
Numerical Methods in Civil Engineering
Prof. Arghya Deb

Department of Civil Engineering
Indian Institute of Technology, Kharagpur

Lecture - 9

Conjugate Gradient Method – II

On numerical methods in civil engineering we will continue with our discussion on

conjugate gradient methods. Last time, we looked at the method of conjugate directions

and at the end of the lecture; we said that the conjugate gradient method is just a

specialisation of the method of conjugate directions.

(Refer Slide Time: 00:39)

So, what was the method of conjugate directions; well, with the why do we need

conjugate directions well we started with the postulate that the efficiency of any gradient

based method improve significantly if we do not need to retrace our steps in the solution

space right. That that was not in that was not a feature of the steepest gradient method;

that is steepest descent method that is why we found that we often have to retrace our

steps.

But the advantage of the method of conjugate directions was that the steps we took we

do not have to take those steps again; we never retrace our steps the steps we take are

unique and we take them once only. The conjugate direction method ensures this because

the search directions are mutually independent and constitute a basis for the ‘n’-

dimensional solution space. Indeed we found that the search directions are A orthogonal

to each other, where A is some sort of metric in that solution space right a measure of

distance in the solution space; which with which we define the inner product in the

solution space and therefore, the norming the solution space.

So, these search directions are A orthogonal to each other which ensures that the function

is minimised along each search directions. So, we found that. So, long as soon as we

ensure A orthogonality then that automatically ensures that the function is minimised

along a search directions and we further found that when we take subsequent step;

subsequent search directions; subsequent iterations there are in the in a previously

traversed search direction never increases right. So, we systematically keep on reducing

the error in each of those search directions right and they never they never recur again

and because of this we had we found that in the that the conjugate gradient method it is a

conjugate directions method is assured to converge in n iterations.

Right it is sure to converge in n iterations but that is true in the ideal case and the real

world nothing is as we plan because of accumulation of round of errors things like that

the conjugate directions will no longer be exactly satisfy the orthogonality condition

right. Because of that convergence, will be somewhat lesser the convergence rate will be

somewhat lesser right we will talk about those things specifically in the context of the

conjugate gradient method.

(Refer Slide Time: 03:23)

The method of conjugate gradients is nothing but the method of conjugate directions,

where the search directions are constructed by conjugation of the residuals by setting u i

is equal to r i. First let us take a step back, so when we discussed the conjugate directions

method, I pointed out that a major disadvantage of the conjugate directions method is

that at each step; at each iteration i need all the previous directions i need all if at a

iteration i i need all the directions from 0 to i minus 1. In order to find my in order to do

my Gramm-Schmidt orthogonalization right and because of that we have to store all

those directions we have to carry all those directions around and at each iteration we

have to come take the projection along those directions.

So, its for have large problem the computational cost is enormous and for the conjugate

gradient method we said its great advantage would be that we do not need to carry the

old directions around why is that? So, we will see why that right is? so the one the first

step the key step in achieving that is to make sure that we choose our search directions

from the residual remember earlier in the conjugate direction method we had this set of

vectors u i, which formed linearly independent set in my n dimensional space right and

then I use to compute my conjugate directions from those set of vectors u i but each step

doing Gramm-Schmidt orthogonalization projecting out the part which is parallel to or

which has got which has got any components along the previous directions retaining only

the part which is orthogonal to the previous directions right.

That is what we did for the conjugate gradient for the conjugate directions method now

the starting point of the conjugate gradient method is saying that well that set u i is not

just any arbitrary set of vectors in my n dimensional space any arbitrary set of linearly

independent vectors in my n dimensional space they are a specific set of vectors and

what are those specific set of vectors they are my residuals right.

So, the residuals I am going to chose my conjugate directions from my residual vectors

right why do we do that well the advantage is that residuals have the property that they

are orthogonal to the previous search directions we obtained that at the end of our last

lecture we obtained this result that each residual at step at iteration step i is orthogonal to

all the previous search directions 0 1 2 3 up to i minus 1 right.

So, since the residuals have the property that they are orthogonal to the previous search

directions construction of the search directions from the residual is guaranteed to ensure

that the new search direction is orthogonal is linearly is a linearly independent search

direction. It is a new linearly independent search direction right. So, because the

residuals have this wonderful property that they are orthogonal to all the previous search

directions. So, if I construct my new search direction at step i from my residual it

becomes a lot simpler right because of that orthogonality property when will this process

breakdown well when the residual becomes 0. Suppose during my iteration, my residual

becomes 0 then I cannot construct my new search direction from the residual but then

that is not a problem why because the residual is 0; that means, my iteration has

converged right. I have reached the true solution So, I do not need the residual any more

I do not need any more search directions right.

