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Lecture-1
Introduction to Numerical Methods

First numerical method in civil engineering, in the first lecture I am going to talk about

introduction to numerical methods.
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HNumerical Mathods™ by D, Dahlquist, and A Bork, Prenfice-Hall, Englewood
Ciiffs. NJ. 1874

Methods of Applied Mathematics™, by Francis B. Hildebrand. Dover Pubbcations

Before, going into further details, 1 would like to mention two references, which | am
going to follow throughout this course, the first reference is numerical methods by
Dahliquist and Bork, the second reference is methods of applied mathematics by
Hildebrand.
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We use numancal methods in Chal Enginesning o sotve mathematical modats of
Cml Engineenng problems

Examples of such mathematical modets are marmy and cover every dsdpling
encompassad by Cral Engineenng.

Models to accurately analyze 3 dimensional structural frames
Modeks to undsrstand lguefaction of soil during sarthquakes
Traffic flow madels for optmized raffic movemant

Modals 1o y|‘\l-|_, the percolation of contaminants into oroun d waler

Models thal capture the complex flow pattems past locks and weirs

First 1 would like to talk about why it is necessary to do mathematical modeling, we use
numerical methods in civil engineering to solve mathematical models of civil
engineering problems. Examples of such mathematical models are many and cover every
discipline encompassed by civil engineering, for instance in structural engineering, we
need models to accurately, analyze dimensional structural frames. In geotechnical
engineering, we need models to understand liquefaction of soil during earthquakes

transportation station engineering for instance.

We used traffic flow models for optimized traffic movement an environmental
engineering, we use models to study, the percolation of contaminants into ground water.
And in hydraulics and water resources engineering, we use models that capture the

complex flow patterns past locks and weirs.
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The need for rumerncal methods to study Chil Engineering probilems s best
undersiood by considenng a typcal protlem

Suppose wa have a faclory housing sensiive equipment, located next 1o & railway
ine and the raitway authontes plan o upgrade the ine 1o allow for high speed
wrban commutar rail

Duning the planmeng phase they lace representabons from the laciory owner that
the plarmed high speed rall traffic is going to cause unacceptable levels of
vibrations 1o the factory floor — sevenaly affeciing the usage of the equipment

The struciural enginesning consultants whom e rallway authoriies amploy to tes
whether the objaction is vallid decide fo analyss the vibrations of the factory floor

slab

The need for numerical methods to study civil engineering problems is best understood
by considering a typical problem, since I am a structural engineer | will choose a typical
problem from the field of structural engineering. Suppose we have a factory housing
sensitive equipment, located next to a railway line and the railway authorities plan to

upgrade the line to allow for high speed urban commuter rail.

During the planning phase they face representations from the factory owner, that the
planned high speed rail traffic is going to cause unacceptable levels of vibrations to the
factory floor, severely affecting the usage of the equipment. The structural engineering
consultants whom the railway authorities employ to test, whether the objection is valid

decide to analyze the vibrations of the factory floor slab.
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To do this they decide to sal up a mathamatical model of the floor, subject to the
motions apacie 1 from the passage of the P\|_|h spaad framn

Since the thickness of the floor is relatively small. compared 1o its lsngth and
width, they model the floor as a thin plate

Thiy then try 1o Sobe & protkem typical in structural anmnesnng: he fleral
vibrations of a thin plate due to the excitation from the train fraffic, to sea if the
magnitudes of the Vibralions excesd Wokerable Imits

In modeling the floor as a thin plate, the analysts make certain &

Such ideakzations simplty the mathematcal modeling of a problem and allow us
to solve it |"‘v\|'I|J fhe tooks at owr command

To do this they decide to set up a mathematical model of the floor subject to the motions,
expected from the passage of the high speed train, Since the thickness of the floor is
relatively small compared to its length. And width they model the floor as a thin plate,
then they try to solve a problem, typical in structural engineering the flexural vibrations
of a thin plate, due to the excitations from the train traffic, to see if the magnitudes of the
vibrations exceed tolerable limits. In modeling the floor as a thin plate the analysts make
certain assumptions or idealizations such idealizations, simplify the mathematical
modeling of a problem and allow us to solve it using the tools at our command.
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A Typical Problem

It is perfecily fine lo make such simplfying assumplions or idealzations so long
as they safisfy two condifions

