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Iterative Methods for Eigen Value Extraction 
 

Let us see 11 of our series on Numerical Methods in Civil Engineering, we are going to 

talk about Iterative Methods for Eigen Value Extraction. And at the end, if you have 

some time left over, we are going to introduce some net methods in a numerical solution 

of non-linear equations. 
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Last time, we looked at the Eigen value problem and ways to solve the Eigen value 

problem, basically ways to find the Eigen values and the Eigen vectors. And we found 

that one way to do it was write out the characteristic equation of the system and then to 

find out roots of that characteristic equation. But for an n by n matrix we know, that the 

characteristic equation is a polynomial of order n and since it is a polynomial of order n, 

it is going to have n roots. And we talked about abele’s theorem, which tells us that for a 

polynomial of order greater than 4, it is not possible to get closed form solutions. 

So, we have to rely on some numerical method for solving the characteristic polynomial, 

probably the most widely used method for calculating Eigen values is what is known as 

the power method. So, this is an iterative method where, we repeatedly use, we 



repeatedly, we start with any arbitrary assumption for the Eigen vector and we repeatedly 

iterate using our the coefficient matrix to improve the guess to the Eigen vector. 

And can be shown that after repeated iteration, the initially chosen vector, it actually 

converges to the Eigen vector. For instance, let us g 0 beta be any arbitrarily chosen 

initial vector and let us, form a sequence of vectors, which is given by z k plus 1 is equal 

to A z k and so on and so forth. So, from g 1 from g 0, we get g 1 by taking the product 

of g 0 with A from g g 1, we get g 2 by taking the product of g 1 with A and so on and so 

forth. 

Until we get z k plus 1 is equal to a operating on z k, where A is the coefficient matrix, 

the matrix for which, I want to find the Eigen values and the Eigen vectors. Now, for the 

sake of a, let us assume that A has n linearly independent Eigen vectors and unique 

Eigen value of maximum amplitude lambda i. So, A is a non singular matrix, it has 

linearly independent Eigen vectors and it has Eigen values, such that the largest Eigen 

value is unique, that it that is there are no other Eigen values, which are equal to lambda 

1.  

So, lambda 1 is strictly greater than lambda 2, but lambda 2 may be greater than or equal 

to lambda 3 and so on and so forth, but lambda 1 is the largest Eigen value is unique in 

the sense, that there are no other Eigen values of the matrix equal to lambda 1. So, that is 

what we assumed and since, we have assumed that a has linearly independent Eigen 

vectors that means, if we consider the Eigen vectors of a to be x 1 through x n, we know 

that x 1 x 2 x n form a basis for the vector space of dimension n right. So, it forms the 

basis for the vector space of dimension n, so any n dimensional vector can be represented 

as the linear combination of my basis vectors, which are x 1 x 2 through x n.  

So, for instance the z k vector the z vector after at the kth iteration, I can write it as a 

linear combination of x 1 through x n, I can write it as alpha 1 alpha 2 alpha 1 x 1 plus 

alpha 2 x 2 plus alpha n x n where, alpha 1 through alpha n are some constant. Similarly, 

I can write any vector in the iteration z k minus 1, z k minus 2 any vector in the iteration, 

I can write it as a linear combination of my Eigen vectors, which are linearly 

independent. 
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So, we can write then in that case, we can write z k is equal to this why because why can, 

we write that well. Z k g k is nothing but A k A to the power k operating on z 0 right, A 

to the power k operating on g 0, A operating on g 0. So, A operating on z k therefore, can 

be written as A alpha 1 A operating on x 1 plus alpha 2 A operating on x 2 plus alpha 3 

A operating on through alpha n A operating on x n. And since, x 1 x 2 and x n are Eigen 

vectors of A operating on x 1 is nothing but lambda times x 1 where, lambda is some 

Eigen vector of A. Similarly, A operating on x 2 can also be written some other line 

Eigen vector times x 2 and so on and so forth. So, A k operating on z k can be written as 

alpha 1 times lambda 1 to the power k times x 1 plus alpha 2 lambda 2 to the power k 

times x 2 and so on and so forth. Where lambda 1 is the Eigen value corresponding to the 

Eigen vector x 1, lambda 2 is the Eigen value corresponding to the vector x 2 and so on 

and so forth. 
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So, in that case, we can write z k like this, taking out lambda k outside, so we get lambda 

1 to the power k times alpha 1 x 1 plus a sum of these sort of terms where, we have 

quotients of the subsequent Eigen vectors with my initial Eigen vector lambda 1 rise to 

the power k. So, basically I am dividing each of these terms by lambda 1 to the power k 

and what do we know about these terms, well we knew that lambda 1 is my largest Eigen 

vector right. 