(Refer Slide Time: 07:13)

So, since the search directions are constructed from the residuals, the subspace spanned

by r 0 r 1 through r minus 1 is identical to the subspace spanned by d 0 d 1 through d d i

minus 1 right because each of those search directions are constructed from the residuals.

So, whatever be the space spanned by the residuals right that is the same as the subspace

as the space spanned by the search directions right. Recall that we showed earlier that the

residual r i is orthogonal to all previous search directions d j that is r i transpose d j equal

to 0 for all i greater than j right for all j less than i right. Hence, r i transpose r j is equal

to 0 for all i greater than j, why because r i is because r i is r i is orthogonal to all the d js

right. And the space spanned by the d js is equal to the space spanned by the rs like the

previous r like r r 0 through r i minus 1 right.

So; that means, each of those residuals must be orthogonal to the previous residuals

right. So, each of those residuals are orthogonal to the r for the previous residuals indeed

r i transpose r j is equal to 0 for all i naught equal to j because the subsequent residuals

are also going to be orthogonal to the current residuals. So, basically all the r residuals

are going to be orthogonal right. Subsequent residuals, also have to be normal to the

space spanned by the previous search vectors meaning the previous such residuals right.

So, r i transpose r j equal to 0 for all i naught equal to j.

(Refer Slide Time: 09:00)

Let us recall that r i is equal to minus A e i so we obtained that result earlier right so; that

means; r i is equal to minus a x i the iterate value minus the true solution x, which is

equal to minus a x i minus 1 plus alpha minus 1 d y d. I have just used the update

formula for my x minus x right and then i put x i minus 1 and x together that gives me e i

minus 1. So, I have minus A e i minus 1 plus alpha minus 1 A d i minus 1 and again A e

i minus 1 is nothing but minus A e i minus 1 is nothing but r i minus 1.

So, I have r i minus 1 plus alpha minus 1 A d i minus 1. So, what does that tell us? That

tells us that each residual is a linear combination of the previous residual and A d i minus

1. So, each residual is a linear combination of the previous residual and the vector which

i get by taking the product of A and the previous search direction d i minus 1. Now, since

both r i minus 1 and d i minus 1 belong to subspace d i recall what is the subspace d i, the

subspace d i consists of all the search directions d 0, d 1, d 2, d 3 up to d i minus 1 right

up to d i minus 1. and since we know that r i minus 1 and d i minus 1 r’s and d’s belong

to the same subspace right.

So, both r i minus 1 and d i minus 1 belong to the subspace d i right the subspace d i plus

1 is obtained by combining the spaces d i and A d i why just look at this equation right r i

is equal to r i minus 1 which we know belongs to the subspace d i plus a times d i minus

one. So, it is d i minus 1 again belongs to the space d i. So, if I have the space d i and i

operate on that space with the A matrix right then I get another space A d i and I put

those two spaces together I get my new space d i plus 1 to which my r i as well as my d i

are going to belong right.

So, hence by recursion D i is the subspace spanned by the. So, I go on doing this right.

So, d i d 1 is nothing but d 0 plus A d 0 right d 1 is equal to d 0 plus A d 0. Similarly, we

do we doing that? So, eventually we can see that any space d i is spanned by the basis d 0

A d 0 a square d 0 a minus 1 d 0 because every time we operate with A and D on the

previous d i on d i minus 1 we get d i right. So, we continue this and by recursion we can

see d i you can write it as like this as spanned by these vectors right or equivalently the

subspace with basis r 0 A r 0 a square r 0 and So, on because these are the same

subspaces.

(Refer Slide Time: 12:26)

So, these subspaces which are created by repeatedly applying A matrix to a vector are

known as Krylov subspaces. So, I start with a single vector and I operate on that vector

with a matrix and then I operate again with that same matrix and keep on doing it right

and I am assured that those made those vectors that I form that I get by operating each

time are linearly independent they are a basis right. So, that sort of subspace is known as

a Krylov subspace right since r i plus 1 now. So, that that is the just a matter of

terminology let us take a step back since r i plus 1 is orthogonal to r i which we know

right from our little result out here right, from my little result out here r i plus 1 is equal

to sorry r i plus 1 is orthogonal to r i; that means, r i plus 1 must be orthogonal to D i plus

1 why D i plus 1 has what are those what are the vectors which are the basis of D i plus 1

r 0 r 1 through r r i minus 1 right.

Those through r i right D i plus 1 through r i right. So, since r i plus 1 is orthogonal to r i.

