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Harmonic Vibration Examples 

 

Welcome back to the structural dynamics course. We have been learning about the 

vibrations of single degree of freedom systems under various scenarios. In the first week 

we learned about free vibrations, undamped and viscously damped free vibrations. In the 

previous week we learnt coulomb damped free vibration, we also learned about harmonic 

vibrations, that is when the system vibrates under a harmonic force. We learned about 

resonance and the influence of damping on resonant responses. We also learned about 

transmissibility and vibration isolation. 

(Refer Slide Time: 00:50) 

 

So, before learning something new this week, we would briefly revise what we have 

learnt in the previous weeks. 
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In the first week we discussed free vibrations. This is the equation of motion of a single 

degree of freedom system under free vibration, m is the mass of the system, c is damping 

coefficient, k is the stiffness. And since it is free vibration, there is no external force 

acting on this system so, the right hand side is 0. So, this is the undamped free vibrations 

response it is undamped when c becomes 0. 

 

So, the displacement response is like this, x naught that is the initial displacement 

multiplied by cos omega n t plus x dot naught that is the initial velocity divided by 

omega n multiplied by sin omega n t. And omega n we have seen that it is equal into root 

of k by m and it is known as the natural frequency of this system. And this is how the 

response would look like and since there is no damping in the system, this displacement 

will not decay in time this amplitude will not change at each cycle the amplitude will be 

same. 
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Then we have damped free vibrations. In damped free vibrations damping is non-zero 

and this equation can be rewritten as this. If you divide this by mass you will get this 

equation where zeta is defined as the ratio of the damping coefficient and the critical 

damping coefficient. This is the response of a damped system under free vibrations. So, 

we have an exponentially decaying term here it is a function of zeta. 

} 

So, depending upon the damping, there is a decay in the vibration response; so, you can 

see that in the plot. So, the amplitude of the vibration decays with time and here in this 

equation this x naught is the initial displacement and omega D is natural frequency 

multiplied by square root of 1 minus zeta square, where zeta is the damping ratio. 

So, if the damping is high, this value will be lower than the natural frequency. So, here 

we have the initial velocity and the second term is depending upon the damping and the 

initial displacement. So, this is how the vibration of a damped system looks like and it 

decays with time and after some time the vibration stops. 
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Then we discussed one type of forced vibration called harmonic vibration. It so, in 

forced vibration, a force a time varying force will be acting on the system and a 

harmonic force is something which can be written like this that is as a function of sin or 

cosine. So, this is how a harmonic force will look like and p naught is the amplitude of 

this force and omega is the forcing frequency. So, this period will be equal to 2 pi by this 

forcing frequency and this is called forcing period. 

 = p0 sin 𝜔t   or    p0 cos 𝜔t 
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This is the response of an undamped system under harmonic force. So, this response will 

have two components a transient component and the steady state response. So, the steady 

state response will be a sin function with frequency equal to the forcing frequency that is 

omega. And the transient response will have frequency as omega n. So, as you can see in 

this figure the blue diagram shows this response x t and the dotted line shows the steady 

state response. 

So, this response will have two frequency components the natural frequency and the 

forcing frequency. So, the time between these two adjacent peaks will be equal to the 

natural period and the time between two global peaks would be the forcing period. 
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This is how the response of an undamped system under harmonic force. So, again this 

would have transient response and a steady state response, but in damped system the 

transient response decays with time depending upon the amount of damping present in 

the system. So, this transient respond will change with time and decays and becomes 0 

and only the steady state response remains after some time. 

 (A cos t + B s t) + C s t +D cos t           



So, that is why the name says steady state and transient. Transient is the one which 

decays and steady state this what stays after some time and the steady state response 

continues as long as the force is available. So, you can calculate these constants this A 

and B can be calculated using the initial conditions and C and D can also be evaluated 

and we have derived this. 

 

 

 

 

After that we discuss the steady state response in detail. 
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This is the amplitude of the steady state response and here this term p naught by k is 

equivalent to the static response. If a constant force p naught was acting on the system 

and this is the deformation response factor. So, this is an amplification or reduction 

factor depending upon the value of the frequency ratio. So, this figure shows this 

deformation response factor Rd. 



