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Hello everyone. Welcome back again to this online NPTEL Structural Geology course, we

are learning stress. In the last lecture we have learned about the part 1 of the stress and today

we are on the part 2 of this lecture and in this lecture we will particularly focus on principle

axes of stresses, their magnitude and orientation, we learned about it in the last lecture. And

in this lecture we will learn about it in more detail. How to derive them? How to get them?

What are the different meanings of these principle axes of stresses?



Then we will  move to components  of stress tensor.  We will  also focus on isotropic and

deviatoric  stresses.  We  will  also  discuss  after  that  shear  stress  components  and  their

orientations along which it works and what are the different structures we produce because of

the shear stresses. And then we will directly go two examples, how to calculate stresses on a

given plane which we will apply in many cases, if you continue with structural geology.
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So a little bit of review of this last lecture. We learned about principal stresses and principal

directions. So I just read this text. The principal directions are the directions such that no

shear stresses act on the planes normal to this direction. As we have seen that if I consider the

plane perpendicular to the X1, again this plane, then if I consider these stress components

Sigma 11 and along this direction because this is the normal stress, no shear stress acting

along Sigma 11.

So  therefore  if  I  consider  a  plane  perpendicular  to  X1,  Sigma  11  is  a  principal  stress

perpendicular to that plane. And because X1, X2 and X3, these 3 are my coordinate frames in

a Cartesian system, so Sigma 11, Sigma 22 and Sigma 33 are my principal directions as well,

along the direction it is working.

In 3 dimensions, there should be three such directions as we have seen which are mutually

perpendicular  and  may  have  equal  or  different  values.  We  learned  what  would  be  the

meaning if they are equal and what is the meaning if they are different. So stress acting along

the principal directions, that means their magnitude along the principal directions which are

essentially normal stress components are known as principal stresses. So we learned principal



stresses  which  other  magnitudes  and  we  also  learned  principal  directions  which  are  the

directions along which the principal stresses do act or do work.

Now altogether principal stresses and principal directions they are known as principal axes of

stresses. The principal directions and principal stresses are commonly referred together as it

is written here as principal axes of stresses. Now if I consider a three-dimensional system,

then it is quite obvious that I would have three principal stresses and I would have three

principal  directions.  So  altogether,  it  requires  six  components  to  determine  the  state  of

principal axes of stresses acting on a body.

(Refer Slide Time: 4:17)

Now as we have seen in the previous diagram, that if this Sigma 11, Sigma 22 and Sigma 33,

which are the normal components aligned along the principal axes of stresses, if that happens,

that means if the unit cube under stress is aligned perfectly so that the principal stresses are

aligned along the 3 axes of the coordinate system, then we can define this Sigma 11 as Sigma

1 which is the magnitude of principal axes of stress along X1 direction, Sigma 22 as Sigma 2

and Sigma 33 as Sigma 3.

So therefore it gives three principal stress vectors: Sigma 100, Sigma 020 and 00 Sigma 3.

Now I wrote it as sort of here as row matrix, but generally they appear as column matrix. So

if I write Sigma 100 and so on, so three stress vectors working on three different planes,

where Sigma 1, Sigma 2 and Sigma 3 are normal stresses and along these directions there is

no shear stress acting on the planes perpendicular to Sigma 1, Sigma 2 and Sigma 3.



Now if this unit cube that we are considering is not aligned, that means the edges of this unit

cubes are not aligned to the coordinate system, then we cannot simply replace Sigma 11 by

Sigma 1 and so on. We have to calculate what would be the Sigma 1, what would be the

Sigma 2, what would be Sigma 3 first to get the principal axes, principal stresses. And then

we have to get the principal directions. That means first the directions, first this direction, the

magnitudes and then the directions.

Now in matrix algebra, this is an interesting eigenvalue problem. But it is very simple, we

learn about it soon. So the eigenvalues of the stress tensor matrix or the principal stresses and

the eigenvectors of the same are the principal directions. Now we will learn how to derive it.

We will learn how to get it. Nowadays, of course, we have to learn it, how to do it manually?

But there are many computer programs where you can actually apply and you just give your

input. This basic stress tensor matrix and then it would automatically give you what would be

your eigenvalues. That means your principal stresses and eigenvectors, what are the principal

directions?

So before we jump into that particular part, that what would happen for the stress let us have

some very basic idea, idea is one, what are eigenvalues and what are eigenvectors? What do

you mean actually by this? And this is a very classic operation that not necessarily for this

case but for many deformation related issues, people do use eigenvalues and eigenvectors.

Now  this  Eigen  the  term  means  the  characteristics  of  something.  So  eigenvalues  or

eigenvectors  certainly describes that  some values which are characteristics,  some vectors.