So, each of these terms lambda j by lambda 1 must have modulus less than 1, therefore I 

as I increase the number of iterations, as I increase k as I increase the number of 

iterations this terms, this is less than 1 becomes smaller and smaller. And as it becomes 

smaller and smaller, eventually, this part goes away this part becomes negligibly small as 

k increases and we can say, we can see that as k increases the direction of z k tends to 

that of my first Eigen vector, which is g 1 provided of course, this coefficient alpha 1 is 

not equal to 0 right.  

Thus the ratio, let us look at the ratio z k transpose A z k, what does that become divided 

by z k transpose z k, therefore z k tends to lambda 1 to the power k times alpha 1 x 1, 

because this term goes to 0, therefore z k transpose is nothing but lambda 1 k alpha 1 x 1 

transpose right. A z k is nothing but again another lambda 1 k another alpha 1, but now I 

have a operating on x 1 right. So, this is the numerator and the denominator, I get lambda 

1 k lambda 1 k alpha 1 square x 1 transpose x 1. So, these terms cancel out, lambda 1 to 



k lambda 1 to k cancels out, alpha 1 square cancels out, so I eventually get this term, 

which is equal to lambda 1 and is known as Rayleigh’s quotient is that clear. So, A x 1 is 

nothing but lambda 1 x 1.  

So, lambda 1 is s k let goes out x 1 transpose x 1 cancels out, so I am left with lambda 1, 

so this ratio, so the that if I start with an initial vector right. And I keep on iterating on, 

that initial vector I start with an initial arbitrary vector, I operate each time on that initial 

vector with my coefficient matrix A, I get a series of z k’s right. Eventually, when I take 

enough number of z k’s, I am assured that, if I compute this product and this product and 

divide them together, I compute the Rayleigh’s quotient, I am going to get my first my 

largest Eigen value, which is lambda 1. 
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If mod of lambda 1 is less than 1 or mod of lambda 1 is greater than 1 star may become 0 

or unbounded for large k and the z k may no longer tend to x 1, why would this happen 

well. 
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Let us look at this, if lambda 1 becomes smaller and smaller lambda 1 is less than 1, as I 

as k increases this term becomes smaller and smaller, so it may, so happen that this term 

may become almost 0 right. So, in that case z k may not, we are saying that z k tends to 

looks from this, that z k tends to x 1, but incase this term goes to 0 g k would actually, 

tend to 0. Similarly, if lambda 1 is greater than 1, in that case lambda 1 to the power k, if 

k is sufficiently large would become very, very large, it will be it become infinite large 

for a sufficiently large number of iterations. In that case also g k would not be, it would 

not be tending to x 1. 
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So, what do, we do to solve that problem well in order to do, that we normalize in order 

to ensure, that the scheme does not break down. It may be necessary to scale the 

sequence z k to ensure, that its norm remains bounded that is every time, we computed a 

new z k we normalize it, we compute its norm divide it by divide each term in the vector 

by the norm and we get you need a vector with a unit norm right. So, this we get the 

sequence instead of working with the sequence k, we work with the sequence y k where, 

the norm of y k is equal to 1. 

So, now my question is change, my iteration algorithm is slightly change, so z k plus 1 is 

no longer equal to A operating on z k, it is A operating on y k right. And therefore, the 

Rayleigh’s k quotient also automatically changes, it becomes y k transpose A y k y k 

transpose y k, it is clear from this expression that, this is going to be bounded why is that, 

because the norm of y k is 1, norm of y k is 1 a has finite norm, so this can never be 0 or 

never be infinity. 
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Similarly, if instead of using the power method and my original matrix A, I use the 

power method on my matrix A inverse, then instead of getting the largest Eigen value 

and the largest Eigen vector, I will get the smallest Eigen value and the smallest Eigen 

vector. Why is that, because A, if A has Eigen values lambda 1, through lambda n A 

inverse has Eigen values 1 by lambda 1 1 by lambda 2 1 by lambda n, that should be 

clear right. If you do a spectral decomposing of A, it becomes, we have get a diagonal 



matrix, it becomes lambda 1, through lambda n on the principle diagonals, if we invent 

that matrix invent A diagonal matrix, then what we have is another diagonal matrix, but 

now the diagonal terms are 1 by the original diagonal terms. So, A inverse is going to 

have Eigen values 1 by lambda 1 through 1 by lambda n, so we are trying to find, so 

instead of using A, if you use A inverse then we are going to get the, we are going to get 

the Eigen value, which has the largest 1 by lambda term right. 

