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Forced Vibrations Part 2 

 

Now, we will see the harmonic vibrations of damped systems. 
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So, in free vibrations, we have already seen damped free vibrations and damping is the 

property by which the free vibration of a system diminishes with time and damping is 

because of many energy dissipation mechanisms present in the system. 

So, now, let us look at a viscously damped system. So, in viscously damped system the 

damping is represented by a viscous damper and the damping force will be equal to the 

damping coefficient multiplied by the velocity of this mass. 

So, the equation of motion of this type of systems, we have written for free vibrations 

and in forced vibration when a harmonic force of p naught sin omega t is acting on the 

system, the equation of motion becomes this. 

 



 It is mx double dot plus cx dot plus kx is equal to the harmonic force p naught sin 

omega t and the system will have some initial displacement and velocity and we assume 

that we know this initial conditions. We can rewrite this equation of motion like this and 

we can define this zeta as a damping ratio which is the damping coefficient divided by 

the critical damping coefficient and we have also seen in free vibrations that the critical 

damping coefficient is equal to 2 m omega n or 2 root k m. 

                          =    

So, now we have this equation of motion and we have to find the solution of it. So, here 

also the solution will consist of 2 parts; the complementary solution and the particular 

solution. The complementary solution will be equal to the homogeneous solution that is 

the solution to free vibrations. So, now, we will find the particular solution for that we 

will assume that the particular solution is of the form C sin omega t plus D cos omega t. 

So, now, we have to find out these constants C and D. 

  + D cos  

So, for that we have to substitute this equation in the equation of motion in this equation 

of motion and then we have to find out these constants. Let us substitute this equation 

and its derivatives in this equation of motion. So, we have to find the velocity function 

by differentiating this once. So, if you differentiate this once, you get C omega cos 

omega t minus D omega sin omega t that is the velocity of this particular solution. 

Similarly we can find out the acceleration by differentiating this velocity once more. So, 

the acceleration would be minus C omega square sin omega t minus D omega square cos 

omega t. 

 =  cos  sin            -  cos  

Now we can substitute the particular solution expressions for displacement velocity and 

acceleration in this equation of motion. So, if you do that substitution we will get this 

expression. So, first we have x double dot. So, the first 2 terms will represent this 

acceleration and 2 zeta omega n multiplied by the expression for velocity then omega n 

square multiplied by the displacement terms. 

So, we have this expression which is equal to p naught by m sin omega t which is the 

force. So, now, we can rearrange this equation. So, we can collect all the sin omega t 



terms. So, sin omega t multiplied by minus C omega square, then this term 2 zeta omega 

n D omega then the next sin omega t term is this C omega n square. Then we have the 

cos omega t terms. So, minus D omega square plus this term C 2 zeta omega n omega 

then we have this term which is equal to omega n square D. So, we just rearrange these 

terms in sin and cosine terms. So, now, we can equate the sin and cosine terms on both 

sides. So, these are the sin terms on left hand side and the right hand side we have one 

sin term sin omega t term. 

So, we can equate these terms to this one we can also equate the cos omega t terms to 0 

because in the right hand side, there are no cos omega t terms. So, if you do that we will 

get two expressions one is this equal to p naught by m the second is this expression equal 

to 0. So, we can rearrange this again and we will get an expression like this from this 

equation and another expression from this equation. So, you have two equations and 2 

unknowns C and D. So, we can solve this algebraic equation and find out the expressions 

for our constants C and D. 

So, after solving these two, equations we will get the expressions for C and D. 

(Refer Slide Time: 07:15) 

. 

And that will be equal to C is equal to p naught by k 1 minus frequency ratio square 

divided by 1 minus frequency ratio square the whole square plus 2 zeta frequency ratio 

square and D is equal to this p naught by k, the numerator will be minus 2 zeta frequency 

ratio, the denominator will be same as C. Now we know the values of C and D so, we 



can write the expressions for the particular solution as C sin omega t plus D cos omega t. 

And we know that the total solution is the sum of complimentary solution and the 

particular solution. 