That means it has some directions, these are also characteristic for that particular object or

particular matrix you are dealing with. Now we will try to see it in a very simple way that

what are eigenvalues, what are eigenvectors and what are their meanings.
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What do we see here? We see a square grid and we can consider that these are of unit lengths.

Now I can deform this square grid applying some sort of deformation tensor. We did not

learn about it. I said that in a strain lecture that there are lot of mathematics involved in the

strain.  We  did  not  go  through  that,  but  I  am sure  that  you  read  some  books  or  online

materials.

So if I apply in this grid this deformation, so this is the deformation. So that means if I have a

point, what this matrix tells us or what this some sort of equation written in a matrix form tell

us? It says that X’ and Y’ are column matrix. Then there is a 2 by 2 matrix; 3, 0, 1, 2 and then

XY is in another column matrix. So this XY is the original coordinate and X’Y’ prime are the



transformed coordinate, deformed coordinate. And this 2 by 2 matrix is the matrix which

characterises, or which describes, quantifies the transformation from XY to X’ Y’.

Now this is just an example, this 3, 0, 1, 2. And if I apply this deformation matrix to this

square grid, it would look like this. So your original state was this grey square grids and after

if I apply the deformation, then what is coming here is the yellow, now it is not square, but

yellow grids. Now what did it do?

We see that if I consider any point, for example here X, let us consider here, then this point

along the X direction it moved here. Okay, so it moved three units along the X direction. So

therefore this is defining it moved three units along the X direction and no movement along

the Y direction. So therefore it is somewhere like this.

For  the  Y,  if  we  consider  that  this  point  has  moved  to  here,  and  this  is  applicable  for

anywhere, if you see this has moved here and for Y direction, it has moved along X direction

1 unit and along Y direction 2 units. So these 2 units are coming here. So this point has

moved here and here as well. You can like any point of this square grid and you would see

this feature.

So this is the meaning of this matrix or we call it D-matrix or deformation matrix. So this

defines everything, it also defines your strain ellipse in two dimensions and if there are nine

components, then it defines a strain ellipsoid in 3 dimensions. In that case, you would have X,

Y and Z. So if I try to look at in a vector form, so that means I have this red vector, unit

vector which is (1,0), the coordinate here and then I have the green vector which is along the

Y direction. The coordinate is (0,1).

And if I apply this transformation matrix, or the de-matrix, then this 3 comes, then the red

matrix (1, 0) changes to (3, 0) and (0, 1) changes to (1, 2) which actually is defining your D-

matrix, deformation matrix. Now from here, we would move to these two terms, eigenvalues

and eigenvectors. Now if we see this transformation,  we have just taken two unit vectors

aligned along the X and Y directions of this square grid. But there should be N number of

vectors.

That means you can draw vectors like this any direction,  is not it? And they would also

deform following this matrix. To define the eigenvalues and eigenvectors because these are

characteristics,  you would consider some sort of feature which is known as span. What I



mean by this? That means if I have, if I consider this vector 1, 0, the red one, then it has a

span like this and after the transformation, I see the span remains same. It did not change.

But this green vector if I consider the span here like this and if I just import this it was here.

But after the application of this deformation matrix, this span of this green matrix has rotated

from its previous position.

(Refer Slide Time: 14:41)

And if you try with many other such examples, for example here, apart from this red and

green, we can consider this blue vector which is actually (1, 1) and this line is the span of this

blue vector.  And we see that  after  deformation  because this  was (1,  1),  if  we apply this

transformation matrix, it would come to here. Therefore the span which was initially like this,

now moved to this plane or this orientation and this is how it has rotated. Similarly, if we

consider this orange vector, we will see that it has also rotated after we apply the de-matrix.

If we consider the opposite vectors of (1, 1), that means along X direction, it is -1 and Y

direction, it is +1. Another vector, this purple one and this is the span of this purple vector.

Then after this application of this D-matrix, it takes the form like this and interestingly the

span remains same, it did not rotate. So we found two vectors, one is this one, this red unit

vector and this purple unit vector. That did not rotate after application of this transformation.
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And interestingly, let me wipe this one out, all other unit vectors do not matter how they are

oriented, except this red and purple, this red and purple, all other vectors oriented in any

directions if you try, you would see that there are spans which were initially oriented in theta

direction. And after the application of the D-matrix the theta direction is not remaining same,

except these red and violet vectors.

So we can consider that these two vectors, this (1, 0) and (-1, 1), the purple one. These two

vectors are characteristics for the application of this deformation matrix. What does it mean?

Further,  that I see that does not matter whichever point I take,  this unit  red vector has a

stretch of unit 3 anywhere, you consider it was here and then from its initial position it took 1,

2 and 3, it came here. It was here, it came here 3 units.

