
Structural Geology 
Professor Santanu Misra

Department of Earth Science
Indian Institute of Technology Kanpur

Lecture No 10.2
Rheology – 1 (Basics of Rheology)

Okay, so with the basic understandings of what is rheology and whether it is applicable to our

art systems or not. Now we are in this slide to classify the different types of rheologies that

we commonly see in all materials and also within the rocks, so we can have 3 different kinds

of rheology one is elastic rheology, then the second one is viscous rheology and the third one

is plastic rheology.  
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With the course of time we will see that elastic rheology when a material is deforming under

elastic manner,  the strain or deformation is recoverable and when they are deforming the

following Viscous or plastic manners they are non-recoverable. Now, I would like to remind

you one very important thing that we commonly mistake in describing structural geological

deformation  features  and  with  these  3  rheological  terms  elastic,  viscous  and  plastic  we

sometimes use more or less similarly the 2 terms brittle, ductile and sometimes brittle ductile.

Now it is very-very important to remember that the classification of rheology has nothing to

do  with  the  brittle  and  ductile  deformation.  Now  brittle  and  ductile  deformation  only

considers whether the cohesion of the materials are maintained or not during the deformation,

that  is.  It  does  not  consider  the rheological  part,  if  the cohesion is  maintained then it  is

ductile, if the cohesion is not maintained then it is brittle. 



So, you can say very generally but that is not strictly true for all cases that brittle deformation

is most of the time plastic and ductile deflation is mostly include everything which are not

elastic and not brittle but remember brittle and ductile these 2 terms have nothing to do with

elastic, viscous and plastic rheology. 

So, we will now slowly describe the concepts of what is elastic? What is viscous and what is

plastic? I  will  mostly show you the classic  considerations of this  rheological  terms, their

analog  visualisations  that  what  is  best  way to  represent  this  rheology  with  some known

materials  we  have  and  then  we  will  derive  some  sort  of  different  material  constants  or

rheological constants, we will see their implications also in the study of structural geology. 
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So, let us start with the elastic rheology, now the definition of elastic rheology is given by the

Hooke’s law and it says that stress is linearly proportional to strength and the later is fully

recoverable as I said in the previous slide that in elastic rheology you can recover the strain

and the elastic rheology is best visualised by a spring or in other ways you can have any

elastic band or rubber band and then if you stretch it, it expands and if you release it, it comes

back to its original position but if you stretch it more it does not come back to its original

position but that is something different. 

Accordingly let us see what we can take out of it, so what we have is this particular group of

images here, this is written T1, at T1 we have one spring, it has a finite length and then at T2

I have added one little load here with this green bar because I have added this little load on

the spring you can understand if spring is hanging I added load at the end, so spring would



expand and therefore the length has changed, if I add more load the spring would further

expand and change the length and so on. 

Now if I start releasing the load or taking off this green bars one after another, the first one…

after the first one it would come back to the load very similar, it showed the expression with

the 2 green bars. If I take one more out then I have only one then it would come back to the

load that  we have or to the shape or to the length that  we had with the one bird at  the

beginning and if we remove all this loads then it would come back to its original position and

original shape. 

So, if I now plot them in this placement versus Force curve then with the application of force,

the 3 different loads I have, when we are loading it then we can get some points and if I

connect this points they generally fall in a linear pattern and when I release these loads that

means this side they also fall, they come back in a very similar fashion and also maintain or

linear relationship. 

We can also visualise this image in a different plot what is given here, in 1 plot we have

stress versus time, in another part we have strain versus time. This strain you can visualise in

terms of elongations, so till this point it wars T1 where it did not have any load, any stress

and the strain was also 0. Now then we slowly started applying the load with this green bars

and we see this strain also or elongation also increased. 

Now if we leave it with the 3 green bars here for quite some time the strain would remain

constant and if we release the load by removing the green bars then it would come back to its

original position, so what we see that this stress versus strain in this diagram has a linear

relationship,  so stress  disproportional  to  strain and the linearity  constant  is  defined by E

which is Young’s modulus or the elastic modulus or sometimes it is known as stiffness of a

material. Now in some books or texts you may find that E has written…people are writing E

as Y, so you just have to see what is the common understanding. 