So, r i plus 1 must be orthogonal to D i plus 1 right, but A d i is included in D i plus 1.

We just found that right because D i plus 1 is nothing but right. So, so hence A r i plus 1

must be orthogonal to A D i right since r i plus 1 is orthogonal to D i plus 1 D i plus 1 is

included A d i is included in D i plus 1 right hence r i plus 1 must be orthogonal to A D i

what this makes finding a new search direction d i plus 1 from my new search direction d

i plus 1 from the residual at the i plus 1 step r i plus 1 very easy why because r i plus 1 by

definition it is orthogonal to A D i right and hence a orthogonal to all the D i right what

does D i, D i consist of D i spanned by these vectors right d 0 d 1 d i minus one.

So, r i plus 1 is orthogonal to A D i; that means, it is A orthogonal to all these previous

vectors d i minus 1 right. So, that is that is the key idea right it is because it is a

orthogonal to all those d i minus 1 vectors by construction. I do not have to carry all

those d zeroes d 1 d i minus 1 vectors along right this is automatically my new residual is

automatically orthogonal to all those previous vectors right.

So, all I need to do is to ensure orthogonality of r i plus 1 with my with D i right with r i

plus 1 with d i right. So, so that is the Gramm-Schmidt procedure need only ensure A

orthogonality with d i right i plus 1 has to be orthogonal to all the previous search

directions. It is orthogonal it is orthogonal to all the previous search directions d 0 d 1

through d i minus 1. So, the only thing that that will make r i plus 1 D i plus 1 is to

ensure that r i plus 1 is orthogonal to D i right then I will get r i plus 1 it becomes d i plus

1 right. So, the Gramm-Schmidt orthogonalization becomes a lot simpler.

(Refer Slide Time: 16:07)

So, only one of the Gramm-Schmidt coefficients, which normally are given by this right

I can be anything j varies from 0 to i minus 1 by definition need to be evaluated. we can

see we can get further verification; we can verify this further by taking the dot product of

this expression right, r j plus 1 equal to r j minus alpha j A d j which we just obtained last

here right did we just obtain here.

So, we take this expression right and take the dot product of this expression with r i right.

So, what do i get i get r i transpose r j plus 1 is equal to r i transpose r j minus alpha j, r i

transpose A d j. So, this gives me r i transpose A d j equal to this minus this divided by

alpha right. Now, we know that this part when i equal to j right this term is going to

survive this term is going to survive this term is going to be 0 because i is this is i j plus 1

right. So, this term is going to go to 0 in that case r i transpose A d j will be given by one

by alpha i r i transpose r i. On the other hand, when i equal to j plus 1 then this term is

going to go to 0 right and this term is going to survive and this term is going to be equal

to minus 1 by alpha i minus 1 r i transpose r i right.

In all other cases, this term is going to be 0 right because if r if j plus 1 is not equal to r i

or j is not equal to i then neither of these terms are going to survive because of the

orthogonality of my residuals right. So, in the other cases this term is going to be 0 right

So, what do I get I get that beta i j is equal to and we are not interested in beta i i right we

are only interested in beta i j, where j is less than i right where j is goes from 0 to i minus

1 right. So, we are not interested in this term right we are not interested in the first

expression, we are only interested in the second expression right and because when we

substitute that second expression out here right. For r i transpose A d j then i get beta i j

is equal to one by alpha minus 1 r i transpose r i divided by d i transpose A d i minus 1

and this is this is going to be true, when j is equal to i minus 1 and is going to be 0 for all

other j s right.

(Refer Slide Time: 19:11)

So, like we will like to simplify a little bit further because by recalling that alpha i minus

1 is equal to this, which we obtained earlier right substituting this expression for alpha i

minus 1 out here right out here. we get beta i i minus 1 is given by this right but we also

obtained earlier d i minus 1 transpose r i minus 1 is equal to r i minus 1 transpose r i

minus 1 and hence we can get beta i i minus 1 in this simple form right.

So, that is the only Gramm-Schmidt coefficient which is going to be non zero and it is

given by the by the residual and the previous residual right. Since, only beta i i minus 1

is required it is no longer necessary to store the old search vectors in order to ensure

conjugacy of the search directions. These not only reduces storage, but also drastically

curtails the number of computations necessary calculate the new search direction right.

(Refer Slide Time: 20:21)

So, the final form of the conjugate gradient algorithm is as follows so we have

summarised it here. So, we start with a certain initial search direction and what is my

initial search direction it is my initial residual and what is my initial residual that is b

minus A x 0 right then I compute my step size for instance for 0 I compute alpha 0 equal

to minus r 0 transpose r 0 d 0 transpose A d 0 all quantities I know right. On the left hand

side all the quantities I on the right hand side I know all the quantities right.