Similarly, this purple vector I can see that it did not change its span. That means its direction

is  maintained.  But  along  this  direction,  it  moved  two  units  and  it  is  obvious  for  any

directions. If it is was here, then it moved 1, 2.
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Will see that these two characteristics vectors, this red and this purple these are known as

eigenvectors. That means in two dimensions, if I apply this matrix, does not matter, I take any

point of my deforming body, these two directions would remain, that means remain constant,

that  means  their  orientations  would  remain  same,  and  therefore  they  are  very  much

characteristics of this matrix, deformation matrix.

And the red unit  vector  which is  one of the eigenvectors  of this  deformation matrix  has

eigenvalue 3. Because if I apply this deformation then it would be always multiplied by 3 and

if I take this purple vector, its next incremental position would be always multiplied by a

factor of 2. So in general if I consider, in two dimension if I deform a material, there should

be to characteristic directions, along which the material lines do not change their orientations.

But they only get stretched and when they get stretched, they get stretched in each and every

increment of deformations equally.

The first  one  that  there  are  directions  are  maintained  and these  directions  are  known as

eigenvectors. And the second one that the multiplication it does in each and every increment

of strain or deformation is known as eigenvalues. And if you have eigenvalue for each and

every direction, in three-dimension you would have three eigenvectors and three eigenvalues.

Now you can consider it in a different way. If you have a cube and if you stretch the cube

along a particular axis, say you are stretching it along X direction, then you would get your

three directions, three perpendicular directions X, Y, Z would remain constant. So in that



case, X, Y and Z are your eigenvectors. And eigenvalues for X and Y,  for Y and Z would be

zero because it is not getting stretched. But for X each increment you are deforming it would

maintain the same direction. But it would get increased, increased and increased with the

same factor.

Now this concept is applied for calculating the principal stresses and also principal direction

of stresses. But before that this is how we have understood geometrically that this is the red

and purple, these two are my eigenvectors with some eigenvalues. But how to calculate them

mathematically?

(Refer Slide Time: 22:18)

In this context eigenvalues or eigenvectors are defined in this way. So if S is a transformation

matrix, then I can multiply this X with a vector which is X and then I equal it to a scaler

quantity, which is your eigenvalue and then multiply it again by the same vector X. So your

transformation matrix multiplied by a very unique vector which is your eigenvector should be

equal to your eigenvalue which is your scalar term multiplied with the same vector.

Now here you may have a confusion that S is a matrix, X is a matrix, here lambda is a scalar

and X is a vector. So matrix vector multiplication and scalar vector multiplication, you can

imagine that how it happening together. To avoid this confusion, you actually can multiply

this lambda to bring a vector here, to bring matrix here, I am sorry, you can write a matrix

which is known as identity matrix. If I write in two dimension, I am sorry in three-dimension

then it would look like this 100, 010, 001. This is identity matrix.



So if you add it here, it does not change anything but then you are convinced with the fact

that in this side we are doing matrix, matrix multiplication and here we are also doing matrix,

matrix  multiplication.  Now  taking  over  from  this  equation,  we  certainly  can  write  this

equation.  Okay, where I just changed the positions opposite to the sides. And the easiest

solution, you can get out of this for X vector is when X equal to 0. But that is very easy for us

and this is exactly what we are not looking for. We need a non-zero X vector solution for

that.

And to do this, we have to get the determinants of this matrix, of this term, which is this, and

then all  its  components  should be vanished.  That  means determinant  of  S minus lambda

multiplied by your identity matrix should be 0. Now if we rewrite or expand this equation

with our transformation matrix which was 3012, then we can write this equation determinant

of 3 minus lambda 102 minus lambda should be 0.

Now if we do the determinant, if we identify or calculate the determinant of this matrix, you

can do it and it would yield a quadratic polynomial. So it would take a shape of, I am not

doing it here, but it would take a shape of, anyway this is 0. So you actually get the equation

lambda minus 3 multiplied by lambda minus 2 equal to 0. This is easier because it is 0, right.

So you get the two values, lambda two real values, lambda equal to 3, lambda equal to 2.

Otherwise, you would get the equation in the form of lambda square plus some constant,

lambda plus some another constant. Okay, let us try it this way, it would be much easier, say

A lambda square, where A is a scalar or a constant. Then B lambda and then you would get

another constant here C that would be 0. So this is your quadratic equation for two dimension

and you can get the solutions. The roots of this equation, roots of this lambda and this would

be your eigenvalues for this particular matrix that you are dealing with.
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So now we know the eigenvalues for the particular matrix we are concerned with. So one

eigenvalue we found was 3 and another was 2. Now the task is to determine the eigenvectors

for  corresponding  eigenvalues.  Now  the  operations  as  you  can  imagine  this  is  very

straightforward,  so  we again  see  this  same equation,  where  S  is  your  concerned matrix,

lambda is your eigenvalue, I is identity matrix. And here X is eigenvector for lambda equal to

3. This is what we have to determine that what is the value of this vector X in terms of X and

Y coordinates.