Despite fhem, the modaller is abla to caphura tha physics of the problem up 1o
an pccaptable level of accuracy

The modelier is fully aware of the restnctions the idealzations impose on the
range of apphcabibty of the mathematcal mode|

In modeling the Nloor slab as a thin plate, in addtion to thes Thin” assumption
wit make two further important assumglions regarding tha mechanical
behaviowr of the floor

The rotations of the floor are insignificant companad 1o tha vertical ranslations

The chear daformation of the fioor 15 small in rélaton 1o the bendng
deformations

These assumptions allow the response of the plate to be measured in ferms of
its vertcal ranstatons “w, which althwough var JII:.I-'I om poard 1o point along the
= length and width of the plale, does nol vary significanty through the thickness of

4 ) the thin” plate
L




It is perfectly fine to make such simplifying assumptions or idealizations, so long as they
satisfy two conditions, first despite them the modeler is able to capture, the physics of the
problem up to an acceptable level of accuracy. Two, the modeler is fully aware of the
restrictions, the idealizations impose on the range of applicability of the mathematical

model.

In modeling the first floor slab as a thin plate, in addition to the thin assumption we make
two further important assumptions regarding the mechanical behavior of the floor. First
the rotations of the floor are insignificant compared to the vertical translations to the
shear deformation of the floor is small in relation to the bending deformations. These
assumptions allow the response of the plate to be measured in terms of its vertical
translations w, which although varying from point to point along the length and width of
the plate does not vary significantly, through the thickness of the thin plate.
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The mathematical modal can Then ba writien in erms of e verical ranslafions w
as a funciion of the planar coordinates x. y, and tima, 1

Thuss 'w = wix, .1} salisfies the following equation which govemns the flexural
vbrations of than plates (see &g Merowich, “Fundamentals of Vibrations®)

w s the verbical trameskation, § e apphed load

wn e st of U plate, D thee Qexual namdiy

The mathematical model can then be written in terms of, the vertical translations w as a
function of the planar coordinates x y and time t, thus w where w is the function of x y
and t. Satisfies the following equation which governs the flexural vibrations of thin

plates.
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Modellir 19 requirements

To summarize then, to get physicaly accurala results fram an analytical model we
have to

Make reasonable assumptions about the physics: which phenomena are important
and which are nol. what is the type and range of bahmdour we ars inlerested in
modaikng &tc

Gréen the assumphons, et up a mathematcal model that bast represants the
[P A

Make sure that the model |s not applied to predict behaviour outside its feasibility
region. fof instance the above mod o the Moo vibrations is not valid if the floor
5 undergoing finite rotations or in siluations where the transverse shear
deformations of the floor are important

®

To summarize then to get physically accurate results from an analytical model, we have
to one make reasonable assumptions about, the physics which phenomena are important.
And which are not, what is the type and range of behavior, we are interested in modeling
etcetera given the assumptions, set up a mathematical model that best represents the

phenomena.

Finally, make sure that the model is not applied to predict behavior outside its feasibility
region, for instance the above model for the floor vibrations is not valid, if the floor is
undergoing finite rotations or in situations where the transverse shear deformations of the

floor are important.
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Horwever sometimas even if tha above conditions are safisfied we cannol sobve our
madel using ha mathamatcal 1ools at our command or tha analytical solutions

ara oo complax and me consuming 1o be of practical usa for most angineers.
For instance in the floor vibration problem if efther of the follawing is true

The thickness of the floor (s an arbitrary funcBion of the planar coordinates & y
The alastic modulus { E) is an arbitrary function of the planar Coondnates x

The elastic modulus (E) is a funclion of the deformation i e. E is a function of the
solution W

The boundanes of he floor are arbitranly shaped
The ficors have comphex cut outs

the problem becomes too complicated to solve using the analytcal methods a
civl engineer has at his command

=
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However sometimes even if the above conditions are satisfied, we cannot solve our
model using the mathematical tools, at our command or the analytical solutions are too
complex. And time consuming to be a practical use for most engineers, for instance in
the floor vibration problem, if either of the following is true, either the thickness of the

floor is an arbitrary function of the planar coordinates x and y.