So, as you can see here the value of Rd is close to 1, when the frequency ratio this very 

less it is very when it is very less than 1 Rd is near 1; that means, when the frequency 

ratio is much smaller than 1, the steady state amplitude response will be equivalent to the 

static response. So, x naught will be equal to p naught by k when Rd is 1. And when the 

frequency ratio is near 1 the response amplifies a lot depending upon the value of 

damping and when the frequency ratio is much higher than 1 this factor becomes much 

less than 1, it becomes close to 0; that means, the steady state response amplitude would 

be much smaller than the static response amplitude. 
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Now, let see some examples of harmonic vibrations. So, in the first example problem the 

mass m the stiffness k and natural frequency omega n of an undamped single degree of 

freedom system are unknown. These properties are to be determined by harmonic 

excitation test. At an excitation frequency of 4 Hertz, the response tends to increase 

without bound. Next a weight delta w which is equal to 5 pounds is attached to the mass 

m and the resonance test is repeated. This time the resonance occurs at 3 Hertz determine 

the mass and stiffness of the system. 

So, we have an undamped single degree of freedom system and it is mass and frequency 

are to be found out using harmonic excitation test. So, how is it done? You excite the 

structure with multiple excitations with different frequencies and finds when the 

resonance happens. So, it is given when the resonance is happening. So, let us see how to 

solve this problem. 

So, we have learnt that for undamped system, the resonance is at the natural frequency. 

So, we can find out that the first resonance frequency which is given as 4 Heartz is the 

natural frequency of the system. So, we can write omega n 1 is 2 pi fn, fn is given as 4 

Heartz here. So, that is the excitation frequency when the resonance happens at the first 

time. So, omega n 1 is 8 pi and we know that omega natural frequency is equal to root k 

by m. So, we know this value of k by m now, the square of this. So, in the second time 

an additional mass was added to the system. So, we also know the second natural 

frequency that is 3 Hertz, that is 6 pi radians per second. 

ωn1  = 2  = 2  x 4 = 8                    = ωn1
2 = 64    --------------------------- (1) 

ωn2  = 2  = 2  x 3 = 6                   = ωn2
2 = 3   ------------------------ (2) 

So, now the mass of the system is changed now. So, we have k by m plus delta m. Delta 

m is the mass of this additional weight. So, now, this is the frequency of the system; so, 

we have an equation k by m plus delta m is equal to omega 2 square. So, now, we have 

got two equations solving this we can find the two unknowns, they are k and m. So, just 

solve this equation and find k and m. 

So, we know delta m is equal to the mass of this additional weight. So, we can calculate 

that the weight is five if you divide it by g you get the mass. So, substitute in these two 

equations in this equation and if you can divide this equation by this, you will get this 



and eventually you can calculate the value of the mass. So, the mass comes to be this 

much and substitute it here, you get the value of the stiffness. So, this is how we find the 

mass and stiffness of a system using harmonic test. 

 (Refer Slide Time: 12:51) 

 

Let us move on to the next example, a machine is supported on four steel springs for 

which damping can be neglected. The natural frequency of vertical vibration of the 

machine spring system is 200 cycles per minute. The machine generates vertical force it 

is a harmonic force. 

The amplitude of the resulting steady state vertical displacement of the machine is x 

naught is equal to 0.2 inches, then the machine is running at 20 revolutions per minute 

and the amplitude is 1.042 to at 180 rpm and the amplitude is 0.0248 inches at 600 rpm. 

Calculate the amplitude of the vertical motion of the machine if the steel springs are 

replaced by rubber isolators, which provide the same stiffness, but introduce damping 

equivalent to zeta is equal to 25 percent. Comment on the effectiveness of the isolators at 

various machine speeds. 

So, in this we have a machine supported by 4 springs; so, two are in the front and two are 

at the back. The machine is running at different speeds. So, the amplitude of this vertical 

vibration is given at different speeds of the machine. And we have to find out how this 

vibrations will change when these springs are replaced by rubber isolators which provide 

additional damping to this system. So, let us solve this. 



So, it is given that the natural frequency of this machine spring system is 200 cycles per 

minute. So, when the machine is running at 20 rpm that is 20 revolutions per minute, it is 

given that the displacement amplitude is 0.2 inches. So, we can calculate the frequency 

ratio because we know the natural frequency we know the forcing frequency that is 20 

rpm. So, the frequency ratio is 0.1 and we know that for undamped systems, the 

amplitude of the steady state response is equal to p naught by k divided by 1 minus 

omega n the whole square and then amplitude of that. 

So, here we know the amplitude so, we can substitute the value of the amplitude in this 

equation and find out the value of p naught by k. And we know that p naught by k is the 

static response of the system if a constant force was acting on the system, a constant 

force of amplitude p naught was acting on the system. So, this is the steady state 

response. 
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So, now we will calculate what happens when the springs are replaced by rubber 

isolators. So, when rubber isolators are kept, you get a damping of 25 percent and the 

frequency ratio does not change it is same as 0.1. So, we know that the amplitude is 

expressed like this when a damping is present. So, we can just substitute the value. So, 

we know the value of p naught by k now and also substitute the value of frequency ratio 

and damping, you get the response amplitude as 0.1997 inches. 