         

So, we have seen in harmonic vibrations of undamped systems that the complementary 

solution would be equal to the free vibration response. So, here we have the total solution 

as the complementary solution and the particular solution. So, this is if you remember the 

free vibration response of the damped system which is equal to e to the power minus zeta 

omega nt multiplied by A cos omega Dt plus B sin omega Dt. So, this omega D is equal 

to the natural frequency of the damped system which is equal to omega n which the 

natural frequency of the undamped system multiplied by 1minus zeta square zeta is the 

damping ratio. 

 (A cos t + B s t) + C s t +D cos t           

So, now, we have the total solution. So, if you look at the solution, these two terms they 

decay with time. So, this exponential function is in terms of t. So, as time increases this 

these 2 terms decrease with time. So, this part of the solution is known as transient 

response because this decays with time and this part is known as steady state response. 

So, this will not decay with time, this will be the predominant response because this part 

decays with time and this will be remaining as long as the force remains. So, this is the 

predominant part of the response. So, as we have did earlier, we can calculate the 

constants A  and B using the initial conditions. So, we have the initial displacement 

and initial velocity. 

So, you can substitute the initial velocity in this expression and we can find out the 

velocity expression by differentiating these ones and substitute the initial velocity value 

in that. And then we will have two equations; if you solve those two equations, we will 

get the value of A and B. So, if you do all that we will get A is equal to x naught the 

initial displacement minus this expression D and B will be equal to this. I am not 

showing this derivation in this video, but I would like you to try this out and calculate 

these constants. 

 



 

So, now let us see how the solution looks like. So, if you plot this total solution for some 

values of initial conditions, we will get the solution like this the blue line represents the 

total solution, the red dotted curve represents the steady state response. So, and if we plot 

only the transient response, it will look like this. So, as expected this transient response 

will decay in time and become zero after some time. And if you look at the total solution 

initially, the total solution will vary like this; it is the sum of the steady state response 

and this transient response. So, after some times as the transient response decays, the 

total solution will become equal to the steady state response and that is why this part of 

the solution is known as steady state response because that part of the solution remains as 

long as the forces available. 
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Now, let us look at the vibrations response at omega is equal to omega n. In undamped 

systems, we have seen that when the forcing frequency is equal to the natural frequency; 

the response becomes unbounded. The amplitude of the steady state response increased 

in each cycle. Now let us see how the damped system behaves when the forcing 

frequency is equal to the natural frequency.  

         

 



So, we have the expressions for the constants C and D. When omega is equal to omega n, 

this ratio will become 1 and C will be equal to 0. This numerator will become 0. So, here 

in the expression for D, this term will become minus 2 zeta and this term will vanish and 

this term in the denominator will become 2 zeta the whole square. So, together this will 

become p naught by k minus 2 minus 1 divided by 2 zeta. 
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So, C becomes 0 and D becomes this value. The complementary solution can be found 

out using the initial conditions for zero initial conditions the total response of this 

damped system will be this and as you can see these terms decay with time. 

} - cos t] 

 So, they represent the transient response and the steady state response is this which is a 

function of omega n as the forcing function is equal to the natural frequency. Now let us 

see the solution graphically. So, the solution looks like this. The amplitude of this steady 

state response is equal to p naught by k multiplied by one by 2 zeta unlike in the case of 

undamped systems, this amplitude is not a function of t. So, this is a constant and this 

does not increase with time. 

So; that means, in the steady state response, we have a bounded response. The amplitude 

of the steady state response is equal to this value and this does not change with time this 

stays constant with time and as you can see here in the beginning when the time is small 



we have the effect of this transient response. So, after some time the transient response 

will decay and will become equal to 0 after some time. So, the total response converges 

to the steady state response and continues as long as the force remains and the amplitude 

of the steady state response is also constant. So, the amplitude does not increase with 

time. 