So, I know my alpha 0 then I compute my x 1 x 1 is equal to x 0 plus alpha 0 d 0 right

and once as soon as i compute my x 1 I can compute my new residual right because my

new residual is nothing but A times x i plus 1 minus b which I can simplify and write it

like that r r 1 I can write as r 0 minus alpha 0 A d 0 right. So, I compute my new residual

i find out my new Gramm-Schmidt coefficient using this expression right r 1 transpose r

1 divided by r 1 transpose r 0 transpose r 0 right that gives me my new Gramm-Schmidt

coefficient beta 1 0 right beta 1 0 then I will compute d 1 how will I compute d 1? Well I

compute it from r 1 plus beta 1 0 d 0 right and continue like this.

(Refer Slide Time: 22:06)

Now, let us look at convergence of the conjugate gradient algorithm we know that by

construction for the n dimensional problem the conjugate gradient algorithm is bound to

converge in n iterations right because that is an n dimensional space I am traversing in

each time in an independent direction and by the time I end up I have spanned the entire

space. So, I must and every time I go along a direction I make sure that the error in that

direction is goes to 0 right. So, I systematically chop of my errors right.

So, the end of n iterations I am bound to get 0 errors normally; however, floating point

errors accumulate with number of iterations causing the residuals to lose orthogonality

and hence the search directions to lose A orthogonality right residuals lose orthogonality

search directions. Since, search directions are search directions are obtained from the

residuals the residuals also the search directions also lose a orthogonality.

So, hence, so that is why it is important to improve convergence. So, one might say why

you need to study convergence of this CG algorithm we know that it is sure to converge,

but if you converge in fewer number of iterations right instead of taking the full n which

is of course, I will talk about that. So, by reducing the number of iterations you can

reduce the accumulation of round of error and the less round of error the better is the

performance of the algorithm because we are assured of orthogonality of the residuals;

residuals will be more orthogonal less round of more orthogonal the search directions

will be more a conjugate right.

So, the performance is going to be better right. So, that is why it is important to study the

convergence of the conjugate gradient algorithm. Another point is that the conjugate

gradient method is typically used for very large problems with very large ends right,

where my where my direct solution technique is gauss elimination and variance of that

are going to not going to give are going to be extremely expensive right.

So, if I have a 100000 by 100000 dimension matrix that I want to solve then; that means,

that I know that it is going to converge in 100000 iterations and that also if there are no

round of errors but why go for hundred that also is very expensive right. So, wish we

wish to cut down that expense also you do not want to take 100000 iterations we want to

converge in a fraction of those iterations right and let us see how we can do that if it is at

all possible right.

(Refer Slide Time: 24:59)

We saw earlier that at each step of the algorithm the error e i is a linear combination of

my original error e 0 and d 0 through d i minus 1. We saw that last class right we may we

spend some time in obtaining that expression that what at any iteration e i at any iteration

I can write the error e i as the error initial error plus a linear combination of my search

directions up to that point right.

So, e i and the subspace d i why because subspace d i spans all those directions d 0 d i

minus 1 but d i is equal to is this is this space spanned by the vectors r 0 A r 0 through A

i minus 1 r 0 i just showed that little time little while ago right. And it is also this space

spanned by this why because r 0 is equal to a time e 0 right residual is equal to a times

the error we know that already right. So, this is the also d i is the space spanned by a is 0,

a square e 0 a cube e 0 through A i A 0 right you can see there is an additional a here

right

So, it is the space spanned by these vectors because of this I can write e i as a

combination as a combination of these vectors A 0 A square e 0 and. So, on and A i by A

i e 0 right. So, it is a polynomial in the matrix a right. So, e i is equal to P i A operating

on a 0. So, where P i A is the polynomial in a because you see all these A powers of A

appearing here right.

So, it is polynomial in a operating on A 0 which satisfies the condition p 0 A equal to 1 i

is the iteration number here right I is the iteration number in the initial I mean at the zero

th iteration p 0 A has got to be equal to 1 otherwise at this identity is not going to be

satisfied right and the coefficients of P i A depend on the values of my conjugate

gradient coefficients basically my step size and my Gramm-Schmidt coefficients right.