So, now let us move on to 180 rpm. So, when the machine is at 180 rpm the amplitude 

we know the frequency ratio we can calculate that would be 180 by the natural frequency 

that is 200. So, the frequency ratio is 0.9 here, again we can substitute in this equation 

and calculate the value of p naught by k and we should get the same as we calculated 

earlier. Because this is just a static response it does not depend upon the forcing 

frequency. So, this should be same as what we have seen earlier. 

So, now again let us find what happens when damping is there in the system. So, when 

the springs are replaced by rubber isolators, we can calculate the response amplitude the 

displacement amplitude. So, we can substitute the values as we did earlier and we can 

calculate the response amplitude and that comes out to be 0.4053 inches. 
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Now, let us calculate for 600 rpm. Again the amplitude is given frequency ratio we can 

calculate and it comes out to be 3, substitute here you will get the same response static 

response we can skip the steps by now. I just kept it for clarification. This is the static 

response and this will be constant irrespective of the rpm. So, when the damping is 25 

percent, let us calculate the amplitude and that comes out to be 0.0243. So, this would be 

the response amplitude, if we replace the springs by rubber isolators. 

Now, let us we have calculated for all three cases and now let us summarize the results. 

So, we run the machine at different speeds. So, we have three frequency ratios forcing 

frequencies was changing each time. So, these are the forcing the frequency ratios. Now 



this is the response amplitude when the springs were kept that is when there was no 

damping. So, these amplitudes were given and we have calculated the response 

amplitude when the damping is 0.25 that is when the springs are replaced by rubber 

isolators. So, these are the results.  

So, here you can see when the frequency ratio is 0.1, the response amplitudes are very 

close. When the frequency ratio is 0.9 as we can see the amplitude of response 

significantly reduces when we replace springs by rubber isolators that is when we 

introduce some damping to the system. When the frequency ratio is 3, you can see that 

both the amplitudes are almost same; that means, the rubber isolators did not change the 

frequency amplitude and this behavior we have already seen when we discussed the 

response factors. 

So, we have seen that the value of Rd that is deformation response factor varies like this 

with frequency ratio. So, when the frequency ratio was much less than 1 that is in the 

case here when it was here it is 0.1. So, when it was much less than 1, this factor was 

close to 1; that means, our responses would be similar that is the trend we are seeing 

here. That means damping does not have any effect here, but when the frequency ratio is 

near 1 the damping has effect on this response amplitude.  

So, depending upon the damping the response will reduce. So, we had 25 percent 

damping here. So, our response came down significantly. So, when frequency ratio is 

very high compared to 1, then again there is no influence of damping this factor will 

become less than 1, but it does not change much with damping. So, here our frequency 

ratio is 3. So, as it is seen from this figure damping does not have much control over 

there. So, here also our damping does not reduce the amplitude of the response. 
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In the next problem we have two simply supported beams and an air conditioning unit is 

kept on it. So, an air conditioning unit weighing 1200 pounds is bolted at the middle of 

the two parallel simply supported steel beams. The clear span of the beams is 8 feet, the 

second moment of cross sectional area of each beam is 10 inch to the power 4 so, that is 

I. The motor in the unit runs at 300 rpm and produces an unbalanced force of 600 pounds 

at this speed. Neglect the weight of the beams and assume 1 percent viscous damping in 

the system. 

For steel e is given as 30,000 ksi, that is kips per square inches similar to Newton per 

meter square millimeter. Determine the amplitudes of steady state deflection and steady 

state acceleration of the beams at their midpoints which result from the unbalanced force. 

So, this air conditioning unit is rotating with some speed which is given and that causes a 

unbalanced force the amplitude of the force is also given. So, this is, this unit is 

imparting a harmonic force on the beams. 

So, the information we already have is the length of the beams is given that is 8 feet and 

second moment of cross sectional area is given that is I 10 inch to the power 4. Young’s 

modulus is given and it is told that zeta the damping ratio is 0.01 that is 1 percent 

damping viscous damping. So, we can calculate the forcing frequency that is 300 rpm 

that is 300 by 60 cycles per second and if you multiply by 2 pi you would get it in 

radians per second. So, omega is this much, when we know the unbalanced force 



amplitude is given as 60 pounds and the weight of this AC unit has also given as 1200 

pounds. 

So, now let us find out the steady state deflection and acceleration. 
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So, the stiffness of the system is equal to the stiffness of the two beams. So, we have two 

simply supported beams and at the mid span the stiffness is equal to 48 EI by L cube. 

