to do 

a decomposition right L, L transpose and then I have to invert that and refine this I do 

this only once right for linear problem I do this only once right and once I do this I can 

use that that preconditioner every time right for all my iterations. and if I choose my if I 



choose my preconditioner sufficiently well. So, that its condition number is much 

smaller than the condition number of my original matrix I will get much much faster 

convergence much much faster convergence and this is enough to compensate for the 

additional expense of calculating the preconditioning right. 
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So, up till now we have talked about the linear conjugate gradient method why linear? 

Because we started with minimising a quadratic form right and if I am minimising a 

quadratic form we found that eventually we have to solve the equation A x equal to b 

where a is the constant matrix right. So, it is a linear problem A x equal to b a remains 

constant throughout solve it will converge in an iterations if you do good conditioning 

you can converge even faster right. So, that is true for quadratic forms but nothing i 

mean there are lots and lots of problems, where you will encounter non quadratic non-

linear equations right. 

So, in those equations can we use the conjugate gradient method well the answer is that 

you can use the conjugate gradient method, but lot of the beautiful things beautiful 

convergence properties things like that that we saw for linear conjugate gradient no 

longer holds true right; however, you can use the conjugate gradient method for some 

with some modifications for general nonlinear equations f of x provided that gradient can 

be calculated what do I mean by can be calculated the gradient exists right at the domain 

of interest I can the gradient exists everywhere. 



For general nonlinear functions the CG algorithm has to be modified in order to enable it 

to work. So, what are the modifications that are necessary well we can no longer 

calculate the residual by taking the product of the a matrix with my with my error right 

because there is no a matrix right no constant a matrix right. So, we can no longer do 

that. 
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So, to find the minimum for general nonlinear function f x we need to find a root of 

nonlinear function grad of f x equal to 0 right I want to minimise f x I want to find the 

value of f which minimises f x. So, I have to solve the equation grad of f x is equal to 0 

right if the minimum corresponds to x that is x is a root of grad of f x equal to 0 then add 

iterate i plus 1 the residual r i plus 1 can be written as r i plus 1 is equal to grad of f x 

minus grad of f x i plus 1 because this is the this is the true solution this is the true 

solution minus the gradient at i plus one. So, this minus this is got to be my residual, but 

at the true solution this term goes to zero. So, I have minus grad of f x i plus 1 right. 

So, that is that is that that has to be true; however, it is no longer possible to write also a 

closed form expression for the residual this should not be the residual this should be the 

step size right for the step size alpha as in this right. So, this I can no longer write 

because what is my A; my A there is not constant a. So, this expression is also not going 

to be true. So, what we need to do is again is at each step I have to find out alpha which 

minimises the residual in that direction and I have to do that iteratively right I have to do 



a generalized line search to find to minimise the residual along a particular search 

direction. 
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So, this requires choosing alpha i in the direction d i; since for a given d i f of x i plus 

alpha i d i is a general nonlinear function of alpha i this requires a general line search 

procedure why because for a given d i i my alpha is an unknown, but this is a general 

nonlinear functions.  so it is a general nonlinear function of alpha it is a basically a 

polynomial in alpha i right. So, I have to find the value of alpha i, which minimises that 

polynomial right. So, also let us recall that when conjugate gradient method is applied to 

a quadratic form we can calculate the Gramm-Schmidt coefficients like this and we 

found that taking advantage of the Krylov structure the Gramm-Schmidt coefficients 

become this right. 
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So, in the absence of a constant coefficient matrix A for the general nonlinear equation 

how to choose those Gramm-Schmidt coefficients becomes an open question right 

becomes an open question. So, finding an optimal value for the Gramm-Schmidt 

coefficients beta i j for the nonlinear conjugate gradient algorithm is also a subject of 

current research. I mean two commonly used expression involve the Fletcher-Reeves 

formula which is basically identical to that used by the we say that even for the 

nonlinearly conjugate gradient we are going to calculate beta i j using that expression 

right that is given by what is known as the Fletcher-Reeves formula and as an alternative 

there is something which is known as the Polak Ribiere formula, which is given by this 

which is a slight modification of the expression for the in the linear case right. 

There is also something known as the Hessian formula which I have not mentioned, but 

these are all variants of this beta i j, which are used for nonlinear conjugate gradient. So, 

I want to wrap my discussion on nonlinear conjugate gradients in the early part of the 

next lecture and then we will move on to another second part of this course. Basically, 

because up till now we have focussed on solution techniques right I have the system of 

equations either linear or nonlinear how can I solve those equations. So, I have 

concerned myself with that for the first half of this course. 

But the second half of this course I want to show you how I get those equations how I get 

that system of equations linear or nonlinear equations how do I model my physical 



problem to get those equations I eventually I model my physical problem using partial 

differential equations right. So, from those partial differential equations how do I get this 

system of this matrix equation which I have to solve to find my solution. So, we will start 

talking about partial differential equations and numerical techniques for modelling 

partial differential equations from our next class after we wind up our discussion of the 

conjugate gradient method. 

Thank you. 