The elastic modulus is an arbitrary function of the planar coordinates x and y, the elastic
modulus is a function of the deformation, that is e is a function of the solution w the
boundaries, of the floor are arbitrarily shaped or the floors have complex cut outs the
problem, becomes too complicated to solve using the analytical methods a civil engineer

has at his command.
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In such situations the problem can only be solved fhrough the use of numarical mathods
The complcations enumerated above are instances of

a Complax geometry
b Geometrical and material nonlinearities

two typical scenarios where numerical methods find application in sohing

iharwise intractable analyical modets of cvl enginesring profilems
For instance for the floor vibration problem. the consultants will probably use sither the

finite slement of finte difference method, two popular numencal techiigues for sohing
partial differential aquaticns. to sobe thelr problam

-

0

In such situations the problem can only be solved through the use of numerical methods,
the complications enumerated above are instances of a, complex geometry geometrical
and material nonlinearities, two typical scenarios where numerical methods. Find
application in solving otherwise intractable analytical models of civil engineering
problems, for instance for the floor vibration problem, the consultants will probably use
either the finite element or finite difference method, two popular numerical techniques

for solving partial differential equations to solve their problem.
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L:] ".'|.'l'ﬂ|'l"_| o talk in any detall about numencal methods In partcular it is
& &t Tis stage o make a dstinclon betwean a numsncal method and
& i cal algorthm

Given tha mathematical dascipion of a problem, a numeancal mathod lays down
the broad approach to bé adopted 1o ole the problem numencally

For instance for the floor Wbration problem. if we wish io use the finite dfferenca methaod
we would bagin by wiiting the finlte difference form (an approsdmation) of the dertvatives

appaaning in tha govaming differantial squation

Jn the ofhwer hand, il we wish o use he finlle element meihod, we would start with
trying to construct finite dimensional frial and test funclions to approximate the
axact solfion “w of the above problem

.
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Before starting to talk in any detail about numerical methods in particular, it is
appropriate at this, stage to make a distinction between a numerical method and a
numerical algorithm. Given the mathematical description of a problem a numerical
method lays down, the broad approach to be adopted to solve the problem numerically,

for instance for the floor vibration problem.

If we wish to use the finite difference method, we would begin by writing the finite
difference from which is an approximation of the derivatives appearing in the governing
differential equation On the other hand, if we wish to use the finite element method, we
would start with trying to construct finite dimensional trial and test functions to
approximate, the exact solution w of the above problem.

(Refer Slide Time 10:10)

~hoosing a numerical algorithm

Cinca we have chosean fhe numsnical mathod, there ars a wids variety of :]l.JL'l'm\rII-
we can choose o do a step by step implementation of the chosen numencal methaod

A finite element implementalion for instance may adopt an explicit or implicit algorithm
1o sohve e goveming equation

The implementation of these two algorithims are widely differant despite our cholce of the
same numancal method

Ari impEcit -I.|._:I|'-I'1|'|'1II1 is uncondfionally stable - but for strongly nonlinear problams
My encounter COMergence difficulties

An exphoit algomthm on the other hand is condibonally stable | & it 15 stable only i
the load incraments are kess than a certain imiting value. However they do not
ENCOUNST cormaar Qence [ oblems

-

i q}é-\'. we Iook at certain concepts that are

Once we have chosen a numerical method there are a wide variety of algorithms, we can
choose to do a step by step implementation of the chosen numerical method. A finite
element implementation for instance may adopt an explicit or implicit algorithm, to solve
the governing equation. The implementation of these two algorithms are widely
different, despite our choice of the same numerical method, that is the finite element
method an implicit algorithm is unconditionally stable.

But, for strongly non-linear problems, may encounter convergence difficulties an explicit
algorithm, on the other hand is conditionally stable, that is it is stable only if the load

increments are less than a certain limiting value, however, they do not encounter



convergence problems next we would look like, we would like to look at certain
concepts that are common to most numerical methods.
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It refers. to repaated applicaion of a numearical process in order 1o successhely

Improve previous results

Consider the solution of the equation X flx)where [(x) isadiferentable
function with confinuous derfvatives whose value can ba computed for any value of »
within a cartain interval We start with an initial approcdmation and compute the

SeqUence

_..»jlhv saquence ' omvergas to a t||'ul'.\n-.l'| valle a than o satisfies the equaton and
¥
o

The first concept, that we wish to examine is the idea of iteration, it refers to repeated
application of numerical process in order to successively improve previous results.
Consider the solution of the equation x is equal to f of x, where f of x is a differentiable
function with continuous derivatives, whose value can be computed for any value of x
within a certain interval. We start with an initial approximation and compute the
sequence, we start with the initial approximation x 0 and substituting x O, in the and

expression for f of x we compute the value x 1.