So, that means, that will be the smallest lambda term smallest Eigen value of A right. So, 

more generally, if you form a sequence instead of using the matrix A or A inverse, if we 

use a minus lambda star I, as my coefficient matrix then we get a power method with a 

matrix A minus lambda star I inverse right. So, this is going to be my new coefficient 

matrix, in that case what am I going to get. 
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In this case, this matrix has Eigen values 1 minus lambda minus lambda star, so it is 

going to be largest for that Eigen value, which is closest to lambda star. So, if I want, to 

if I am given a coefficient matrix A and I am giving some arbitrary number lambda star 

and I want to find the Eigen value of A, which is closest to lambda star and the Eigen 

vector of A, which is closest to lambda star then instead of using A or A inverse. 
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I will iterate with A minus lambda star I inverse, in which case, I am going to get my 

Eigen value then that case I am going to maximize this term right. 
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And when do I maximize this term, when lambda becomes as close as possible, when I 

get the Eigen value, which is as close as possible to my constant lambda star. So, I am 

going to get the Eigen value, which is closest to lambda star and the corresponding Eigen 

vector. So, the power method can be generalized, it can be generalized not only to 

compute the basically, we can use the power method not only to compute, the largest 



Eigen value, the smallest Eigen value, we can use it to compute any Eigen value or Eigen 

vector right. 

If, but the fact 1 might ask that well, when I when if we choose lambda star such that 

lambda star is very close to an Eigen value of A right. In that case, this term is going to 

become very large right. But, when the problem when the problem become singular well, 

that is true but it will not in general affect the accuracy of my corresponding Eigen 

vector, I am still going to get my corresponding Eigen vector corresponding to that, 

Eigen value with sufficient accuracy. 
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So, that was the power method, there are another class of methods for computing Eigen 

values and Eigen vectors, which are based on similarity transformations. So, what are 

similarity transformations well, similarity transformations are typically transformation of 

this form where, we operate on a matrix A with another matrix P and its inverse P 

inverse. So, there is a broad class of methods for extracting Eigen values and Eigen 

vectors, which are based on similarity transformations, in our last lecture, we solved we 

saw that, if P is a non singular matrix, then the matrices P A P inverse and A have the 

same Eigen values, we proved that last time. So, this can be shown again, in it is easy 

enough to show.  

So, we can this is clear, if you look at the characteristic equation of P A P inverse and A, 

what is the characteristic equation of P A P inverse, it is determinant of lambda, I minus 



P A P inverse, what is the characteristic equation of A, it is determinant of lambda I 

minus A, why is lambda the same, because they have the same Eigen values right. So, I 

can write determinant of lambda I P A P inverse as basically, determinant of lambda P P 

inverse minus P A P inverse P P inverse being I.  

So, in that case, I can write this as determinant of lambda P P inverse. So, if I take out P 

P P inverse minus P A P inverse, I take out P outside, so I get P lambda P inverse minus 

A P inverse, I take out P inverse to the left, so I get determinant of P times determinant 

of lambda I minus A times determinant of P inverse right. So, just because taking into 

account the idea that, the product determinant of the product of 2 matrices is the product 

of its determinants, determinant of a b is equal to determinant of a, times determinant of 

b right. 

So, and we also know that determinant of P determinant of P is equal to 1 by determinant 

of P inverse right. So, determinant of A is equal to 1 by determinant of A inverse, so 

these cancel out, this determinant of P and determinant of P inverse cancel out and I get 

determinant of lambda I minus A, which means that P A P inverse and A have the same 

characteristic equation. And we know that the Eigen values are nothing but the roots of 

the characteristic equations, so the Eigen valued have to be the same. Also since, P P A P 

inverse operating on P x is equal to lambda P x right, again this should be obvious P 

inverse P is I. So, we have P A x operating on lambda P x, but again A x is nothing but 

lambda x. So, this means that, P x is an Eigen vector of P A P inverse right, P x is an 

Eigen vector of P A P inverse. 
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So, we in similarity, base methods for extracting Eigen values, we perform a series of 

similarity based transformations with orthogonal matrices, that will therefore, leave the 

Eigen values unchanged by transforming the Eigen vectors as above. 