(Refer Slide Time: 27:19)

So, expressing e 0 as a linear combination we can also write e 0 as a linear combination

of the n orthonormal Eigen vectors of a right we did that earlier right A is a symmetric

matrix its Eigen vectors form an orthonormal basis. So, I can always write the error e 0

as a linear combination of my Eigen vectors of a right. So, A e 0 I can write as sigma j

equal to 1 to n xi j e j v j right, where v j are the orthonormal Eigen vectors of a.

Therefore we can write e i as e i is equal to P i A e 0, which we just saw right which is

equal to replacing e 0 by sigma xi j v j. I can write it like that right and then I have this

polynomial in a operating on v j right, remember what is P i A it is a polynomial in A.

So, it has got multiples of a right a square a cube A A four A n. So, on A i right up to A i

right.

 So, each of those As operating on v j is going to give me lambda j v j the corresponding

Eigen value because v j is an Eigen vector and if I have a cube operating on v j what am I

going to get? I am going to get lambda j cube operating on v j right a j a cube operating

on v j is equal to a square operating on lambda j v j is equal to a operating on lambda

square v j is equal to lambda cube v j right.

So, this polynomial in A becomes quickly a polynomial with same polynomial in my

Eigen value is lambda right. So, from A matrix a polynomial in the matrix say this

becomes A polynomial in my Eigen values right. So, this is true right. So, let us see what

A e i becomes A e i becomes xi j P i lambda j operating on a v j. So, I get lambda j v j

right, A e i is equal to this. So, because just a j operating on v j that gives me another

lambda j right lambda j v j and therefore the norm of e i by norm I mean e i transpose A

e i right because whenever i compute norm i do it with respect to that metric right that

metric is given by a right.

So, norm of e i square is given by sigma i equal to 1 xi j square P i lambda j square

lambda j right. So, basically just take the dot product of this with this right of this vector

with this vector and we are going to get this vector sorry this expression by this scalar

right dot product vector has to be a scalar. So, so this is this is my error expression for

the conjugate gradient method.

It says that at any step at any step in my iteration the error the norm of the error right

squared is given by this expression right some coefficients right some coefficients of my

initial error basically if i take my initial error project it along my Eigen vectors of a right

I will get my xi js right i get my xi js. So, that is sigma xi j square P i lambda j square

lambda j. So, the purpose of the conjugate gradient method is to find that polynomial

find that polynomial, which minimises this error right because this is my error. So, when

we when we when we saw if the when we are finding the polynomial, which minimises

that error right.

(Refer Slide Time: 31:16)

So, so the way to do that we calculate let us see so we have this expression P i lambda j

square j is equal to one to n, where n are the Eigen values right. So, this is the sum over

all the Eigen values of a right. So, now I say that if this is equal to this if I pull this thing

this polynomial square out of this summation but make sure that I evaluate it at the Eigen

value, which gives the largest value of the polynomial. So, I am I evaluate this

polynomial at all the Eigen values right and then I found out the Eigen value for which

this polynomial is largest right. So, if I pull this expression, this expression out of the

summation then I am guaranteed that this has got to be less than that right.

So, this is what I am doing here, I am pulling out that P i lambda j square out of the

summation I and I am evaluating it at the value at the Eigen value which maximizes the

value of the polynomial right. And if I do that this equality sign changes to the to a lesser

than or equal to sign right is that clear because this is a bound right I am taking the

largest possible value of the polynomial and I am choosing the Eigen value, which

maximizes the value of the polynomial right and then this becomes like this I get a bound

on the error right that is what we are interested in getting right we are interested in

getting bounds right.

So, the conjugate gradient method finds the polynomial P i that minimises this above

expression right. So, the polynomial P i if found using conjugate gradient satisfies the

following condition what is that condition? norm of A i square with respect to a is lesser

than or equal to min P i belonging to p. So, the conjugate gradient method finds that

polynomial P i belonging to the set of all polynomials of order i if I am considering the

iteration at step two at iteration two. Basically, all the all possible all possible quadratics

right quadratics all possible quadratics and finds the quadratic finds the quadratic, which

minimises this expression right; it looks at all possible quadratics right at a iteration two

at iteration two; it looks at all the possible quadratics right quadratics in this there is a P i

right P i lambda right. This and then it finds the quadratic which minimises this

expression right.

So, that it finds P i belonging to the space to the set of all polynomials of order i, which

minimises this expression. Basically, which means minimises P i belonging to p this term

remains the same and this term sigma i xi j 0 lambda j is nothing but norm of e 0 square

right you can show that e 0 is equal to sigma xi j p j. So, norm of e 0 square is xi j v j

operating on xi j. So, this is orthonormality we use orthonormality of the Eigen vectors

we get xi j where p. So, so we get that right.