The Young’s modulus is defined as the slope of the stress strength curve, we will see later. So

this is also known as, this equation is also known as Hooke’s law and it is a constitutive

equation because we have dynamic parameter on one side, kinematic parameter on one site

and they are related by constant, so physically E is quantified how hard a rock is to deform

elastically and that is why the term stiffness came in the picture.
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Now  to  talk  more  about  elastic  rheology  as  we  have  seen  or  we  have  understand  that

elasticity is time independent that means does not matter how long you keep the green bars it

would stay at its position and then you will remove the green weights or green bars it would

come back to its  original  position,  it  is  not a function of time there for the ideal  elastic

material would come back to its original position irrespective to the time of the stress it is

being  applied  within  the  elastic  limit  and  of  course  the  rate  of  stress  application  would

increase the rate of deformation linearly. 

At  the  present  if  I  add  more  green  weights  or  green  bars  and  I  do  it  quickly  then  the

elongation of the spring would happen also very quickly, so if I would like to see then stress

versus strain is  a linear curve,  this  is what the relationship we got,  so Sigma equal to E

multiplied  by strain,  so therefore  the slope  is  your  E or  Young’s  modulus  and then  if  I

increaser the stress rate that mean if I increase the loading rate then strain rate would also

increase linearly, so we can write Sigma dot which is actually Sigma by t equals to Young’s

modulus Epsilon by t or you can write it Epsilon dot. 

So this is again Hooke’s law Young’s modulus therefore is the ratio if I can come here from

this equation we can get here that it is a ratio of stress versus strain along the same direction

that is important that you cannot measure stress in one direction and measuring stress in other

direction you divide them, you get a ratio and you say this is my Young’s modulus that is

wrong, you have to measure them along the same direction. 



Now  you  can  replace  this  Young’s  modulus  by  another  constant  which  is  called  shear

modulus, so if you shear this elastic material instead of extending it, then this is known as mu

and sometimes it is also expressed as G, so you can equate Young’s modulus equal to 2 of

shear modulus or twice of shear modulus and then this equation takes the shape, the Hooke’s

law takes the shape of Tau equal to 2mu gamma where Tau is your shear stress, mu as you

have explained this car shear modulus and gamma is your shear strength. 

At this  time from these we have already found 2 constants one is Young’s modulus and

another  is  shear  modulus,  however  from  the  folks  law  we  can  also  get  3  other  elastic

constants,  so one  is  poisson’s  ratio  another  is  a  bulk modulus  and the  3rd one  is  lame’s

constants.  In fact in some textbooks this  mu and lambda these 2 terms they are together

referred as lame’s constant. Poisson’s ratio is generally referred by Greek letter mu and bulk

modulus is generally referred by Greek letter kappa. 
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Let us see what is poisson’s ratio, now we have talked about volume constant deformation

and so on, so if I have increased the length of the spring, in the previous example then if this

volume of the spring I have to keep it constant, then it has to shorten in some other directions

to keep the volume of the spring constant. Now this is the example, this little drawing, so

what we are visualising it on X Z plane and why is perpendicular to the board or parallel to

our view direction, so this was initially the width of this bar say this is the spring and this is

the length of this spring. 



Now upon applying this load this green bars then I can figure out the strain which is along X

direction which is epsilon X and if I consider this is cylindrical and a perfectly isotropic body

then on this direction it has to shorten to keep the volume constant and therefore epsilon Z

and epsilon Y should be equal, so this is only possible if the material that we are considering

the rock we are considering is isotropic.  The shortening therefor will be the same in any

direction perpendicular  to the elongation direction and if the volume is preserve then the

elongation along X axis should be balanced by the shortening along Y and Z axis and therefor

you maintain your volume. 

So we can write therefor this equation that EX that means the elongation you happen along x

direction should be equal to the sum of EY and EZ, now these are happening in different

directions so therefor I have a negative signs. Now EY and EZ because this is an isotropic

material they are equal so I can write them minus 2 EZ or I can also write it as minus 2 EY,

whatever be the case EZ or EY we can now further summarise this equation as EX multiplied

by 0.5 because this 2 can come to this side equal to minus epsilon Z. 

This minus sign further signifies that if you extend along X direction have to shorten along

the Z direction and then it is related by a numerical value 0.5 and 0.5 you can consider that it

happens when the volume is remaining constant, so this relationship 0.5 epsilon x equal to

minus  epsilon  Z.  This  tells  us  that  elongation  in  one  direction  is  perfectly  balanced  by

shortening in the length perpendicular to the elongation direction and when that happens then

we call it  perfectly incompressible material,  that is the materials that do not change there

volume during deformation. 