(Refer Slide Time: 19:20) 

 

We know that, if P is any non singular matrix, then it leaves the Eigen values unchanged 

and it transforms the Eigen vectors like this right. Now, we are saying that, instead of 

using any non singular matrix, we are going to use only orthogonal matrices right. We 

are only going to use orthogonal matrices. 
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And orthogonal matrices will also therefore, leave the Eigen values unchanged while 

transforming the Eigen vectors as above right, assumption is that, I am using an 

orthogonal matrix with it is non singular right. Orthogonal matrix always is non singular 

its determinant can only be, if its ortho-normal, its determinant is plus or minus 1 right. 

So, sequence of matrices, what we are doing is that, we are repeatedly operating on a 

using A, similarity transformation, but A transformation matrix is an orthogonal matrix 

right. 

So, we start, so we obtain a sequence of matrices starting with A 0 equal to A, we 

operate on A 0 with A similarity transformation using Q, we get A 1, we again operating 

on A 1 with similarity transformation Q, we get A 2 and so on and so forth. So, A k is 

nothing but Q k transpose A k minus 1 Q k by Q k transpose Q k is equal to I right, it is 

an orthogonal matrix, k is equal to 1 to 2 and if x is an Eigen vector of A.  

So, we the only criteria is that, this transformation matrix be a orthogonal matrix right, at 

each step we can use, if we want a different orthogonal matrix, but we are using a 

orthogonal matrix for each similarity transformation. So, x 1 is nothing but Q 1 transpose 

x, why is that, because I knew that, my Eigen vectors are P times x right. So, Q 1 

transpose x x 2 is equal to Q 2 Q k, similarity transformation means, that my Eigen 

vectors are the original Eigen vectors times, the transformation matrix right. What is the 

matrix here here, it is Q Q transpose, why is that. 
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Because, my similarity transformation is of the form P A P inverse right, in case of an 

orthogonal matrix, it is P A P transpose right. So, P A P transpose instead of P I am using 

Q transpose right. 
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So, instead of my Eigen vectors are going to be transpose transformed as Q transpose 

operating on x right. So, x 1 is equal to Q 1 transpose x, x 2 is equal to Q 2 transpose x 1, 

which I, if I expand it out, I am going finally, going to get Q k transpose Q k minus 1 

transpose Q k minus 2 transpose so on and so forth times x. So, after k similarity 



transformation my original Eigen vector x is going to be transformed to this. So, in that 

case, I can just by doing a transpose of both sides, I get x is equal to Q 1 Q 2 through Q k 

operating on x k.  
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The sequence similarity, transformations also by definition performs symmetry why 

because we can show this A k transpose is equal to Q k transpose A k minus 1 Q k 

transpose, which is equal to Q k transpose A k minus 1 Q k. Thus if the initial matrix A 0 

is symmetric, the sequence of similarity transformations will yield a symmetric matrix, 

so as we do our transformation, if we start with a symmetric matrix, we are going to get 

symmetric matrices. The orthogonal transformations used in practice are mainly of 2 

types plane rotations and reflections.  

So, usually what people do, in as is a very well known method, which we are going to 

talk about later on 1 is Jacobi’s method, which basically just uses plane rotations, rather 

transformation techniques, which use reflections. So, we operate, so our transformation 

orthogonal transformation matrix is usually a rotation or reflection. So, we repeatedly 

operate on my original matrix A with repeated rotations or repeated reflections until I get 

a diagonal system, which has the Eigen values on its diagonal principle diagonals. So, 

the orthogonal transformations used in practice are mainly of 2 types plane rotations and 

plane reflections, the aim of both types of transformations is to reduce the initial matrix 



to as close to a diagonal form as possible with the Eigen values occupying the diagonal 

locations.  

You can think of it like this, you know that when you have a symmetric matrix and you 

have linearly independent Eigen vectors, you can transform the symmetric matrix to a 

diagonal matrix by operating on the symmetric matrix with a matrix whose columns are 

my Eigen vectors right. So, if I have a matrix A and I which we looked at last time right 

and we have another matrix x an each column of x corresponds to an Eigen vector, if I do 

x transpose A x I eventually end up with a diagonal matrix, whose principle diagonal 

elements are my Eigen values right. 

Here we do not know up priory, what are my Eigen vectors right, so I am by using this 

repeated, similarity transformations I am trying to get as close as I can to my Eigen 

vector matrix right. And then eventually, I can going to get a diagonal matrix, which is 

going to contain all the principle values, I mean Eigen values and its principle diagonals 

right. 
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So, what is it, so I said that, we repeatedly operate on this matrix using orthogonal 

transformations, using plane rotations and plane and reflections. So, what is a plane 

rotation matrix, A plane rotation matrix is a matrix in the p q plane, which is equal to the 

identity matrix except for the elements on the pth row and qth pth row pth column and 

qth row and qth column. So, only 2 only, it is an identity matrix except for the elements 



R p p. So, the intersection of the p row and the q column and the p row and the p column 

right, only those terms are going to change. 