So, now you would be able to appreciate the effect of damping in systems. In undamped 

system, we have seen that at omega is equal to omega n the response increases after each 

cycle. So, as the time goes by the response keeps on increasing, but damping makes that 

response bounded and it makes it bounded to this value. No matter how many how much 

time passes, the maximum amplitude of the response will be this much p naught by k 

multiplied by 1 by 2 zeta. So, if the damping is high, the amplitude will be smaller and 

the damping is small, the amplitude will be larger and we know that the p naught by k is 

equal to the static response. 
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Now, let us explore the steady state response in detail as the transient response decays 

with time the steady state response is the predominant form of vibration. So, as we have 

seen already, this is the expression for the steady state response and this can be 

alternatively expressed as x naught multiplied by sin omega t minus phi. So, this sin and 

cos terms can be written as a sin term with some phase angle and here the x naught is 

equal to the square root of C square plus D square and the phase angle this tan inverse 



mins D by C. So, we can calculate we know the expressions for C by D using that we can 

calculate the amplitude. It will be equal to p naught by k multiplied by 1 by square root 

of 1 minus frequency ratio square, the whole square plus 2 zeta frequency ratio the whole 

square. 

 

                                                                          𝜙 =  

So, we have seen that this p naught by k is equal to the static response and this is a 

multiplication factor by which the amplitude of this response amplifies or decreases. And 

the phi can be found out as tan inverse 2 zeta frequency ratio divided by 1 minus 

frequency ratio square. We can denote this factor as the deformation response factor 

which is Rd and this is equal to this factor. 

 =  

Now, let us see how this deformation response factor varies with the damping ratio, we 

have seen similar result in undamped systems also. So, in damped systems depending, 

upon the damping ratio the value of Rd changes. 

So, when the damping is small, the value of Rd at damping ratio is equal to 1 is very high 

and when the damping is increasing the response factor at damping ratio 1 becomes 

smaller and smaller. As we have seen in the undamped systems when the damping ratio 

is close to 0 that is when the forcing frequency is close to 0, we can see that Rd is equal 

to 1; that means, the amplitude of the steady state response will be equal to the static 

response p naught by k. 

When the frequency ratio increases this response factor will also increase and that 

increase will depend upon the value of damping. So, for light damped systems this 

amplification will be larger at frequency ratio is equal to 1 and when the frequency ratio 

increases beyond one, this factor becomes smaller and smaller and when the frequency 

ratio is much higher than 1, this becomes 0 irrespective of the damping present in the 

system. So, the damping is controlling this factor when the frequency ratio is near 1. Let 

us understand the steady state deformation response in little bit more detail. 
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So, the steady state response can be written as the static response multiplied by the 

deformation response factor multiplied by sin omega t minus phi. So, Rd varies like this 

and phi varies like this. So, what happens when the frequency ratio omega by omega n is 

much less than 1? 

So, we have seen that when the forcing frequency is equal to 0 or the frequency ratio is 

close to 0, this factor Rd is equal to one and the static response will be equal to the 

dynamic steady state response. So, when the frequency ratio is smaller than one when it 

is in this range, then also this Rd value is very close to 1 which means the steady state 

response is approximately equal to the static response. So, in this region that is when the 

frequency ratio is smaller than 1 much smaller than 1, the response is equal to p naught 

by k. 

So, as you can see from this expression this response is controlled by the stiffness of the 

system if the stiffness is high, the response is smaller the displacement will be smaller 

and if the stiffness is very low this response will be higher. So, this is similar to the static 

case. Now when the frequency ratio is near one it is equal to or approximately equal to 1 

as you we have seen earlier this amplitude of the response can be much larger than the 

static response this value of Rd can be much larger than 1. The value depends upon 

damping for very high value of damping like damping is equal to 0.7 say it can happen 



that the Rd value is less than one when the frequency ratio is one, but for all real 

structures the damping will be much smaller. So, the Rd value will be more than 1. 

So, we can say that when the frequency ratio is close to 1, the steady state response is 

controlled by the damping in the system. So, when the frequency ratio is approximately 

equal to one the value of Rd would be 1 by 2 zeta and the steady state amplitude 

becomes p naught by k multiplied by 1 by 2 zeta. So, if we substitute the damping ratio 

we would get x naught is equal to p naught by C omega n. As you can see in these two 

expressions the amplitude will be controlled by the damping as the damping increases, 

the value of x naught decreases. So, for small values of damping, the x naught that is the 

steady state response will be much higher than the static response. So, we can see the 

same behavior in this curve also. 