This we you should have studied this in the static course; so, if you do not remember this 

please refer your static analysis notes. So, this is the 48 EI by L cube is the lateral 

stiffness of the simply supported beam at mid span. 

 

So, we have two beams. So, the equivalent stiffness of the system is two times that you 

can calculate this because we have all the values and the natural frequency of the system 

this omega n that is root of k by m we know the weight of the AC unit. So, we can 

calculate the mass, mass is weight by g. So, this becomes kg by weight under root. So, 

again we can calculate the natural frequency. 

Forcing frequency is known; so, we can calculate the frequency ratio omega by omega n 

that is equal to 0.307. So, let us calculate the steady state response now. We know the 

displacement amplitude for damped system is p naught by k divided by square root of 1 



minus damping ratio square the whole square plus 2 zeta damping ratio square the whole 

square. So, we can just substitute all these values, all these are known to us by now. So, p 

naught by k is known, damping ratio is known frequency ratio is known. So, substitute it 

and get the value as this much. So, that will be the amplitude of the displacement of the 

beams under the effect of a rotating AC unit. 

Displacement amplitude, x0  

So, once the displacement amplitude is known, we can calculate the acceleration 

response acceleration amplitude and the acceleration amplitude is omega n square times 

displacement amplitude. So, we can calculate that also. So, this acceleration amplitude 

this 2.009 inches per second square. We can also represent this in terms of g just divide 

this value by the value of g and we can represent this in terms of g. So, this is equal to 

0.0053 times g the gravitational acceleration. 
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It is given that the weight of the isolation block is 2000 pounds and the forcing frequency 

is 1500 cycles per minute. It is given that the foundation of the isolation block vibrates in 

this frequency. So, we can calculate the value in Hertz that is cycles per second; so, 1500 

by 60 will give you the value of the frequency in Hertz. It is also given the e value for the 

steel spring that is 30,000 ksi.  



So, we learned about transmissibility. So, that is the ratio of the vibration of the isolation 

block to the vibration of the foundation and it is given in the question that, that should be 

10 percent that is 0.1. So, this transmissibility which is given us which we need to 

achieve this 0.1 which is less than 1.  

So, now let us look at how the value of the transmissibility varies with frequency ratio. 

So, we have learned this last week. So, this is the transmissibility curve. So, the y axis 

shows this ratio, the vibration of the isolation block to the vibration of the foundation in 

this case. 

So, as you can see here when the frequency ratio is very less; that means, the 

transmissibility is equal to 1. So, in that case we cannot achieve this value of 0.1 if the 

frequency ratio is very less. So, in such case the vibration of the isolation block and the 

vibration of the foundation will be equal to same irrespective of the damping provided or 

the frequency ratio because for the whole range the transmissibility value is 1 if the 

frequency ratio is much less than 1 that is in this range. And if the frequency ratio is 

close to 1 then the transmissibility will be greater than 1; that means, we cannot reduce 

the amplitude of the vibration, but it will increase and depending upon the damping the 

vibration will reduce; that means, transmissibility value will reduce if you have a high 

damping. 

But in that range also the value of transmissibility will be greater than 1 for normal 

damping levels. So, to get a transmissibility of 0.1 we need to go beyond the root 2; that 

means, the frequency ratio should be higher than root 2. So, let us find out how much 

frequency ratio will suffice for our 10 percent reduction in amplitude. 
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So, for transmissibility less than 1, the frequency ratio should be greater than root 2. So, 

this is the expression for the transmissibility which we have learnt last week. So, that is 1 

plus 2 zeta frequency ratio square the whole square divided by 1 minus frequency ratio 

square the whole square plus 2 zeta frequency ratio the whole square and the whole thing 

is under root so, to the power 1 by 2. 

  =  

So, when zeta is equal to 0. So, in this case in this question it is given that we can neglect 

damping. So, zeta is equal to 0 here. So, the transmissibility becomes this, these two 

terms will cancel. So, our transmissibility comes down to this and we have to make it 

equivalent to 0.1. So, from this we can calculate the frequency ratio needed for this much 

amount of transmissibility. So, just solve this equation and we can get the frequency ratio 

that is omega by omega n and that value is equal to 3.32, this is higher than root 2. So, 

we will get transmissibility less than 0.1. 

So, now we know the forcing frequency omega. So, we can calculate the natural 

frequency. So, if you substitute all the values we can calculate the natural frequency. So, 

we know that natural frequency is equal to under root k by m. So, if mass is known and 

natural frequency is also known, we can calculate the stiffness. So, just substitute the 

value and just get the stiffness. So, if we keep the effective stiffness of that isolation 



system as this much this 11.6 kips per inch, we can make sure that the response of the 

isolated system is only 10 percent of the foundation response. 


