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Unsteady Radial Flow in Confined and Unconfined Aquifers

Welcome to this lecture number 14 on unsteady radial flow in confined and unconfined aquifers.

Here in this lecture in the previous lecture discussed on unsteady flow into the wells and in this

lecture we will moving on to unconfined as well as unconfined aquifers and of course the flow is

radial and it is unsteady. And here in the in the previous lecture so there was this unsteady flow

equation which was solved by two methods that is two graphical methods. 
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One is the time drawdown method as well as the am sorry this unsteady radial flow and confined

aquifers. So in the previous we had this we discussed the solution of Theis equation by two

graphical methods namely 1 by type curves and 2 B COOPER JACOB approximation and in this

lecture we will discuss another method for the solution of the Theis equation which is used in the

unsteady radial flow in unconfined aquifers.

And that method is the another method for solution of Theis equation by this develop by CHEW

so which is  that is  why this  method is  known as the CHEW’s method. CHEW’s method of



solution so here what is done is so in a pumping test so the curve is plotted and semi logarithmic

plot observable observation observed data is plotted on a semi-log plot.

That means the drawdown axis is linear this one scale and the time axis is on logarithmic scale

and here so this is on the plotted curve. So the arbitrary points have chosen and the coordinates

that is the time coordinate T as well as the draw down S. So they are determined just like say

here so this is drawdown S and then this is log of time T.

And here so this is a tangent to the curve at a chosen and determine to drawdown difference delta

S in feet per log cycle of time. So here actually say that is say suppose this is the say these are

the points suppose we are getting. So what should be done is so this is a log at axis and here say

this is may be this is 1 this is 0, this is 1, this is 2, 3, 4 and so on. So here say two points are

chosen on this plot such that the difference in log T = 1.

And so that the corresponding difference in this say for examples these are the two points and

here and this difference is 1 where and this is so this difference is delta S that is the change in

drawdown that  is  one  scale  difference  of  the  log  value  in  time.  And  here  so  this  FU is  a

parameter which is function of this well function U well function parameter. So this function = S

the drawdown divided by delta S.

So drawdown divided by delta S so this is delta S and then the original value of this is S here so

this is a the value S the drawdown the typical value of S and then so this is delta S. so this F /

delta S / delta S is a denoted as FU then what is done is the corresponding value of W and U are

obtained from the figure. 
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So this figure is so here we have this FU which is S / delta S and here we have the W that is we

function. So here so the corresponding value of W and U are obtained from this figure. So here

this in this so this FU so this is also one logarithmic scale so this is a log scale and W is also log

scale. So this is a log-log plot of FU versus WU and here so this curve will have a shape of like

this so initially the slope will be flat and eventually the slope increases. 

So this will be the type of curve and so these along this the curve so the value of well function U

are plotted are denoted and here say typically so this is say this FU axis may start with 10 the

power – 1 and then this is 1, this is .1 and then this is 1 and this so this is 10. And similarly so

this is a this is the 10 to the power -2 and then this is 10 to the power -1 and then this a 10 to the

power 0 and this is 1 and then so here this is the 10 and then so on.

So basically both these scales are on this is log-log plot and here typically the values of U so they

start with say here it at the top it may start with say point this U = .0001 that is 10 to the power –

4 and so here 10 to the power U = to here U = .001 and somewhere here you will get U = 0.01

and here this is a U = .1 then this is here where the slope changes.

So rough this U is 1 and here this all the way it is close to this one so this U = say 3 so typically

this is how the value of the well function U changes and then using this. So here what is done is

so they using this equation that is FU = S / delta S so this 1 so this FU = S / delta N let us denote



this equation as 1 and then so here the corresponding W and U are obtain from the figure that is

this figure okay. So this is the relationship between FU and W. 

So this is CHEW’s relationship between FU WU and U the well function U so this U is the well

function and so here what is done the is the formation constants that is the transmissivity the

aquifer formation constants with transmissivity T is obtained by so the equation that is the typical

drawdown = Q / 4 Pi T and into this W and here this W is known, S is known Q is known and so

this T can be determined.

So that is T the transmissivity T = Q / 4 Pi S into WU okay and so this is the first this one the and

then next this storativity.

(Refer Slide Time: 14:53)

The storativity S is obtained by the equation S is obtained by so this is the storativity S obtained

by the equation that is R square / T = 4T / S that is the well function equation. So we know that

well function = R square S divided / 4T into T by this expression we get that is so this is the well

function equation from this the storativity S = U into 4Pi and U into 4 transmissivity T into time

since pumping divided by R square.

So like this using this CHEW’s relationship between this FU and WU so we can determine the

formation constants of the aquifer okay. So now we will move on to the unsteady radial flow in

unconfined aquifers.
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So this CHEW’s method is a third method by which we can solve the Thies equation and now we

will move on to unsteady radial flow in unconfined aquifers. So far we have the confined aquifer

where in the it is under pressure the wherein the things are somewhat more straight forward I

should say as compared to the unconfined condition and here in this case so this there will be it

represents three types of behavior suppose we plot the drawdown S versus time T on log scale.