The rest of my terms are going to remain 1 and 0 like my usual identity matrix. So, only 

terms, which are going to be different are R p p R p q R q p and R p p and these will be 

like a plane rotation right, which you know A plane rotation matrix is like a matrix cos 

phi sin phi minus sin phi cos phi right. So, in this case, we have that on a p intersection 

of my pth row and p and q columns, similarly qth row and p and q columns, so those are 

and then we have control over the rotation angle 5 right, which is less than 5.  

So, the idea is to give A plane rotation to choose these phi’s to choose this choose these 

phi’s meaning choose this rotation matrix, such that my it rise to annihilate the off-

diagonal terms of my original matrix, what do I, what I have an original matrix right, 

which has got off-diagonal terms, I want to get to a diagonal form when my diagonal 

elements occupy the my when my Eigen values occupy the diagonal elements. 

So, what I what do I want to do, I want to annihilate my off-diagonal terms, I want to 

make them 0. So, I can choose my phi’s, I am going to choose my phi’s in these each 

iteration, I am going to choose my phi with a target to annihilate a particular off-diagonal 

term and how am I going to choose, which off-diagonal term to annihilate well, the 

natural choice is I will try to choose the off-diagonal term, which is largest right.  

The largest off- diagonal term, I will try to annihilate in it, at any iteration k I will choose 

my R matrix R k, such that it will try to make the largest off-diagonal term 0 and if I do 

this sufficient number of times, it turns out, that I can in most cases, I can annihilate all 

my off- diagonal terms and I left, I am left with a diagonal matrix. And since I know that 

my the similarity transformation leaves the Eigen values unchanged, those Eigen values 

of a diagonal matrix, the diagonal matrix has the Eigen values and its diagonal and those 

are those Eigen values must be the Eigen values of my original matrix right. 

So, if this transformation operates on the matrix A, so we it only changes the elements of 

the pth and qth, so if I form A matrix like this, with only the p R p p R p q R q p and R p 

p different from 1 and 0, then it is going to only change the elements on the pth and qth 

column of A. Similarly if you operate on A with R transpose, if I form R like this, but 

then instead of operating on A with R, I operate an A with R transpose, I am only going 



to change the pth and qth rows of A right. So, I can change the pth and qth rows or the 

pth and qth columns. 
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So, that was about plane rotations, what about reflections well for reflections the 

transformation matrix has this form, it is of the form P P depends on a particular vector 

w and the P of w is I minus 2, w vector product w right, returns a product right. So, it is 

basically the outer product, it is when you take a dot product of 2 vectors, you get a 

scalar right. But, this is not a dot product, this is a vector product sorry, it is not a vector 

product it is a tenser product right, it is a tensor product.  

So, basically, if you think of it like this, if you have a vector, if you write a vector in row 

form then you have write a vector in column form, if you take the product of the row 

vector with the column vector, you end up with a scalar right. That is your dot product, 

but instead of that, if you take the vector in the column form and then you take the 

product with the another vector in the row from then you end up with a matrix right.  

So, it is changing the order right. So, it is going from 1 order to 2 orders, so it is called a 

tenser product right, it increases the order from vector we go to matrix right. So, omega 

w, so we are saying that, if we construct P to be I minus 2 w tenser product w, at if I get 

tenser, it is a outer product 2 I minus I minus 2 w outer product w with the condition, that 

w is a vector of unit norm, that is w dotted with w is equal to 1.  



This matrix is an orthogonal matrix, why is this matrix an orthogonal matrix, we can 

show that, if I take the transpose of this matrix and take the product of that matrix with 

its with its transpose, I am going to get an I am going to get an identity matrix, well you 

can show that, I am not going too many details of that, it is obvious right. So, you can 

just see, if you take this, so first term is going to be I, the second term is going to be, so 

this operating on this is going to be 4 w tends outer product w, operating on w, outer 

product w and this is going to be minus 2 w outer product w operating on I.  

This is going to be another minus 2 w outer product, so this is going to be my this part 

and this part, using the operation of using the rules for our tensor products, we can write 

w tensor product w, operating on w tensor product w as w tensor product w times w that 

w scalar product w, since w scalar product w is equal to 1. So, we have again this 2 terms 

are going to cancel out and we are going to get I. 