Now  you can expand this equation in this form, very simply can put the value of lambda and

then it takes the shape of the equation like this and from this equation, you have to solve the

values for X and Y. Now if you solve it, then it comes to 1 and 0, that is the eigenvector for

lambda 3 and if you remember this is exactly what we have considered.

So you see that mathematically we can derive, we do not have to draw the curves or plots and

so on. Of course we can do it for better understanding, but otherwise just doing some simple

matrix  algebra,  you can  calculate  this.  By the  way,  just  to  let  you know that  from this

equation to solve it for X and Y, you can use reduced row echelon form RREF to find the

solution of X and Y. And you can find the process of RREF from any matrix algebra standard

book or text.

So similar way we found that it was 1, 0 for lambda 3 the eigenvalues, eigenvectors and then

for  lambda  2  eigenvector  2  we  can  similarly  replace  the  lambda,  lambda  value  in  this



equation as 2 here and here by replacing this lambda and this lambda. And then we see sort of

an equation of similar way that we have derived here and again, if you solve for X and Y

using RREF method, you can find the values for X and Y as minus 1, 1. And this is exactly

what we found or what we have seen before, which was the eigenvectors for eigenvalue 2. So

this is how mathematically you can figure out what are your eigenvalues and eigenvectors.

(Refer Slide Time: 29:16)

If we go back to our previous slide, we can see that these are your matrix. So 1 minus 1, 1,

when you have this and it is when the eigenvalue is 3 you get 1, 0. Now, we can apply this

concept  now of  this  eigenvector  and eigenvalue  to  calculate  the  principal  directions  and

principal stresses and we learn this in the next segment of this lecture.

Okay,  so  in  the  previous  part  we  learned  how  to  calculate  or  what  is  the  meaning  of

eigenvectors,  eigenvalues  and  how to  calculate  them.  And  now we will  apply  the  same

technique for our calculation of principal stresses and the principal directions and I remind

you  that  we  need  to  find  6  values,  three  for  principal  stresses  and  three  for  principal

directions.
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So let us start with this consideration in this slide. So we can consider very similar way the

same arbitrary element which is Del S as surface area. And it has an unit normal which is N i.

That means N1, N2, N3 in three different directions and this is the traction you are working

and with the traction it is making an angle which is beta.

Now clearly  if  this  beta  angle  is  0,  then  you are  N i  is  essentially  your,  along the  N i

directions,  you do not  have any shear  stress.  So therefore  it  automatically  gives  you the

direction of principal stresses and at the same time if you can calculate the magnitude then

these are your magnitude of the principal stresses. But if that does not happen, then you have

to figure out, particularly the orientations where your shear stresses are 0.

That means, where Sigma is one of the principal stresses and it must follow this convention

that Sigma i j must be replaced by Sigma and these two vectors would switch their positions

that means N j to and N i. Now to do that, you can actually figure out an equation, I am not

going into the details of how to get this equation to this. Where you get this particular term

Sigma involved here and if you expand this equation in 3 directions, so you would get things

like this. And based on this, you actually have to calculate the 3 directions which are your

principal directions and you have a condition where that we have learned also with the force

that N1 square plus N2 square and N3 square, they should be the sum of this should be 1 and

then of course you have to figure out the value of Sigma.

Now very similar way, if you have this equation then you can only get a nontrivial solution,

where your vector is not 0. That means it is not aligned so that means of beta is 0. Then you



can get a nontrivial solution of these equations, these three questions only if the determinant

of the coefficient vanishes. So this is the part that you have to solve the determinant and you

have to figure out what your eigenvalue.
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Now if you do that, then essentially it would take the shape. So this equation would if you

expand it in matrix form, it would come to this part and if you solve it, I recommend that you

try to solve it,  if  you know how to get the determinant  of a matrix,  a three-dimensional

matrix, recursive matrix, then you will arrive to third-degree or third-degree polynomial or a

cubic equation like this. Now if you have that equation with you, where I1, I2 and I3 are three

constants, you learn what these are soon.

Essentially this would yield three values, 3 real roots of this equation and you can say root 1

is Sigma 1, root 2 as Sigma 2 and root 3 is Sigma 3 and they are the values of the principal

stresses and these are also eigenvalues of the stress matrix that we are dealing with. So this is

the way you get your principal stresses. Now this I1, I2 and I3 that you also get along with

these  principal  stresses,  they  have  very  important  contribution  in  the  understanding  of

mechanics and also in structural geology.

You can express them in terms of stress components like this. That there are many forms you

can write these three terms, you can express these three terms. But this I1, I2 and I3 these are

known as stress invariants. These are not eigenvalues but they also do not vary, they also

characteristically represent the stress matrix.



And most important that their values also do not change with the coordinate transformation.