So, now what happens when the frequency ratio is much larger than 1? When the 

frequency ratio is larger than 1 as you can see in this curves so, the value of Rd becomes 

equal to 0, it tends to 0 as the frequency ratio increases. 

 =  

So, this is the expression for Rd and in this if you observe the denominator, the terms 

under the rule. So, 1 minus frequency ratio square the whole square. So, this term is 

frequency ratio to the power 4 and this term has the frequency ratio to the power 2. So, 

compared to this term the value of this term is negligible. So, you can say this is the 

dominant term in this expression for Rd, when the frequency ratio is much higher than 1. 

So, we can write the expression for the steady state amplitude as p naught by k, the static 

response multiplied by this term that is square root of frequency ratio to the power 4; that 

means, omega n square divided by omega square. So, we can substitute the value of 

omega n as root of k by n. So, this becomes p naught by m by omega square. So, as you 

can see here, this expression for the steady state amplitude is controlled by the mass of 

the system.  

So, when the frequency ratio is higher than 1, Rd tends to 0 and the value of Rd will be 

controlled by the mass of the system. If the mass is high the response, the steady state 

response will be smaller the mass is very low this response will be larger. However, as 



the frequency ratio goes higher than 1, the response goes to 0. It approaches 0 and this is 

how the phase angle varies with damping. 

We have noticed that when the damping is 0 that is for undamped system, the phase 

angle was 0 when the damping ratio was less than 1 and it was equal to 180 when the 

damping ratio was higher than 1. So, when there is some damping present in the system 

the nature of this phase angle also changes. When the frequency ratio is close to 0, the 

phase angle is also close to 0 and when the frequency ratio is much higher than 1, the 

phase angle approaches 180 degree and the nature of the changes in phase angle will 

depend upon the value of damping. So, as the damping increases, this curve becomes 

flatter and it changes its values gradually. 

So, if we want to design a structure to resist a harmonic force, how will we design that 

structure, what should be its natural frequency? As we can see from these curves we 

know that when the natural frequency of the system is close to its forcing frequency, the 

amplitude of the steady state response is much higher than the static response. So, we can 

either design the system with the natural frequency such a way that the frequency ratio is 

much less than 1. In that case our response will be same as the steady state response or 

the another way is we can design it in such a way that the frequency ratio is much larger 

than one. 

So, in that case, the response will be close to 0; the response will be even much lesser 

than the steady state response and in designing a system, there will also be some other 

constraints which will limit the value of the natural frequency which we can adopt. So, 

the general rule is that keep the natural frequency away from the forcing frequency as 

much as we can. So, either make it lesser than the forcing frequency or make it higher 

than the forcing frequency. 
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Now, let us see the velocity and acceleration response at steady state. So, this is the 

displacement response at steady state. This is equal to p naught by k Rd sin omega t 

minus phi. So, if you differentiate this once, you will get the velocity response. So, the 

velocity response can be written as p naught by root k m Rv which is the velocity distress 

response factor and multiplied by the cos function in omega t minus phi. And this 

velocity response factor Rv is frequency ratio times Rd.  

So, if you differentiate this, you would get this expression with Rv is equal to omega by 

omega l multiplied by Rd. So, if you plot this we get curves similar to Rd, it will look 

like this and the values will change with the damping ratio. So, this highest curve is for 

the lowest damping ratio. When the frequency ratio is close to 0 the value of Rv is also 

close to 0 and when the frequency ratio is near 1, the value of Rv increases; it is much 

higher than 1 and it is value depends upon the damping. 

And when the frequency ratio is much higher than 1, the value of Rv converges to 0 

again. Now let us see the steady state acceleration response. So, if we differentiate this 

velocity response once, we would get the acceleration response. So, the acceleration 

response is equal to minus p naught by m Ra that is the acceleration response factor 

multiplied by sin omega t minus phi and the acceleration response factor Ra is equal to 

omega by omega n that is the damped frequency ratio square times Rd. 