We use the new value x 1, again in the equation for f x to come up with the next iterate x
2 and so on, and so forth, until we get f of x n minus 1, which is equal to x n, if the
sequence X n converges to a limiting value alpha then alpha satisfies, the equation and

limit limiting value of f of x n is equal to f of alpha. So, alpha is the root of this equation.
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As the number of ilerations. n Orosws: s desirable hat x, be a better and beter
estimate of he desired root and the Iteratons be stopped when suficient accurac ¥

has bean attained

Howaver I is not always assured that the laraions will converge As the following figure
shows, the ilerations COMVErga in onky the first fao of the fowr cases shown balow

As the number of iterations n rows, it is desirable that x n be a better and better estimate
of the desired root and the iterations be such stopped, when sufficient accuracy has been
attained. However, it is not always assured that the iterations will converge as the
following figure shows, the iterations converge in only the first two of the four cases

shown below.

We start with an initial assumption and in case 1 and case 2, we converge to the true
solution which is where the blue curve intersects, the red curve. In case 3 and 4, we can
see that even, if we start near these two solutions are iteration process, takes us away

from the root of the true solution.
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InCase 1 and Casa 2, the solufion becomes closer and closer 1o he root as n
Increases while In Cases 3 and 4 he solution moves farther and farther away from the
Focl &% N INCraasss

Tha reasan for this ks chaar from the following. From the ileration algorithm

Fix ¥= Fix

Bt vz the hlean Valoe Theorem

L e R |

Thus corvergence is faster ie. |[Fix Fix_ i smaller the smaller |F ooy
=

{- q).'l the neighbourhood of e root

In case 1 and case 2, the solution becomes closer and closer to the root as n increases,
while in cases 3 and 4 the solution moves farther and farther away from the root as n
increases. The reason for this is clear from the following from the iteration algorithm, we
can write x n plus 1 minus X n is equal to f of x n, minus f of x n minus 1, we called that
according to algorithm x n plus 1 is equal to, f of x n and x n is equal to f of x n minus 1,

dividing both sides by x n minus, x n minus 1, we get the following.

But, using the mean value theorem, we can write f x n minus f of x n minus 1 is equal to
X n minus, x n minus 1 times the derivative of f evaluated at a value xi, where xi lies in
the interval x n minus 1 and x n. Thus looking at the last equation it is clear, that
convergence is faster that is the modulus of f of x n minus, f of x n minus 1 is smaller,
the smaller f prime xi is in the neighborhood of the root, f of x n will be closer to f of x n
minus 1, that is the iterates are going to convert faster the smaller is the value of the

derivative f prime xi.
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W FCE < 1 for all x in the nelghbourhood of the staring terates 1, and x,, and this
nelghbourhood Includes the root, we can be sure of convergence

This is true in Cases 1 and 2 above where O f(x) - land -1 - Flix) 0
On the omhar hand, IF th II'I-T.:II‘HLI-'.-'- of the slope s -_H-\'-.ﬂ-'-! T O ear s Ko
i Loy, corwerpes toaonly in acceplonal cases, no matter Row closs o

e chioses the starting point x, (X, nat equal to a )

This can ba proved as follows

If mod f prime xi is less than 1 for all x in the neighborhood of the starting iterates x 0
and x 1 and this neighborhood includes the root, we can therefore, be sure of
convergence. This is true in cases 1 and 2 above, where f prime of x is always greater
than 0 and less than 1 in case of case 1 and f prime of x is greater than minus 1 and less
than 0 in case of case 2, thus we can see that in case 1 and case 2 f prime of xi, the mod
of f prime of xi will always be less than 1.

On the other hand, if the magnitude of the slope is greater than 1 near the root, that is
mod of f prime alpha is greater than 1, x n converges to alpha only in exceptional cases
no matter, how close to alpha one chooses the starting point x 0, for instance in case 3
and case 4 even though, we have actually started quite close to the root, you can see that
we are moving away from the trial solution, this is because the slope at the root is greater
than 1.