That  means  you  are  not  be  deforming  your  material,  but  if  you  are  transforming  your

coordinates, these values would remain constant, they would not change. So therefore these

are some sort of characteristics but these are not eigenvalues. Now the first one I1, I1 is stress

invariant.  That  is  a  mean  normal  stress  and is  a  constant  independent  of  the  coordinate

system. We learn soon what is mean by normal stress. The second stress invariant which is

commonly expressed this way or in the matrix from this way is generally applied when you

try to understand the flow or plastic yielding of rocks.

So that means, you would learn soon later, that what the (())(36:18) criteria and other things

there  you use,  it  is  failure  criteria,  so  the  yielding  of  the  materials  this  I2  is  used  very

frequently. The third stress invariant is not used in structural geology or hardly used and is

mostly ignored. At least I did not see any application of this 3rd stress invariant. So this is how

we derive the principal stresses.

(Refer Slide Time: 36:48)

And for the principal  directions  I  have given some instructions,  how to derive that?  But

otherwise it is very easy because you now have solved your equations. So you have actually

some number of unknowns and you have also this relation N1 square plus N2 square plus N3

square equal to 1. So using this equation and these three equations, where you Sigma are

known and for each Sigma 1, each Sigma 2 and each Sigma 3 or each Sigma, that means

Sigma 1, Sigma 2, Sigma 3, you can get the values of N1, N2 and N3. The instructions are

given here and also you have these stress invariants.



So I am not going into the detail of this, you can read it and it is better if you get any strain

matrix, any stress matrix, stress tensor. And you try to deform it or you try to rotate it, and

then figure out  what  are  the invariants  or what  are  the principal  directions  and principal

stresses, you can do these exercises by yourself. And again, as well as I tell that if you have

any confusion, if you cannot solve it, you are more than welcome to come back to us. So you

can contact the TAs and also you can write to me.

(Refer Slide Time: 38:54)

So let us go to another very important topic of this stress subject that we always consider,

particularly  in  structural  geology  which  is  isotropic  and  deviatoric  stress.  And  you  can

actually decompose your stress tensor, the general stress tensor to the isotropic or sometimes

we call it hydrostatic and deviatoric stress matrices or stress tensors.

Now what is isotropic state of stress? As it defines it is written here, where the principal

stresses are equal in magnitude, the state of stress is considered to be isotropic or hydrostatic.

That means the magnitude of Sigma 1, Sigma 2 and Sigma 3 are equal, but of course they are

mutually perpendicular to each other.

In the stress tensor, so now if I have Sigma 11, Sigma 22, Sigma 33 all are equal, then I can

replace them with a single value. In this case what I have done is Sigma 0. Okay, so all other

components are 0, you have only three principal stresses, have similar magnitude. Now if the

stress tensor all of diagonal components, that means the shear stress components are 0 and on

diagonal components are not equal, that means you do not have any shear stress acting but

your Sigma 1, Sigma 2 and Sigma 3 are not equal to each other.



Then you can actually get something which is called mean stress. A mean stress is actually

the sum of the principal  axes of the stresses divided by 3 or is the average or of the on

diagonal components gives you the mean normal stress. So if I have non-equal values, here

Sigma 11 is not equal to Sigma 22, not equal to Sigma 33, in that case I can sum them, and

then divide them by 3 and therefore I get something called Sigma 0 and this I can separate out

and then can write the stress matrix also in this way.
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Then all other components which are not isotropic in the stress matrix or stress tensor matrix

with or without shear stress components except the mean normal stresses are considered as

deviatoric stresses. So you can write it this way. Okay, so this is written without shear stress

component and you can also add your share stress components, sorry, not this one. So your

on  diagonal  components  and  off  diagonal  components  are  working  here.  And  these  are

deviatoric stresses where you have taken the mean stress Sigma 0 which was actually Sigma

11 plus Sigma 22 plus Sigma 33 divided by 3.

So this is your deviatoric stress component. So in general,  if I consider the overall  stress

matrix Sigma i j I can decompose it in two stress tensors. The first one I came keep only the

diagonal components, keeping all the diagonal values equal that would give you the isotropic

stress tensor. And the deviatoric stress tensor is whatever is remaining and if you sum them,

you will get your total stress tensor.
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So  now we will discuss what are the meanings of isotropic and deviatoric stresses? Now

isotropic stresses as we can understand that all the values are equal. Their magnitudes are

equal. So therefore, isotropic stresses are mostly responsible for the volume change. It could

be positive or negative, depending on the direction it is working. But it does not change the

initial shape of the rock volume under consideration.

The deviatoric stress on the other hand, it measures the departure of the stress tensor from the

symmetry and therefore that means, it does not consider the symmetric part of it. Okay, so

therefore  the  deviatoric  stress  is  responsible  for  the  strain  or  distortion  of  the  body and

therefore it changes the shape of the body.