So therefore if you have your volume constant that 0.5 value is there for maximum, so most

of the rocks we know or we will see later that they are not perfectly incompressible, all sorts

of volume changes or compressibility are involved where the volume shrinks okay, so to

account  this  changing  volume  or  compressible  volume  of  the  rock  mass  that  we  are

considering,  instead of writing at  0.5, people do replace it  with a new constant which is

constant  for  a  particular  material  and  this  constant  is  known  as  poisson’s  ratio  and

represented  by  this  Greek  letter  mu  and  as  you  can  see  poisson’s  ratio  must  be  a

dimensionless  quantity  because  it  is  a  ratio  of  2  strain  parameters,  so  poisson’s  ratio

essentially characterises the compressibility of a rock perpendicular to the applied stress. 

Now I give you a very simple example of poisson’s ratio that you may have some glass

bottles where instead of the caps we use to seal the glass bottles using some cork. Now the



cork are very interesting material in the sense that because if you have the bottle and then you

have to press cork inside because you are pressing and if the cork hash to maintain its volume

constant say you are compressing it this side, so length is shortening on your compression

direction, so it has to expand on the other direction that means the cork is now expanding and

it cannot go inside the bottle’s mouth but cork is such a material that this expansion is very

less and therefore we use sometimes to seal the mouth of a bottle using a cock. 

There are some other materials that do have some sort of negative poisson’s ratio and that

means if I compress in the side instead of expanding in this side they can also shrink or if I

extend something in this site instead of compressing in this side they actually extend, these

are some complex composite materials, honeycomb is one of the examples that you can think

of that to happen negative poisson’s ratio. 

(Refer Slide Time: 18:50) 

So most of the rocks that we generally consider in the wide range of conditions they do have

poisson’s ratio between 0.2 to 0.33 it is not a very wide range but in terms of poisson’s ratio

is pretty wide. Now 0 or negative poisson’s ratio as I talked about is also possible for special

materials like form and honeycomb but extremely rare for rocks and minerals with negative

poisson’s ratio for a common isotropic rocks or minerals, so you do not see but people have

reported some sort of negative very little negative poisson’s ratio in some particular direction

of some isotropic minerals. 

Now you can also express the poisson’s ratio in terms of the velocity is of P waves and S

waves. Now this is something little difficult to understand right at this point, but if I say you



that this seismic velocity is that we consider this P waves and S waves these are elastic waves

and we are dealing with elastic rheology, so there must be some sort of relationships. So what

is P wave? P wave is when the particles to oscillate in the direction of wave propagation and

S wave is  some sort  of  a  body waves where the particles  oscillates  perpendicular  to  the

propagation direction. 

 You  can  see  that  these  2  terms  are  very  important  that  one  is  propagating  along  the

propagation direction or oscillating, not propagating, one is oscillating along the propagation

direction and another is oscillating perpendicular to the propagation direction, so is not it very

similar the way we can think that if we compress the side and the things should be extend, so

one is perpendicular and one is parallel. 

So their relationship if we write then poisson’s ratio in a different way can come in this form

and this is very useful because in deep earth we only receive, the signatures we get from the

deep except  some rare  cases,  most  with  the  seismic  waves  and with  the  analysis  of  the

seismic waves it is possible to determine the poisson’s ratio of their deep Earth rocks and also

this is important for the hydrocarbon industries because this gives us an estimation of fluid

properties in the hydrocarbon reservoir. So, for example, you can think that if the VS is 0 that

means there is a fluid and then poisson’s ratio must be close to 0.5 and so on.

(Refer Slide Time: 21:48) 

Now we have learned 3 elastic constants one is Young’s modulus, one is shear modulus we

just learned poisson’s ratio, now let us talk about the bulk modulus, the bulk modulus are

kappa is  the inverse of the compressibility  of the medium, so in general  it  measures the



relative volume change of fluid or solid as a response to a pressure of mean stress change.

Now we have learned what is mean stress in our stress lecture, so volume change is defined

by this  del V versus V0, del  V 1 minus sorry V1 minus V0 where V1 is  your changed

volume. I will just write it because I think I confuse by my statements, so V1 minus V0 by

V0, so this we can write del V by V0 that is your relative volume change of the material that

you are considering with the change of the pressure. 

So if I am increasing the pressure or a decreasing the pressure how much volume change I am

experiencing or the rock is experiencing within the elastic domain, so that is your kappa or

bulk modulus, so this you can write it this way, so this is your pressure change and this is

your volume change and then with some calculations and relationship you can figure out that

you can express your kappa in terms of shear modulus poisson’s ratio and Young’s modulus

and poisson’s ratio. And these equations says that you need more pressure to compress a rock

when the value of the bulk modulus goes high. 