The absolute value of the slope at the root is greater than 1, thus as we iterate we move
further and further away from the trial solution, while in case in case 1 and case 2, as we
iterate we move closer and closer to the trial solution. We can come up with a quick

mathematical proof for this can be proved as follows, we can write x 2 is equal to x 1



plus x 1 minus x 0 times f prime of xi 1 again according to the mean value theorem
provided xi 1 lies between x 0 and x 1. Similarly, we can write x 3 is equal to x 2 plus X
2 minus x 1 times f prime of xi 2, where xi 2 lies between x 1 and x 2, using the first
equation in the second, we can write x 3 in terms of x 1 x 0 and the derivatives f at xi 1

and xi 2.

Using the same idea by induction for any iterate, we can write the following for instance
X n minus 1, we can write in terms of x 1 and x 0, according to this equation to the first
equation. Similarly x n, we can write in terms of x 1 and x 0, according to the second
equation subtracting, the second equate the first equation from the second equation, we
get this equation x n minus x n minus 1 is equal to x 1 minus x O times f prime of xi n
minus 1 times f prime of xi n minus 2 times up, which is the series extending up to f

prime of xi 1.

Thus we can see that if the magnitude of f prime of xi | is less than 1 for all I modulus of
X n minus X n minus 1, becomes smaller and smaller for large values of n and the
iteration converges, f prime xi n minus 1 will be less than f prime xi n minus two times, f
prime xi n minus 3 up to f prime xi n minus one and so on and so forth. As the as we add
more and more terms the right hand side, becomes smaller and smaller and the left hand
side converges.
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Let us conslder two implemeantalions af the above llerative schama for calc |i.11II'I-J

the SOuane root of & posiive raal number ¢, | & we wani 1o find the roots of he equanon
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Implemantation A
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The rootis « Ao
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Next, let us consider two implementations of the above iterative scheme for calculating
the square root of a positive real number c, that is we want to find the roots of the
equation x square is equal to c. We look at the first implementation were we write f of X,
as f of x is equal to half x plus c of x, the root obviously is alpha is equal to ¢ of half, ¢ to
the power half, also it is clear that f prime of x the derivative of f of x is half minus ¢ by

2 X square.

Therefore at the root alpha f prime of alpha is equal to 0, hence mod of f prime is less
than 1 in a neighborhood of the root actually, it is 1 in a neighborhood of at the root and
in at the neighborhood of the root, it has to be they must they must exist a neighborhood
of the root, where mod of f prime is less than 1. Since, f prime of x is a continuous
function for ¢ is equal to 2 and with us starting case of x 0 is equal to 1 point 5 are
iterative scheme converges in 2 to 3 iterations. We start with the x 0 is equal to 1 point 5
and by the time, we reach iteration number 2, we can see we are really close to the true

solution which is root 2, 1 point 4 1 4.
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Implementation B

Inthis casewe wite v~ = ¢ Intheformy = F{x) wh fi

Fore=2and x, = 1 3, our terative schems
gl
| = | 333333 3 | 5
Thes sequenice does nol converge

It one thinks of successive approxdmation or teration as the ‘numerical method adopled

1o find & numerical solution 1o the problem X° 2 itis obvious that our choice of
Imglemeantation | & the FllfJ".!’lmlll I5 crucial for The success of e method!

g This is frue for numerical methaods in ganeral
I

On the other hand, if we consider implementation b in which case we write f of x is equal
to ¢ by x for c is equal to 2 and x is equal to 1 point 5 are iterative scheme, which recall
is X n minus 1 is equal to f of x n, which is equal to ¢ by x n gives x 0 is equal to 1 point
5 x 1is equal to 1 point 3 point 3 x 2 is equal to 1 point 5. So, it oscillates right the
equate the sequence does not converge, If one thinks of successive approximation or



iteration as the numerical method, adopted to find a numerical solution to the problem x

square equal to 2.