Now  sometimes  we  use  few  different  terms  like  Lithostatic  pressures  or  Overburden

pressures. So stresses in rocks at depth that are isotropic and due solely to the overlying rock

masses. That means if I am at 600 kilometres then I have a huge 600 kilometre pile of rocks

above me or I have of the grain you are looking at. Of course I cannot go to 600 kilometres.

So  this  pressure  due  to  this  overlying  rock  mass  is  known  as  lithostatic  pressure  or

overburdened pressure. And it is important to understand these lithostatic pressures are not

necessarily correspond to the mean stress. Okay.
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Presently will look at the share stress part and we will do it a very different way. You can get

the  derivations  or  the  detailed  maths  involved  in  it  from any  book.  I  again  recommend

Professor Ghosh’s book, you can see how we have arrived to this type of considerations. But

the basics, I am going to explain you how it is done.

Now, clearly, I have three orthogonally oriented principal axes of stresses and if I consider

about the shear stresses then there are three possibilities and these 3 possibilities are shown in

point 1, 2 and point 3. Now in the first possibility you can get a pair of planes which are

intersecting along the Sigma 2 axis. So I have these two planes, one is blue, one is green,

there are intersecting along the Sigma 2 axis. Okay.

And they are inclined to the Sigma 2 axis with a value of plus and minus 45 degrees. So if I

make a cross-section then I see this is my Sigma 2, which is projecting away from the board

and then you have Sigma 1 and Sigma 3. So it would intersect like this and each intersection

would indicate you, would have the value of 45 degrees if the rock you are considering is

perfectly isotropic.

So the shear stress values you would have along these two possibilities, one is plus of this

half  of Sigma 3 minus Sigma 1 and another is minus of 0.5 Sigma 3 minus Sigma 1. A

similar case would happen if you have intersection happening along the Sigma 1 axis. So the

two planes are intersecting along the Sigma 1 axis and you can get a very similar way. So in



this case, the Sigma 1 is projecting upward of this board and you have Sigma 3 and Sigma 2

left on this plane you are considering. And you would get two different planes.

Again for the third consideration what is left? That you can have the intersection along the

Sigma 3 axis and therefore here in this case, Sigma 3 is this direction. So it is perpendicular

to board and you have two different planes that you generate. Now from this discussion it

may sound little  abstract  that why you would have these two planes intersecting along a

particular stress, principal stresses and its orientations and then why it has to be 45 degrees.

These are theoretically calculated but do we see this in nature? The answer is yes.

(Refer Slide Time: 47:11)

So here I have a few examples for you. What you see here? That this is a piece of sandstone,

we took the photograph from the field, he took this image and what do we see here? This

rock is apparently homogeneous but is characterised by a set of fractures, one set is like this

and then there is a second set of fracture which goes like this, is it not?

Now it is why is to imagine that these intersection lines because these are planes is one of

your principal axes of stresses and directions. And therefore if it considers this, this two are

your other principal axis of stresses. So I do not know which one it is, but if I consider this

one is which is projecting upward from the board. If it is Sigma 2 then you can consider this

one would be Sigma 1 or Sigma 3 and this one would be either Sigma 3 or Sigma 1.

Now there are some considerations as we have seen that this has to be 45 degree, this has to

be 45 degree. In this case, it is not and this is because this rock is not perfectly isotropic or



they are some other considerations. But generally one angle is acute and another angle is

obtuse and there are some relationships for that, we will earn it later. But these two sets of

fractures, one like this, one like this, these are known as conjugate sets of shear fractures.

(Refer Slide Time: 49:07)

Do we see it somewhere else? Yes, we see different scales. For example here you can see,

you are generating two sets of shear fractures, conjugate sets of shear fractures and this is a

classic experiment that have done with high-pressure temperature. So this you see a copper

jacket, actually rock sample is inside and these two lengths are covered by some alumina

disks. So it got compressed from this the diameter of the sample was 15 mm. This must be

wrong, there should be 15 mm.

And then what do we see? Because of the compression we generate two sets of fractures.

They have some sort of displacements which we are not looking at right now. But we see that

this must be intersection of 2 principal axes of stresses and we know this is a compression

direction. So if you calculate this must be acute and this is the obtuse angles.
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Now we see it also in a very different way, we have learnt it when you have an earthquake.

That there are two different motions or you can resolve it in two different motions, one is

vertical ground motion and another is horizontal  ground motion. Now you can imagine if

there is an earthquake, then because of the vertical ground motion, you would have some sort

of stress building along the vertical directions and therefore all the walls that we see we get

actually some sort of conjugate fractures and where your application of stress must be like

this.