So, the transformation matrix is orthogonal, if we construct it like this, if we take any 

vector w of unit norm and we construct a matrix by I minus 2 w tensor product w, we are 

going to end up with a orthogonal matrix, it also we can, we will go we have later, that is 

also leaves a symmetric matrix symmetric right. So, it preserves symmetry, but what it 

does is that when this operates on any matrix A, it basically reflects the matrix A in the 

hyper plane through the origin, which is orthogonal to w. 

So, we consider in that space in that n dimensional space, since we are considering an n 

dimensional matrix as space is n dimensional, in that n dimensional space, I have an n 

dimensional vector w, which is suppose passing through the origin. And I have a plane, 

which is orthogonal to that vector w, in that n dimensional space and what this 

transformation does any is that, it reflects the matrix A in the hyper plane through the 

origin orthogonal to w. So, that is why it is called a reflection matrix right. You can think 

of it like this minus w tensor product w operating on 2, so it takes out the projection, so 

you can see from here, it takes out the part of A, in the w direction twice, that is why it 

gets reflected right. It gets reflected about the hyper plane, through the hyper plane 

passing, through A with orthogonal w. 
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P w is also symmetric well, that can be shown trivially again using the properties of outer 

product, the transformation A transpose P w A, thus transforms each column of a 

independently according to this. So, a operating on this P operating on a is nothing but 

this P operating on each column of a where, a k represents a column of a. And again 

using the transformation rules for outer products separating on vectors, we can show that, 

this is equal to this. Similarly, each similarly, if I instead of using P operating on A, if I 

use a of operate it from the right hand side right, instead of operating on a with P on from 

the left hand side, you operate on a on I operate on a with P from the right hand side, I 

transform each row of a right.  
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So, one of the most widely used, similarity transformations for obtaining Eigen values 

and Eigen vectors of symmetric matrices is known as Jacobi’s method right, as I 

mentioned a little while earlier. So, Jacobi’s method, we do a series of similarity 

transformation using orthogonal matrices Q k where, Q k are plane rotations and they are 

used to transform A, so that it finally, becomes a diagonal matrix. 

In the kth step of the classical Jacobi’s method, we search A k for the largest, I am sorry, 

this is A type, this should be the largest of diagonal element right. You search for the 

largest off-diagonal element and then I construct my P matrix taking care to choose my 

angle phi, in such a manner that, my largest diagonal element becomes 0 right. I 

annihilate my largest off- diagonal element becomes 0. 
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If this largest off-diagonal element is a p q k then we make a similarity transformation A 

k 1 is equal to R p q transpose R p q where, R is a planer rotation right, which transforms 

just the p and q columns of A right. Where angle phi is chosen, such that A p q k plus 1 

right, after the transformation k plus 1 is reduced to 0. So, repeated use of this scheme 

leads to annihilation of all off-diagonal elements and finally, we get a diagonal matrix 

with the principle values of a comprising the Eigen values of a comprising diagonal 

elements. 

And since diagonal elements have to have the Eigen values, those are the Eigen values of 

A right, because I knew that my similarity transformations leave my Eigen values 

unchanged right. Sometimes it is not possible it is not generally true that by doing a finite 

sequence of similarity transformations, we are going to get a diagonal matrix, it does not 

work out that way, it does not work on all the time. 
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So, in that case, what is the second best option, well in that case instead of trying to get a 

diagonal form, we try to reduce it, as simpler form as possible right. And when using, 

that simpler matrix, we construct out characteristic polynomial right, characteristic 

polynomial and then try to solve the characteristic polynomial numerically right. So, we 

know that, if we direct solve the characteristic polynomial of a large matrix that lots of 

components and we are susceptibility will conditioning right.  

We saw that last time, because the characteristic polynomial is susceptible is very 

sensitive right, miner perturbations in the elements of a can lead to large changes in the 

Eigen values right. If you try to solve obtain the Eigen values after solving the 

characteristic polynomial, so for you for a full matrix, it is not a good idea, we saw to use 

the characteristic polynomial approach and try to find the roots of that polynomial.  

However, if we reduce, that full matrix to sufficiently compact form to as close the 

diagonal form is possible, then in that case, the characteristic polynomial is not as well as 

susceptible to ilposeness right, it is not as imposed right. So, in that case, we can go 

ahead and solve the characteristic polynomial to find the Eigen values which in case, we 

cannot reduce a to diagonal form just by performing similarity transformations.  