It is obvious that our choice of implementation, that is the algorithm is crucial for the
success of the method, the first implementation converged in two iterations by the
second implementation is never going to converge, this is true for numerical methods in
general.
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Another commaon concept consists of locally approximating a complicated function by its

inaar approxdmadion

Supposa we wish fo find the root of the equation [ (v )= U

Gaomairically this maans finding o for wihich the curee y=fx) inlaraacts e x© ads

Another commonly used technique in numerical methods is linear approximation here,
we locally approximate a complicated function by its linear approximation. Suppose, we
wish to find the root of the equation f of x is equal to 0, geometrically this means finding
x, for which the curve y is equal to f of x intersects the x axis. So, we start with the
starting, case x 0 and then use a numerical method an algorithm to try to reach the

solution, which is where the red curve intersects the x axis.



(Refer Slide Time 24:24)

netnodas

The rmast well Endwn memhad for sobing this problem, the Neswton Rapison method
consists of an terative schame where al each successive iteration. we approxmate the
funchon y=f{x) by its tangent at hat point, and use that 1o find the next iterate

Flix. )

+

Fix_ )
Thie naod iterate x__, is the point whare the Inear approximation to fhe funcion y=fx)
grven by the straight ine passing through (1 §x_)) and with siope f{x ) intersects the
¥ axis

The approximation of y=fx) by its tangeant at the paint (&, i)} is equivalent to replacing
the funcion with the first degree 1erms in s Taylor senes about w=x

if nstead of ;I:;D{c.-lmuhng the funclon locally by its lanqc—m we approsamate it by the
sacant connecling two neghboring points on the curve, we have whal (& kKnown as a

secant mathod
-
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The most well-known method for solving this problem, the Newton rap son method
consists of an iterative scheme, where at each successive iteration. We approximate the
function vy is equal to f of x by its tangent, at that point and use that to find the next
iterate, for instance at x 0, we have approximated the true the curve y is equal to f of x by
the blue line, the blue line being the tangent to the function y is equal to f of x | take 0,

where the blue line meets the x axis that gives me by next iterate x 1.

So, x n plus 1 I can write as x n plus f of x n divided by f prime of x n, the next iterate x
n by plus 1 being the point, where the linear approximation of the function y is equal to f
of x given by the straight line, passing through x n and f of x n with slope f prime of x n
intersects, the x axis. The approximation of y is equal to f of x by its tangent at the point
x n f of x n is equivalent to replacing, the function with the first degree terms in its
Taylor series about x is equal to x n.

If instead of approximating the function locally by its tangent, we approximate it by the
secant connecting two neighboring points on the curve, we have what is known as a
secant method, which is another commonly used method for linear approximation of a

non-linear function.
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In the sacant method given the iterates x, and x as wel as the function values

fx J and fx., ) we find the next ilerats LEsing the T{.ll-'.-.'.'l'l-\ll update fTormika

1. .. i local Bnear approximation o thes curve =it infersects he @ ads

In the secant method given the iterates x n and x n minus 1, as well as the function values
f of x nand f of x n minus 1, we find the next iterate using the following update formula
at x is equal to x n plus 1 the local linear approximation to the curve y is equal to f of x
intersects, the x axis. As you can see we have tried to fit a line through the values of the
function at iterate x n minus 1, which is f of x n minus 1 and x n which is f of x n. And
then where the line meets the x axis, that is going to give me by next iterate x n plus 1.
(Refer Slide Time 27:33)

wish fo solvé numencally the differential equation

x, v bwath imual condition 30

It is alzo assumed that the slope remains constant batwsan he points and the skope of

the curve between (- b and nh is evaluated as.

The third common numerical concept that, we wish to talk about is the idea of recursion,

suppose we wish to solve numerically the differential equation d y d x is equal to fof x y



with initial condition y 0 is equal to p. According to the above equation, the slope of y
changes from point to point, the simplest approximate solution to the problem
discreteness, the problem domain into equal sized increments of size h with function

valuesy 0,y 1,y 2 and y n, corresponding to x values of h, 2h, 3h and n h.

So, at x is equal to 0, we have y is equal to y 0 at x is equal to h, we have y equal to y 1,
at x is equal to 2 h, we have y equal to y 2 and so on and so forth. It is also assumed that
the slope remains, constant between the points and the slope of the curve, between n
minus 1h and n h for instance is evaluated as y n plus 1 minus yn divided by h.
Substituting this value of the slope in the differential equation, we have y n plus 1 minus
y n divided by h is equal to f n h, which is the value of x and y n which is the value of y.
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This vields the recursion formwila
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Ieration. Enear approsimation and recursion are methods which are widely
usad throughout tha fleld of numerical analysis

Often a numeical method may involve several iterative schemes, inear approdmations
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g#=yip with a te and stable solulions

We can rewrite this equation to yield the recursion formula, we can rewrite the previous
equation by keeping y n plus 1, on the left hand side and moving the other terms to the
right hand side So, y n plus 1 is equal to y n plus f of n of h y n times h, this is going to
be true for all values of n, n is equal to 0 1 2 and so and so forth, from this equation you
can see that each y n occurs first on the left hand side, then recurs on the left hand on the

right hand side of the equation, hence the above relation is called a recursion formula.