So based on these considerations we are convinced that maybe the consideration of stress, so

far we learnt are purely based on mathematics and theoretical calculations. But we see strain,

we see deformation  of  rocks,  we see there  are  some sort  of  similarities  or  some sort  of

geometric relationships from one set of deformation to another set of deformation and if we

can resolve this through the concept of stress, life become much easier and this is what we

have learned because we have seen that it the expresses it perfectly.
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And now there is also one point that we would like to learn at  this stage. That we have

considers so far stress at a point or stress on a surface. But you consider lithospheric scale or

few kilometres or few 100 kilometres. So and we have to visualise this that stress at each and

every point is not constant. So they do vary, they do vary significantly in the rock volumes

under stress. So the overall stress consideration from each and every point, we generally call

it as stress field and this stress field, in this stress field the stresses do vary from one point to

another point.

This stress variation can be represented and one can analyse it using stress trajectories, which

are  the  lines  showing  the  continuous  variation  of  the  principal  stresses,  principal  stress

orientations from one point to another point within the rock volume. Now when you do, we

will see the diagram soon. The individual trajectories in a stress field that means in a single

point  you can draw the 3 different  axes which are perpendicularly perpendicular  to each

other. And then you have to connect it to the next point, next point, next point and so on.

So overall, it may vary in a very curvilinear way, but it is important when you measure and

draw  the  stress  trajectories,  the  orientation  of  the  principal  stresses  always  must  be

perpendicular to each other and at every point.
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So here is a very classic work, theoretical work by W. Hafner and it is a paper of 1951 where

he has calculated the stress trajectories. The different symbols are given here, in the top part,

the top diagram that we see these are complete solutions of the internal stress distribution in

the form of stress trajectories and the lines of equal maximum shearing stresses.

Accordingly these lines are the, these strong lines are the maximum principal stresses and

these dotted lines are minimum principal stresses. The boundary conditions for the theoretical

model was that he applied a significant amount of horizontal stress here. And here he applied

also horizontal stress but this is much less and what we see? That because we have large

horizontal stress, large magnitude horizontal stress in this side, it is slowly declining towards

the  low magnitude  of  the  horizontal  stress  and  this  decline  is  mostly  happening  due  to

gravity.

At the same time, because he has also plotted the shear stresses which are like this and based

on this shear stress and these two maximum and minimum principal stresses, it is possible to

resolve also that what would be the potential failure planes or where you can generate faults

in this theoretical model. So this is one of the very classic diagrams that Hafner gave and

people still do follow his model to calculate the stress trajectories in different scales.
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Okay, now we will learn two applications of the theory of stress that you have understood so

far or discussed so far. The first is a problem that we generally solve or try to figure out when

you do rock deformation experiments in the laboratory and second one is also we apply in the

rock  deformation  experiments  and  at  the  same time  in  the  field  and  in  the  many  other

applications. So we will first take the problem that we generally solve in the laboratory for

rock deformation experiments.

What we see in this slide? It is a sandstone and you can see that there is a fracture running

across the sample. What happened with this sample? So it was a sandstone, we drilled a core

and after coring the sample we cut the top and bottom sides, keeping two faces perpendicular

to the axis. So that means this surface and this surface, so they were perpendicular to the axis

of the sandstone sample, sandstone cylinder to be very specific.

And then a load has been applied from the top, where this bottom was fixed and then it got

deformed. And while it deformed, it produced a major fracture and a very minor fracture on

this side and we just learnt the theory of shear stresses and you can see here very nicely that

two surfaces were formed. One is prominent and another is not that much. But now we know

that we have applied the load here, say the load was as well F.

And we know the area of this cylindrical sample. The top part of the cylindrical sample, say

for example I know this is 2.54 cm. That means it is 1 inch, so we have the area of this

sample surface, we have the force and we can calculate the stress. And this is the stress-strain



curve of this deformation, so we see that the sample deformed at 32 MPa strains. So that its

strength that is 32 MPa.

 This is some sort of routine activities. But if you would like to go further for analysis, then

we would like to know that what was the shear stress and what was the normal stress on this

fracture surface. So if I summarise this image of this sandstone deformed, sandstone, then it

looks like this, you can approximate this plane as this red dotted line here and you can figure

out the angle is about 52 degrees with the horizontal plane. Now the challenge is, or the task

is to find out what was the normal stress on this surface and what was the shear stress on the

surface.
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So to  do  that  what  we generally  do in  laboratory?  We first  have  to  make  some sort  of

drawings and then figure it out what is working. Sort of working drawing and as we have

understood from the force descriptions of this course that if this is the force being applied on

this surface, then I can resolve this force on this surface very easily. Say, if I have this force

acting on this, then normal to this would be your normal force. That is your FN and then

parallel to this surface that would be your FS.

Now this would be a simple vector additions or vector operations. So, FN would be F cos

theta and FS would be F sine theta. So this is how we can calculate the forces acting on this

plane, one is normal component another is shear component. But for the stress it is not that

straightforward, simply because stress is the function of the area. Now clearly the area here is

not the same of the area of this fracture plane.