(Refer Slide Time: 35:04)

So, in words the polynomial P i satisfies the above condition when the mod of P i square

has the smallest possible value for lambda is equal to lambda max right. So, we find the

Eigen value So, I look at each polynomial in that space. Suppose, I am at iteration two at

iteration two i look at all the quadratics all possible quadratics I evaluate each possible

quadratic for each Eigen value for all my Eigen values then for each quadratic I choose

the Eigen value which maximises that quadratic I do that for each of those quadratics

right and then among those quadratics, I choose the one which gives the smallest value

for its maximum Eigen value right is that is that clear.

So, I am choosing this quadratics set of all quadratics I evaluate each quadratic for each

of the Eigen values right I look at I find out each Eigen value maximizes that quadratic

put that quadratic aside look at the next quadratic do the same thing right and then

finally, find out which of those quadratics gives the smallest value for the largest Eigen

value corresponding to it right I hope that is clear.

So, the conjugate gradient method does all that right. So, basically it finds the quadratic,

which satisfies this condition right not only the quadratic depending on the iteration the

cubic the quartic, the quintic and So on and So, forth right thus the values of lambda,

lambda less than lambda max mod of P i square must be even smaller. we know because

P i is minimised for the largest Eigen value right. So, for smaller Eigen values P i square

must be even smaller; obviously, the best possible polynomial that is the one that would

result in the error norm of reaching approaching is 0 will happen when the polynomial

becomes 0 at all the n Eigen values of a right because then p when P i square is 0 at

lambda equal to lambda max right, if it is 0 at the largest Eigen value then it has to be 0

at all the other Eigen values right.

So, that is ideal situation. So, this is only possible for a polynomial with atleast n roots

why because I have n Eigen values right when my matrix A is of size n. So, it must have

n Eigen values and if my polynomial is has to be 0 at all those Eigen values; that means,

it must have n roots right it must have n roots right a quadratic has two roots. So, for n

roots the polynomial must be of order n right.

So, since the polynomial depends on the iteration number i. So, each at each iteration I

have polynomial of order i; that means, when will the polynomial have n roots when I

reach n iterations only then it is possible for it to have n roots right. At previous

iterations, it cannot have n roots right it cannot have it cannot make all the Eigen values

it cannot be 0 at all the Eigen values right. So, it is possible, it is possible only when it

has got n roots it is further confirmation of convergence when i is equal to n right.

(Refer Slide Time: 38:38)

So, it has people have done lot of studies on this and people are still working on the if it

is after all a relatively young technique may be not more than 40 or 50 years old right,

compared to some of the other techniques, which has been around for several 100 years.

So, people are still working on that and they found that the convergence of the conjugate

gradient method is faster, when the Eigen values are of A are clustered together which is

sort of intuitive right because I need to I my convergence will be better when the

polynomial is small at all the Eigen values as small as possible.

Now, if all the Eigen values are together it becomes easier for me to make the

polynomials smaller at all the Eigen values right. Because, if it is small at one Eigen

value then all the Eigen values are together since the function is continuous polynomial

is continuous it is not going to be to big at a in a neighbourhood of that Eigen value right.

So, if all my Eigen values are together it becomes easier to minimise the function right to

minimise the function the error function right.

So, when what is going to happen when all the Eigen values are clustered together. Well,

my condition number is going to be small, what is my condition number it is my largest

Eigen value divided by my smallest Eigen value. So, when the Eigen values are closer

together the condition number is going to be small right. So, again we go back to that

that old criteria, which we have encountered, time and again the convergence depends on

the condition number. For example, it has been shown for a certain class of polynomials

known as Chebyshev polynomials that convergence of the conjugate gradient method is

strongly dependent on the condition number.

So, we know that it is going to depend on the condition number what is the exact

dependence will depend on the type of polynomials we are choosing. And for a particular

type of polynomials I have shown that expression right the dependence on the condition

number is like this the it depends on the condition number like this right for a different

class of polynomials it will depend on the condition number but the dependence will be

of a different form right. For the chebyshev polynomials it is going to depend like this

and we can see from this expression that for smaller condition numbers for smaller

condition numbers, this term is going to become smaller this term is going to become

smaller right.

(Refer Slide Time: 41:13)

And because of that the condition number improve the condition number of the matrix A

that is we make it we make the condition number as close to one as possible we can

improve the rate of convergence. Well, how can we improve the condition number I have

my matrix a which is already given it is a and condition number of a I cannot change my

matrix a is defined by the physical problem right I have a physical problem and the

values in that physical problem is going to it is going to determine my matrix A. So, the

condition number of a is given how can I change the condition number of A. Well, I can

change the condition number of a by a process which is known as preconditioning right

preconditioning; which involves scaling A with a symmetric positive definite matrix M

that results in this.