So, if we know a starting value for y, if we know y 0 for instance using this recursion
formula, we can successively calculate y 1y 2 y 3 up to y n. And we can continue the

recursion process, until my recursion formula converges that is until my value y n minus



1, becomes equal to y n iteration linear approximation and recursion are methods, which
are used widely throughout the field of numerical analysis, often a numerical method

may involve several iterative schemes linear approximations or recursions.

However the success of these schemes is measured in terms of their ability to come up,
with accurate and stable solutions accuracy and stability are two prerequisites of any
successful, numerical algorithm in the following we are going to talk about each of these
concepts in greater detail. We will start with talking about the notion of stability,
following which we will talk in greater detail about accuracy.
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What do we mean by numerical in stability, if an algorithm if a numerical algorithm is
unstable small perturbations in the input data or in the intermediate computations can
lead to gross errors, that is the totally destroy the result of the computations.
Perturbations on the input data in the input data can occur for instance, due to minor

errors in recording experimental results.

If the input data to a numerical algorithm is experimental data and there are minor errors
in the experiment which are always lightly, then if it is an unstable algorithm those minor
perturbations can give me totally erroneous results. Perturbations in the intermediate
computations, can occur due to numerical round of resulting from finite precision

arithmetic.



Any computer; however, sophisticated only deals with that many numbers, so any
number can be if a computer has accuracy up to t digits, it can only approximate a
number using t digits for instance. Suppose we have to compute 4 by 3 at an
intermediate, step of a numerical algorithm and our computer can only store 5 digits in
that case 4 by 3 will be stored as 1 point 3333 and the remaining digits will be lost.
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If the numerical algorithm is unstable the loss of the last digits, may be enough to trigger
an instability, because of the instability the numerical solution may differ widely from
the true solution. The choice of algorithm is crucial in determining, whether a numerical
method will give stable results, certain algorithms are inherently unstable, others are
stable for a certain range of input data, while still others are unconditionally stable, that

is they are stable for all ranges of input data.

Suppose, we wish to numerically integrate, the following integral y n equal to integral of
X to the power n, divided by x plus 5 and we wish to integrate within the limits 0 and 0 to
1 for values of n equal to 0 1 through 8. We will solve this problem twice, once using an

inherently unstable algorithm and the second time using a stable algorithm.
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For the first algorithm, we write y n plus 5 times, y n minus 1 is equal to integral of x n
plus 5 x to the power n minus 1 divided by x plus 5. Recall that this is our integrant, so y
n is this y n minus 1 is equal to integral from 0 to 1, x to the power n minus 1 divided by
x plus 5. So, we can write this and doing certain simplifications, we can reduce it to 1 by
n, if we perform this integration it comes out as 1 by n, thus we get the recursion formula
y n plus 5 times y n minus 1 is equal to 1 by n using three decimals the following are the

results of a iteration.

We start with y 0, which we calculate accurately up to three decimals places from which
we get y 0 is approximately equal to 1 point 8 2, then using y 0 in our recursion formula,

we get y 1 is equal to 1 minus five times y 0.



(Refer Slide Time 37:05)

The answars are all over the map and are obvously wiong. The reason is as folows

The round off emor £ in y,, s of he order 10, This gets multipied by -5 in the caloulation

ol y,. which thus has an emor of -5¢ Simdarly the emor in . is 250
Thus. the ermor gets scaled by a factor of 5 avery iferation The amor in y, is as large as

=625 5 104=0 3125 This is jst the armor pr 1|.-1.J;|r|r}.|‘.r|'1’|| the first feraton Additonal
é_ 9' ors accumulate dus to addional round off &mors in aach iteration

Which comes out as point 1 8 2 y 2 can be written as half 1 by 2 minus five times y 1,
again according to our recursion formula, which gives me point 05 0, y 3 gives me 1 by
3 minus 5 times y 2 which is point 0 8 3 all being computed accurately up to three
decimal places and y 4 gives me point 1 6 5. As you can see the answers are varying

widely, they are all over the map and are obviously wrong, the reason is as follows.