So, what are some of these forms, we try to reduce transform the matrix A to some other 

compact form, which can be obtained in a finite number of steps, such forms include the 

symmetric tri-diagonal form for symmetric matrices and the Hessenberg form for non-



symmetric matrices. Then once we have obtained the symmetric tri-diagonal form or the 

Hessenberg form you go ahead and write the characteristic polynomial for those simple 

matrices and solve them to obtain Eigen. 
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So, what are symmetric tri-diagonal matrix is of this form, so you can see it is pretty 

close to a diagonal matrix, however, it is not exactly a diagonal matrix. So, doing 

transformations, we can reduce any symmetric matrix to symmetric tri-diagonal matrix 

symmetric matrix, non-symmetric matrix to Hessenberg form and then we can use the try 

to write down the characteristic for, equation for this characteristic polynomial for this 

and try to find the roots of that equation. 
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So, now, we are going to change track and try something else, so up to now, we have 

focused on solution of linear systems right. We have looked at a variety of ways to solve 

linear systems, we have looked at convergence, we have looked at airway propagation, 

we have try to find out, which are the best possible ways, most efficient ways of solving 

a linear system. 

So, now we are going to change switch over to non-linear systems, in many civil 

engineering applications when you come to nonlinearities for instance. We have non-

linear material behavior, whether in solid or fluid mechanics, we encounter non-linear 

material behavior or for finite strains or finite rotations, we encounter non-linear 

kinematics right. So, in that case the non-linear physical phenomenon gives rise to 

governing equations, which are non-linear right. 

if we have a matrix a to in a simplest gives a simplest possible example, if we have a 

solving a x equal to b where, the coefficient matrix A is a function of the solution right. 

So, a is a function of x, a depends on x, right and we are trying to solve a x equal to b. 

So, every time the solution change a solution changes my coefficient matrix is also going 

to change right. 

Every time x changes my coefficient matrix is going to change, so it is no longer a linear 

system, it is a non-linear system. So, how do we solve those systems, well many of these 

equations cannot be solved analytically, so we have to solve most interesting problems, I 



mean it cannot be solved analytically, unless there is simplest possible problems to the 

simplest possible nonlinearities and the simplest possible geometries and things like that. 

Simplest possible material properties and things like that, we cannot solve them 

analytically. So, we have to solve them numerically. 
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And if you have to solve the numerically, we have to find the roots of non-linear 

equations right and the roots of non-linear equations cannot generally, be expressed in 

closed form, we have seen that before. So, numerical methods based either on 

linearization basically, we take our original non-linear system and we linearize it, in the 

first class, we introduced some basic ideas about linearization.  

We are going to talk about in about it in greater detail later on that, we can use either 

linearization the successive approximation to solve these non-linear equations. So, these 

iterative methods start from an initial approximation to the root and produce a sequence, 

which eventually converges to the desired value. However non-linear equations may 

have multiple roots, what are multiple roots well. 
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We will talk about that, we will give a precise definitions of multiple roots later on, but I 

just wanted to mention that, we have you can have simple roots and multiple roots and 

we will define, what exactly a simple and multiple roots later on. But, unless the starting 

value of the iteration is within a certain interval say that contains the root iteration may 

not converge to the desired root. 
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Say for instance suppose, I have a non-linear function like this and I am going to find the 

root of this non-linear function, root meaning the value at of I want to find the value of 



my abscissa for, which my ordinate becomes 0. So, I want to find x such that, f of x 

becomes equal to 0 right. So, I want to find this x right, such that f of x become 0, but if 

my if I restrict my iteration interval to between a and b where, a and b do not bound the 

root, I have no chance of finding the root right. 

If my root lies outside my iteration interval a to b, I have no chance of finding the root 

right. So, I better make sure, that my iteration interval bounds my root right, so if my 

root lies within my iteration interval. So, many algorithms, if the root lies within an 

iteration interval, however, large be the iteration interval, my iteration interval can may 

be as large as I want right.  

That if my root lies within that iteration interval, it is not this situation, but it is this, but 

with my a b far apart as far as possible as I want, but still those methods are going to 

after suppose n large number of iterations, we are going to converge to the root right. 

Come what are they are going to converge to the root somehow right, but there are some 

other methods, which are not going to converge to the root unless I start sufficiently 

close to the root, unless my interval is bounds the root that is relative narrow bound on 

the root right. 

And the problem is that most good iteration methods, the good iteration methods means 

methods, which converge fast to the root, which have fast rates of convergence, they 

need a small initial interval. So, that means, that they converge faster near the root right, 

but far away from the root, they do not perform well right, they converge slowly right. 

So, for they are most efficient most efficient methods, they were best near the root. 