So this is log of S the drawdown and then the log of T the time since the pumping so here so it

indicates three different kinds of nature. So the first one is this segment wherein the slope is a

quite steep. So this here we can denote so this as the segment one wherein the slope is you can

say it is relatively steep then so this is what happens is as a time in increases the as time further

increases the drawdown just marginally increase.

And so this one here you can you can denote this as segment 2 or stage 2 segment having a

relatively steep slope then segment 2 having a relatively flat slope then again in the third this

one. So this is here you can say so this is segment three so here what happens is so the gravity

drainage and obviously in an in this unconfined aquifer so this drainage is by gravity and this

gravity drainage is not immediate.

And obviously that is why it constitutes an unsteady flow condition and so the water float water

flow towards well in unconfined aquifers is characterized by slow drainage of interspaces. So



basically  and water flow are at  the ground water flow towards well  is  towards a well  in an

unconfined aquifer shows a slow drainage through the interspaces or the pores.

That is why initially what happens is when the pumping starts so then so this drawdown increase

and the this is drawdown increase relatively steeply in this first segment and then once this it has

increased so when what happen is so the here so the that is the cone of depression. So here the

compaction of the aquifer as well as expansion of the water as pressure reduced from pumping.
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So initially is there a compaction of aquifer and expansion of water as pressure is as there is a

reduction in pressure due to pumping. So this the first segment that is so the first segment having

a steep slope our steep draw down so here what happens is so this will continue for a very short

while and here so the drawdown reacts similar to an unconfined aquifer. So that means so here

this is the gravity here in this region it more or less behaves like a confined or artesian aquifer or

pressure aquifer.

And after wards what happens is so this gravity drainage so this is basically here you can say this

is segment one here you can say this is analogous to so here this segment one is analogous to say

confined aquifer or artesian aquifer or pressure aquifer confined flow next here the segment two.

So here so this is slow gravity flow in this segment 2 and here so this is because of the expansion

of the cone of depression.



So in the in segment two there is expansion of the cone of depression here we can say is a

gradual  expansion of  the  cone of  depression and hence  slow gravity  drainage.  And so  next

continues and next is in the third segment in segment three so the time drawdown curve almost

resembles  non  equilibrium  type  curves  that  is  unsteady  ground  water  flow  curves.  So  and

therefore so there are three distinct segment.

Segment one having analogous to confine confined flow segment two having slow gravity flow

and then in  segment  three.  So there  is  this  is  a  unsteady flow again  which  is  maybe again

somewhat like segment one and then again this slope flattens like that.

So here so therefore in such case so this relationship between the drawdown and the discharge

was drawdown S and discharge Q was a developed for a fully penetrating well in an unconfined

aquifer by NEWMAN in nineteen seventy five.
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As S = the drawdown S = Q divided by 4 Pi T the discharge divided by 4 Pi into transmissivity

and here so this is a so well function as a 3 parameters that is UA, UY, ETA.

And here where this UA so each of them represent one segment UA = R square into storativity

divided by TT. So in case of the unsteady flow in a confined aquifer it was the well function U =

R square S / 4TT whereas in this case so this UA is R square S / simply T the transmissivity



multiplied by the time since the beginning of pumping. And here so this is a so this is W of UA,

UY and so this is denoted as the unconfined well function.

UA is given by R square S / 4TT and then UY is given by R square SY / TT and this is applicable

for higher T values higher values of time. So it represent segment three and this ETA, so ETA is

given by R square KZ / b Square KR. So here this this KZ is the vertical hydraulic conductivity

and KR is the horizontal hydraulic conductivity. And obviously R is the radius and the B that is

the unconfined aquifer thickness.

So using these three parameters are that is this the unconfined well function is more complicated

as compared to a well function in case of confined aquifer wherein there is only 1 parameter that

is well function parameter that is U = 4 square that is R square S / 4T. Where as in this case it is a

function of three parameters that is UA, UY as well as ETA and here the theoretical curve for this

UA and UI as well as ETA are given by this NEWMENS curves.
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So the NEWMAN’s curve for unconfined well function that is WUA comma UY comma ETA.

So here in this NEWMAN’s curve we have along the vertical axis of course here also this is log-

log plot and so here we have so this is a W UA, UY and ETA and here it is starts with say .01 and

then .1 and this is 1, 10, 100. So this is the unconfined well function which is plotted along the

vertical axis and then here we have that is a 1 by UY along the horizontal axis.



So it starts with say 10 the power – 5 then 10 to the power – 4, 10 to the power -3, 10 to the

power -2, 10 the power -1 then this is 1 then further extends so this is 10 then this is a 10 square

of hundred and then this is 10 cube or 1000 and here what happens is somewhere between this 10

to the power -1 and 1 so here this  is  the curve goes up to so this  is  1.  And then similarly

somewhere between 10 the power -5 and 10 to the power -4 and so this curve goes up to say little

over 10.