So, I had my original equation A x is equal to b, I multiply both sides with M inverse

right M inverse, where M is a symmetric positive definite matrix .now, if it so turns out

that the condition number of my new coefficient matrix M inverse A is much smaller

than the condition number of A then we can iteratively solve this problem much faster

than my original problem right.

Because, I know that the rate of convergence depends on the condition number right so if

somehow if I scale it with scale that with a matrix right. And the resultant coefficient

matrix the new coefficient matrix is M inverse a right and if the if the condition number

of the new coefficient matrix is much smaller than the condition number of my original

matrix then automatically it is going to converge much better right.

So, that is known as preconditioning. So, almost all implementations of the conjugate

gradient method are have a preconditioned right to improve the convergence right. We

can we cannot be satisfied for large problems taking n iterations right I have a 100000 by

100000 problem I do not want to take 100000 steps right. So, I want to reduce the

number of steps and what is the key to reducing the number of steps reducing the

condition number of my coefficient matrix, how am I going to do that? by scaling it right

by scaling it.

(Refer Slide Time: 43:44)

But, there is a problem well what is a problem? Well if M, M A has to be the coefficient

matrix has to be symmetric and positive definite for the conjugate gradient method to

work if M inverse was A is not symmetric or positive definite than that is the end of the

story. My whole thing breaks down right; just because M is symmetric and positive

definite it does not mean that M inverse A is going to be symmetric or positive definite

right. So, if; however, if M is symmetric and positive definite we have seen earlier

several classes earlier that it is always possible to decompose a symmetric positive

definite matrix into a product of a lower triangular matrix and its transpose right L L

transpose is equal to M right.

So, instead of solving that previous problem, in case M inverse a is not symmetric or is

not symmetric and positive definite; we solve an alternative problem what is that

alternative problem that alternative problem is L inverse AL minus T x hat is equal to L

L inverse b, where we have done it we have done a transformation of variables you have

created new variable x hat equal to L transpose x right. So, we can see this is identical to

this right. Because, L minus T x hat is then equal to L minus T L transpose x which is x

right. So, I have A x and then I have multiplied both sides by L inverse right.

So, this problem is identical to this problem right, this problem is identical to this

problem right. And now this matrix L inverse AL minus transpose is bound to be

symmetric and positive definite, why? Evaluate you can see that it is symmetric by

construction right L inverse AL minus t if I take the transpose of that I again get L minus

T AL inverse. So, this is symmetric by construction right this is symmetric by

construction matrix A of course, is symmetric.

So, this is symmetric by construction and it is also going to be positive definite why

because I know the A is positive definite and L is always going to be positive definite

right. We have seen that L is going in our if we go back to your notes you will see that L

is always positive definite. So, in that case this matrix is always going to be positive

definite. So, I can always use this as a preconditioner and why can I use it as a

preconditioner well.

(Refer Slide Time: 46:26)

The reason I can use it as a preconditioned is because the spectrum of L inverse AL

minus t is the same as M as that of M inverse a right, what good to I mean, well if I have

L L t is L l transpose equal to M and i construct a matrix L inverse AL minus t then the

Eigen values of L inverse AL minus T are going to be identical to the Eigen values of M

inverse A and if the condition number of M inverse a is good; that means, the condition

number of L inverse AL minus T is also will be good right because they are the same

Eigen values right.

So, we can see this is follows this is little proof which shows that spectrum of L inverse

AL minus T is the same as the spectrum of M inverse a right. We can show that suppose

lambda is an Eigen value of M inverse a we can show this by little manipulation here

right that lambda is also an Eigen value of L inverse AL minus T I do not want to go into

this right. Now, because I want to finish this let us continue. So, the condition number of

L inverse AL minus T is the same as M inverse a hence L inverse AL minus T is as

effective a preconditioner as M inverse A right.

But, we see that preconditioning may involve a certain extra computational expense right

because I have got to I have got to find that matrix M right I have got to I have got to do

a decomposition right L, L transpose and then I have to invert that and refine this I do

this only once right for linear problem I do this only once right and once I do this I can

use that that preconditioner every time right for all my iterations. and if I choose my if I

choose my preconditioner sufficiently well. So, that its condition number is much

smaller than the condition number of my original matrix I will get much much faster

convergence much much faster convergence and this is enough to compensate for the

additional expense of calculating the preconditioning right.