Suppose the round off error in the computation of y 0 epsilon is of the order 10 to the
power minus 4, which is the reasonable, because we are using three significant digits in
our computations. So, the error in y zero is of the order of ten to the power minus 4 in
our second recursion relationship, this gets multiplied by minus 5 in the calculation of y
1. Because, you can see there is 5 times y 0, so whatever error there is in y 0 gets

multiplied by factor of 5, therefore y 1 has an error of minus 5 epsilon.

Similarly, y 2 will have an error of 25 epsilon, because again we are multiplied y 1 by a
factor of 5, thus the error gets scaled by a factor of 5 in every iteration, the error in y 4 is
as large as 625 times 5 times 10 to the power minus 4, which you recall was an initial
error the error in y 4 is actually point 3125. So, you can see that the error has increased
by at least three orders of magnitude, this is however note is just the error propagating

from the first iteration.



Epsilon was the error in the first iteration, additional errors accumulate due to additional
round off errors in each iteration, because in each iteration we are doing computations up
to only three decimal places.
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Rapidly the magnitude of the error soon equals the value of y n and the results are
practically useless, it is important to note that even if, we decided to use more decimals
in our algorithm for instance, instead of using numbers with three decimals. If we use
numbers to 5 or 6 decimals, we would still encounter the unstable behavior the only
difference would be that the instability would take longer more iterations to manifest
itself, that is more iterations would be necessary to build up to a level where they lead to

absurd results.

So, this is not a problem of performing computations with two few, two little precession,
it is an the problem is the algorithm we have chosen is inherently unstable. The second
algorithm we use is slightly different in this case, we use a variation of initial recursion
formula, which you recall was this instead of using this recursion formula. We use the
following recursion formula, where you can see the only difference is that we have
divided both sides, by we have brought the five down to the denominator in the right
hand side, but those two equations are identical it is just that a recursion formula is
different.
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If we use this algorithm the error will be reduced by 5, in each step however, we need a
starting value y n if we assume that the iteration very nearly converges after a certain
number of increments. We can use the recursion formula to calculate the converged
value, assuming in this case that convergence has occurred after 10 iterations, so let us

go back to our previous slide.

So, we are assuming that the iteration has converged in 10 iterations, so y 10, y 9 is equal
to 1 by 5 times, 10 minus y 10 by 5. Since, we have assumed that the iteration as
converged in 10 iterations on the right hand side, we can replace by 10 by y 9, the
assumption being that y 10 is almost exactly equal to y 9, since the iteration has

converged in 10 iteration.

So, we can write y 9 is equal to 1 by 5 times 10, which is 1 by 50 minus y 9 by 5, which
gives me y 9 is approximately equal to point 0 1 7, again notice, that we are do
performing our computations only for up to three decimal places. We are we have not
increased the accuracy of our computations, similarly doing the same using the same
recursion formula, we get y 8 is approximately equal to point 019, y 7 is approximately
equal to point 02 1, y 6 is point 0 2 5, eventually at y 0, we get point 1 8 2, which is the

exact solution for this problem.
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Although the numerical computations have been performed up to three decimal places as
in the first algorithm, in this case the stability of the algorithm does not allow round off
errors, that is numerical perturbations to swamp the solution. And give totally erroneous
results. As should be clear from our discussion, the stability of numerical algorithm is
crucial to a numerical methods, ability to give results that do not vary arbitrarily with

minor changes in input data or due to the accumulation of round off.

However, in addition to giving stable results it is also desirable the results of a numerical
algorithm be accurate, thus apart from stability accuracy is the other important criteria,
that determines the suitability of a numerical algorithm. In other words the errors, which
measure the deviation of the results obtained using a numerical algorithm from the exact
or true solution of a problem must be as small as possible. This can be analyzed through
what is known as error analysis, if the next lecture in the series, we are going to talk up
in greater detail about error analysis. Since error and stability are the two criteria, which

determine the effectiveness of a numerical algorithm.

Thank you.