Now if I know this angle, which is theta, so this area if I designate it as A1, then A1 actually

is a function of the area A and this angle with cosine. So A divided by cos theta is the A1, the

area of the surface. So therefore to calculate now the normal stress clearly we have the FN

and we have the A1, so that would be your normal stress working on the surface. And if you

resolve  it  through some algebraic  manipulations,  you would  get  it  is  actually  Sigma cos

square theta where Sigma is a stress, the peak stress that we got which was 32 MPa.

Similarly for shear stress it would be. The shear stress, shear force component that is FS

divided by the area A1 and again, if you do some algebraic manipulations you would arrive,

it would be half of Sigma sine to theta. So this is how we calculate the stress acting on a

fracture plane after a deformation experiments. And this you can apply in many other fields

depending on your problem.
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The second problem, we would look is sort of calculating the shear stress and normal stress

on an inclined surface. So here I try to give you or give you a demonstration of the problem.

Now what we see here in this photograph, this is a sheared surface, fault surface and this, all

these striations that you these are known as silicon lines, we learn about it later. And this

white thing that you see here, this we have done in the field just to sort of take a cast of this

silicon lines for a different purpose. So it is still there.

But what is important? That because this is a fault plane, what do we see in this photograph?

Certainly there was some sort of shear movement along this direction. So shear stress were

active there, you see, I am giving double headed arrows because at least from this image, I do



not know which way the fault moved. But certainly it moved in this direction. So we would

like to know what was the shear stress here.

Imagine  that  just  for  this  problem imagine  the  shear  stress  was  in  this  direction.  Okay,

downwards, that may not be true for this exposure,  but for this particular problem let  us

assume this it was on the down direction, down deep direction. So this would be your shear

stress and then of course something. There must be a normal stress component, which was

perpendicular to the surface.

Now if you would like to know that how to get it, the basic thing you need, the primary

requirement for this is you have to have the regional or local stress field. That means the

principal axes of stresses. Now if we consider this is the 2-D problem, then you need Sigma 1

and Sigma 3.
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 So if I would like to see this problem geometrically,  then I can consider it that because

Sigma 1 and Sigma 3 these are perpendicular to each other, so this is Sigma 3 and this is

Sigma 1 and this is your fault plane, this blue line that you see here AB, right. So that Tau is

acting along the fault surface, and this is your normal stress. The consideration is that this

normal stress if I project it towards the origin of this coordinate frame Sigma 1, Sigma 3, then

it makes an angle of theta.

Now we have to figure out what is the shear stress and what is the normal stress acting on a

plane. Now clearly you cannot resolve it directly, so we have to first convert these stress



components to the force components. So if we consider AB is the unit length, then OA, that

means this would be sine theta and OB would be the cos theta. Remember, this is your theta,

so this has to be also theta.

Now the forces  acting  on OA, that  means along this  particular  side and OB that  is  this

particular side would be Sigma 3 sine theta and Sigma 1 cos theta respectively. Okay, this is

simple geometry. So therefore we got the forces along OA and along OB and if we have that,

then we can actually calculate these forces, out of these forces we can transfer it to the stress

because we have the areas. So therefore we can finally figure out what would be your normal

stress component which is Sigma here and what would be your shear stress component which

is Tau here and of course you can do some algebraic manipulations and you would arrive in

these two equations.

I read these two equations and I will tell you why? Sigma equal to Sigma 1 plus Sigma 3

divided by 2 plus Sigma 1 minus Sigma 3 divided by 2 cos 2 theta and Tau equal to Sigma 1

minus Sigma 3 by 2 sine 2 theta, now these two equations are very, very important not only

for structural geologists, but any engineering geologist, someone who does structural stability

analysis and so on. Because one has to know that what would be the shear stress of a given

plane once we know the forces or stresses in that region.

So with this note I conclude this lecture on stress. I hope we have more or less a very good

understanding on the strain in the previous lecture series and now this stress.
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So our discussion so far, all together on strain and stress were mostly focused if we look at on

geometric aspects. We did not consider what is a material, what was the material property

and  so  on.  But  we  know  that  rocks  have  different  compositions  and  various  physical

properties.  So  they  also  do  experience  different  pressures  and  temperatures  at  different

regime when they stay in the earth.

 At the surface conditions they do not experience that much pressure and temperature, but

when  you take  all  these  rock  materials  deep  inside  the  earth,  the  experience  significant

amount of pressure and temperature. Accordingly in the next lecture we will actually try to

understand how these rock materials at different earth conditions based on the composition,

based  on their  physical  properties  do  behave  under  stress  and  this  would  be  a  topic  of

rheology which we will take over in the next lecture. Thank you. Stay tuned.