Now we have now learned Young’s  modulus,  we have  learned shear  modulus,  we have

learned poisson’s ratio and we have learned bulk modulus. Now there is also one left lam is

constant, we will learn it later but not right now but I would like to give you at this point few

considerations, so all elastic constants are related to each other because you are measuring it

from same material, so they have to be related to each other. So you need out of these 5 you

need only 2, so if you have only 2 then you can calculate all 3 other elastic constants and this

is most important all elastic constants are direction dependent. 

So when you say Young’s modulus you measure it in a particular direction, poisson’s ratio

you measure elongation in a particular direction and then shortening in a particular direction

and so on. So if these are direction dependent, therefore a single anisotropic rock or mineral

should have more than one Young’s modulus, more than one poisson’s ratio and so on or

what I mean by that if I have a rock in 2 dimensions if I draw it like this, so the dotted areas

are 2 different materials. 

Now, if I deform it extend it in this direction then the Young’s modulus I would get along

this direction okay but if I extend it along this direction, the Young’s modulus I would get is

along this direction. Now because this is an isotropic we have 2 different materials, so if I

consider  this  one as  E1 and this  one as  E2,  this  is  also a  measure of  anisotropy,  elastic

anisotropy in terms of Young’s modulus of this rock. 
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Now the  generalised  Hooke’s  law is  something… is  little  expanded from what  we have

learned. This equal to Young’s modulus multiplied by strain but this equation is typical and

you can see that it does not include any direction that we talked about, it does not include the

anisotropic components, so therefore the generalised Hooke’s law is written in this form, in

this tensorial form, we know more or less water is tensors so Sigma IJ is equal to CIJ KL

Epsilon KL, now Sigma IJ for 3 dimensions I equal to 3, J equal to 3, so you can have 9

components here and so on and for 2 dimensions you can have them I equal to 2 and J equal

to 2 then you will have 4 components there, so Sigma IJ here is the total stress tensor, Epsilon

KL is the strain tensor. 

Now this term C IJKL this term describes all elastic constant in one house, this is a matrix so

this is stored in one matrix and this is known as stiffness matrix. Now this stiffness matrix

you can represented by 81 coefficients simply because you have 9 components here, you

have 9 components here so this matrix has to has 81 components but we know that Sigma IJ

and Epsilon IJ are symmetric tensors and each of them can then only have 6 components, so

therefore this 81 coefficients of C IGKL or the stiffness matrix reduces to number 36. Now

you can further reduce it  by using some strain energy relations then it  comes to only 21

Independent coefficients. 

Now if this equation is written this form that Sigma IJ equal to C IJKL strain KL you can also

express in terms of strain, so instead of that you can write strain IJ equal to… Then it will not

be a different matrix S IJKL stress KL. Now C is known as stiffness matrix and here S is

known as compliance matrix, so this is something that you may note, now this expression is



that how there were 81 coefficients and then out of that we get 36 and then using strain

energy  we  can  get  21  Independent  coefficients  you  may  not  have  to  go  to  the  detail

derivations of this but at this stage it is important that you know that from number 81 you can

come down or you can reduce the independent coefficients to number 21. 

Now let us straight this equation in a different way, if I have to consider this as isotropic

material then this generalised Hooke’s law you can express it in this form okay where Sigma

IJ equal to lambda which is one of our lame’s constants then Sigma KK chronic Delta Delta

IJ plus 2 mu Epsilon IJ. Now Kronecker delta is a very interesting term if I equal to J then it

becomes 1 if I naught equal to J then it becomes 0. So for shear components there for if I am

applying a shear modulus that means I naught equal to J therefore if I consider I equal to 1

and J equal to 2 where they are not equal then we can write Sigma 12 equal to 2 mu Sigma 12

because then Kronecker delta I naught equal to J becomes 0. 

So this term vanishes and here we get mu as the shear Modulus, so you can see how from

generalised Hooke’s law we can derive the shear modulus just implying or just taking into

account the shear components of the matrix and if it is for normal components that means I

equal to J, so therefore Kronecker delta value should be one and this can be expressed with

some algebraic calculations you can represent it further by this and therefore you get the bulk

modulus from this equation. 

Now this is how it is done, this slide what I recommend you that you do not have 2 go into all

details of this equation and how it is derived but it is important that from a stress tensor when

you applied this to elastic field we know that it has some normal components and it has some

shear  components.  So when you apply the normal  components  we get  the bulk modulus

related to volume change and things like that you remember that mean stress and all other

issues  and  when  we  are  not  dealing  with  normal  components  that  means  off  diagonal

components  where your shear stress are acting then you can get simply by considering I

naught equal to J you can get shear modulus of the elastic material. 
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Now with this I would stop and then they will move the next topic viscous rheology.