And here so these are the so this is the here actually let me so this is the Theis curve for 1 by UA

and this is the face curve for 1 by UY and in between we have color this one that is so this is a 7

and say this 2 this is 2 and so here this is .2 and next here this is .001. So this is .2 and this .001.

So these are the so this is ETA values so this is ETA = 7, ETA = 2, ETA = .2 and this this ETA.

So this is a ETA = .01 so this is how theoretical curves for a the can say this is NEWMAN’s

theoretical curves for unconfined well function.

So like this here we will get the it is more complicated as compared to the unconfined flow radial

flow in a in a confined I am sorry un steady radial flow in a confined aquifer where in so it is a

there it is only there is a well function parameter that is U = R square S / 4T into T. Whereas in

this case so there are there are three parameters one is UA which is given by R square S / TT

representing the first segment UY which is = R square SY / TT which is applicable for the higher

values of T representing the third segment.

 
And then ETA which is a ratio of square / B square that is the distance from the well axis the

radial distance from the well axis square of the that divided by the square of the unconfined

aquifer  thickness  of  course that  is  the itself  is  a  variable  multiplied  by the ratio  of  vertical

hydraulic conductivity and the horizontal hydraulic conductivity. 

So like this so the in this the unsteady radial flow in an unconfined aquifer is even though it is a

unconfined aquifer is the one which is much which is the first aquifer as you as we encounter

when we go from the ground surface. But there so because it is at the top and then sot here it is

more it is subjected to more fluctuations because of the natural as well as naturally ground water

recharge and it is the reason and many times if it is a this one.



In some cases where the even evaporation may also predominant role at if they okay if there is a

tropical desert kind of situation like OSS or anything.so therefore it is represents more intensive

so unlike  the unsteady radial  flow in confined aquifer. So this  unsteady flow in unconfined

aquifer represents more this one so now with this we will go to we will just briefly start with

these leaky aquifers.
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So that is the unsteady flow and here so this  leaky aquifer so they may have either bottom

confining layer which may be leaky and of course one if the bottom layer is having is having

more perforations  or in that case what happens is there will  be aquifer will  be losing water

whereas on the other hand if the top confining layer is more leaky as compared to the bottom

confining layer.

So in that case this leaky aquifer may gain in terms of ground water so therefore so they it

represents  the  entirely  different  this  one  and  here  so  this  is  the  WALTON  presented  the

theoretical curves for leaky aquifer. So this is a so this leaky aquifer may have say with single

leaky confining or other confining means says semi confining layer say leaky that means semi

confining layer.

Or with double semi confining layers so double means this confining layer may be at the top or

as well as at the bottom so in this case the theoretical curves were developed by WALTON in

nineteen so theoretical curves for leaky aquifer. So this is the WALTON’s theoretical curves for



leaky aquifer. So they were developed in the year nineteen sixty and here so similar to the well

function for the unconfined aquifer.

Here we have a well function for the leaky aquifer and that is denoted by WU comma R / B and

here we have this is 1 / U and of course both are on this one and here this axis to the WRU

comma R / B. So that is this is denoted as leaky well function so this is in case of confined

aquifer it is WU this is well function that is W. Whereas in case of unconfined aquifer we have

unconfined well function.

So that is W UA, UY, ETA whereas in this case the leaky aquifer so this is a somewhere in

between a confined aquifer and an unconfined aquifer. So here there are two parameters the first

parameter is U and the second parameter is R / B and so this is the leaky well function that is W

U comma R / B and it is the theoretical WALTON theoretical curve. So it is here the WU axis

will start at .01 and then this is .1 so this is 1 and then 10. 

Then similarly here the 1 / U axis will start at .1, 1, 10, 100, 1000 and 10,000 or say 10 to the

power 4. And here the Theis curve is the one which starts somewhere in between that is .1 okay

that is .1 and 1 and it is starts here and this is the Theis curve. So here this is R / B = .05 and this

is the Theis and here for this form same point so this is R / B = 2.5. And in between so there are

different this one so this R / B = 1 and here this is B = .01 s. 

So like that so in this case the drawdown which is function of R and T is given Q / 4 Pi T into the

leaky well function that is W of U comma R / B and again so here this U is the same as the

confined well function parameter that is R square S / 4TT okay and this and R / B = R into under

square K dash / KB B dash okay. And this U is same as this one and here this is the here this B

dash is the aquitard thickness.
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So this is the K dash is the hydraulic conductivity of aquitard or leaky aquifer so that is leaky

aquifer and B dash is the thickness of aquitard that means leaky aquifer and K and B are the for

the regular aquifer okay. We will stop here and we will continue in the next lecture on we will

move on to the further topics in this well hydraulics thank you.
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