(Refer Slide Time: 46:43) 

 

So, unless the starting value of the iteration is within a certain interval say a b, that 

contains the root, the iteration may not converge to the desired root, other algorithms 

may require initial approximation that is close to the root in order to converge, these 

methods typically, have the advantage that, they converge more quickly. So, what is a 

good alternative may be to start with a method, that may be does not, we because we do 

not known the interval, which bounds the root right.  

So, but we only know that the root lies somewhere between a and b a and b is big right, 

we start with a and b big right and then we use a relatively unsophisticated method to 

narrow the bound right. And then we use a sophisticated method near the when the 

bound is sufficiently small right. A sophisticated method means more expensive right, so 

I do not want to use my sophisticated method when my bound is large, so I use my 

relatively unsophisticated method to narrow down, that bound right and when I have a 

sufficiently narrow bound, then I have reached. 
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Somewhere here, then I can use my sophisticated method, because that is because I am, I 

know even though, I am using the sophisticated method and it is more expensive, I know 

that, it has very good convergence property. So, I am going to, I am going to converge 

faster to the root.  
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So, then when the iterate gets close to the root, it may be desirable to switch to an 

algorithm, which converges only for starting values close to the root, but converges 

much faster. So, I said, I am going to define, what are simple and multiple roots, so let 



me do that, alpha is said to be a simple root of this equation f of x is equal to 0, if f prime 

of alpha is not equal to 0, that is at alpha the derivative of f is not equal to 0. 

So, that is that does not have a stationary value at alpha, alpha is said to be a multiple 

root to the equation f of x is equal to 0, if this multiplicity q greater than 1, if we can 

write, we can write g of x is equal to x minus alpha to the power minus q times f of x. 

That is we can write f of x, in terms of another function g of x times x minus alpha to the 

power q and in that case, we say that f has roots alpha with multiplicity q that means, 

there are q roots of x equal to alpha right.  And this function g of x remains bounded as x 

goes to alpha, so as x goes to alpha g of x does not become 0 or infinity, so g of x has 

some finite g of x is a has some finite value right. If this condition is satisfied, we say 

that f of x has roots has multiple roots alpha of order q right, q multiple roots q roots 

alpha. 
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So, we will focus mostly on iterative schemes, so in while derive while looking at a 

algorithms, we are going to first look at algorithms for 1 dimensional non-linear 

equations, because they are the easiest to understand right. And the most of those ideas, 

which we obtained for 1 dimensional non-linear equations get generalized to multiple 

dimensions, but we are going to look at multiple dimensions later on, but the basic ideas, 

we are going to see with 1 dimensional non-linear equations.  



Multidimensional non-linear equations, what do I mean may I say multidimensional, 

which means that, there are more than one independent variables right. Instead of just x 

there are this there is a vector of independent variables x 1 x 2 through x n right. So, 

multidimensional non-linear equations give rise to a system of non-linear equations, for 

instance, if we have non-linear equation in variables x 1 x 2 through x n, it is clear that, 

we need a system of equations for 1 variable, I need 1 equation right, for n variables I 

need n equations.  

So, I need a system of equations and that is that I can represent as a vector, f now 

becomes a vector f of x equal to 0, so I want to find the roots, I want to find alpha as a 

vector of alpha’s, such that f alpha becomes equal to 0, if I now alpha is a vector. And I 

can write this as f 1 f 2 f n equal to 0, so this is the system of equations. So, solving a 

multidimensional system of non-linear equations is considerably more difficult, than 

solving a 1 dimensional non-linear equation, which should be sort of obvious. 
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However many of the methods for solving non-linear equations in a single variable are 

easily generalized to multi-dimensions, however they all assume that good the methods 

that, we are going to talk about, they all assume that good approximations to the roots are 

known, If no prior information about the location of these roots are known the problem 

becomes considerably harder. We shall discuss techniques for solving non-linear 



problems, such as full Newton Raphson modified Newton Raphson and quasi Newton 

Raphson.  

However, I should mention that, there is no technique, no non-linear technique right, 

which can claim that given any non-linear problem, it is going to be able to solve it right. 

So, that I am not aware of any such techniques till now, this was better we have better 

techniques and not, so good techniques, but there is no technique, which can solve all 

non-linear problems without fail, because nonlinearities are really hard to handle. 
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So, in our next class, we are going to talk about the most efficient methods for solving 1 

dimensional non-linear equations, we are going to talk about the Newton Raphson 

method. We are going to look at the Newton Raphson method very closely, we are going 

to look at its convergence properties right. Then we are going to look at the secant 

method its convergence properties and then we are going to move on to more general 

methods. 

Thank you. 