(Refer Slide Time: 48:46)

So, up till now we have talked about the linear conjugate gradient method why linear?

Because we started with minimising a quadratic form right and if I am minimising a

quadratic form we found that eventually we have to solve the equation A x equal to b

where a is the constant matrix right. So, it is a linear problem A x equal to b a remains

constant throughout solve it will converge in an iterations if you do good conditioning

you can converge even faster right. So, that is true for quadratic forms but nothing i

mean there are lots and lots of problems, where you will encounter non quadratic non-

linear equations right.

So, in those equations can we use the conjugate gradient method well the answer is that

you can use the conjugate gradient method, but lot of the beautiful things beautiful

convergence properties things like that that we saw for linear conjugate gradient no

longer holds true right; however, you can use the conjugate gradient method for some

with some modifications for general nonlinear equations f of x provided that gradient can

be calculated what do I mean by can be calculated the gradient exists right at the domain

of interest I can the gradient exists everywhere.

For general nonlinear functions the CG algorithm has to be modified in order to enable it

to work. So, what are the modifications that are necessary well we can no longer

calculate the residual by taking the product of the a matrix with my with my error right

because there is no a matrix right no constant a matrix right. So, we can no longer do

that.

(Refer Slide Time: 50:33)

So, to find the minimum for general nonlinear function f x we need to find a root of

nonlinear function grad of f x equal to 0 right I want to minimise f x I want to find the

value of f which minimises f x. So, I have to solve the equation grad of f x is equal to 0

right if the minimum corresponds to x that is x is a root of grad of f x equal to 0 then add

iterate i plus 1 the residual r i plus 1 can be written as r i plus 1 is equal to grad of f x

minus grad of f x i plus 1 because this is the this is the true solution this is the true

solution minus the gradient at i plus one. So, this minus this is got to be my residual, but

at the true solution this term goes to zero. So, I have minus grad of f x i plus 1 right.

So, that is that is that that has to be true; however, it is no longer possible to write also a

closed form expression for the residual this should not be the residual this should be the

step size right for the step size alpha as in this right. So, this I can no longer write

because what is my A; my A there is not constant a. So, this expression is also not going

to be true. So, what we need to do is again is at each step I have to find out alpha which

minimises the residual in that direction and I have to do that iteratively right I have to do

a generalized line search to find to minimise the residual along a particular search

direction.

(Refer Slide Time: 52:20)

So, this requires choosing alpha i in the direction d i; since for a given d i f of x i plus

alpha i d i is a general nonlinear function of alpha i this requires a general line search

procedure why because for a given d i i my alpha is an unknown, but this is a general

nonlinear functions. so it is a general nonlinear function of alpha it is a basically a

polynomial in alpha i right. So, I have to find the value of alpha i, which minimises that

polynomial right. So, also let us recall that when conjugate gradient method is applied to

a quadratic form we can calculate the Gramm-Schmidt coefficients like this and we

found that taking advantage of the Krylov structure the Gramm-Schmidt coefficients

become this right.

(Refer Slide Time: 53:17)

So, in the absence of a constant coefficient matrix A for the general nonlinear equation

how to choose those Gramm-Schmidt coefficients becomes an open question right

becomes an open question. So, finding an optimal value for the Gramm-Schmidt

coefficients beta i j for the nonlinear conjugate gradient algorithm is also a subject of

current research. I mean two commonly used expression involve the Fletcher-Reeves

formula which is basically identical to that used by the we say that even for the

nonlinearly conjugate gradient we are going to calculate beta i j using that expression

right that is given by what is known as the Fletcher-Reeves formula and as an alternative

there is something which is known as the Polak Ribiere formula, which is given by this

which is a slight modification of the expression for the in the linear case right.

There is also something known as the Hessian formula which I have not mentioned, but

these are all variants of this beta i j, which are used for nonlinear conjugate gradient. So,

I want to wrap my discussion on nonlinear conjugate gradients in the early part of the

next lecture and then we will move on to another second part of this course. Basically,

because up till now we have focussed on solution techniques right I have the system of

equations either linear or nonlinear how can I solve those equations. So, I have

concerned myself with that for the first half of this course.

But the second half of this course I want to show you how I get those equations how I get

that system of equations linear or nonlinear equations how do I model my physical

problem to get those equations I eventually I model my physical problem using partial

differential equations right. So, from those partial differential equations how do I get this

system of this matrix equation which I have to solve to find my solution. So, we will start

talking about partial differential equations and numerical techniques for modelling

partial differential equations from our next class after we wind up our discussion of the

conjugate gradient method.

Thank you.