So, if we plot this Ra we would get curves similar to Rv and Rd and here also when the 

frequency ratio is near 1, the value of Ra is much higher than 1 and again it will depend 

upon the value of the damping. When the frequency ratio is smaller than 1, the Ra will 

have values very close to 0 and when the frequency ratio is much higher than 1, the value 

of Ra will converge to 1. So, the behavior of Ra and Rv away from 1 is different from 

Rd. So, in the case of Rd, when frequency ratio was close to 0; Rd was equal to one, but 

Rv and Ra becomes equals to 0 when the frequency ratio is close to 0. And when the 

frequency ratio is much higher Rv is equal to 0 similar to Rd, but Ra converges to 1. 
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Now, let us understand resonance in damped systems. So, in undamped systems we have 

seen that at resonance the response becomes unbounded, the response increases in each 

cycle and that happened when the forcing frequency is equal to the natural frequency. 

So, in damped systems the response will never be unbounded. So, because of damping it 

will be bounded. So, we can say that the resonance occurs when the response is 

maximum. The response is maximum when the forcing frequency is near natural 

frequency, it need not be equal to natural frequency. 

So, the resonance frequency can be defined as the forcing frequency at which the largest 

response amplitude occurs. The forcing frequency will be different for the displacement, 

velocity and acceleration responses and the resonant response will be equal to the 



maximum response for displacement velocity and acceleration and that will be when the 

value of Rd, Rv and Ra are maximum. 

So, we can calculate the value of resonant frequency and resonance amplitude by 

maximizing the expressions for Rd, Rv and Ra. So, how will you find the maximum 

value of a function? We can differentiate it with respect to the variable here, in the case 

we can differentiate the expressions for Rd, Rv and Ra with respect to the forcing 

frequency and we can equate it to 0 and that would correspond to the maxima or minima 

and we can find out the second derivative of Rd, Rv and Ra. And when the second 

derivative is negative that indicates a maxima. So, we can differentiate the expressions 

for this and calculate the maximum value of Rd, Rv and Ra and they are equal to these. 

So, the maximum value of Rd is equal to 1 by 2 zeta square root of 1 minus zeta square 

and this happens when the forcing frequency is a little less than the natural frequency. 

So, the resonant frequency for the displacement response is omega n multiplied by 1 

minus 2 zeta square and for velocity response the maximum response factor is 1 by 2 

zeta and this happens when the forcing frequency is equal to the natural frequency.  

Similarly we can calculate the resonance response for acceleration. So, at resonance, the 

acceleration response factor would be equal to 1 by 2 zeta square root of 1 minus zeta 

square and this happens when the forcing frequency is equal to omega n divided by 

square root of one minus 2 zeta square. So, this is little higher than omega n. 

So, now we can see that the resonant frequency for displacement velocity and 

acceleration are slightly different from each other. When the damping ratio is very small, 

these values under the square root will become equal to 1. So, in that case the resonant 

frequency would be equal to omega n that is when the damping is very very small and 

when the damping is very small, Rd, Rv and Ra all of them will be equal to 1 by 2 zeta 

because this zeta squared term will vanish when zeta is very very small. 
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Now, we will understand a property of the frequency response curve called half power 

bandwidth. So, this is the frequency response curve for the displacement. So, this is the 

displacement response factor Rd and it is plotted against the frequency ratio. 

So, we know that at resonance, this curve has the maximum value. So, this corresponds 

to the resonant amplitude. Now we can find out two frequencies on either side of this 

resonant frequency where the amplitude is equal to 1 by root 2 of the resonant amplitude 

and we can prove that the difference between these frequencies these frequency ratios is 

equal to 2 zeta. So; that means, omega b minus omega a by omega n is equal to 2 zeta 

and this is called half power bandwidth because the power in a system is proportional to 

the square of its displacement. So, here these frequencies correspond to one by root 2 of 

the displacement amplitude. 

So, the power is correspond to half that of the power at resonance. So, this is called half 

power bandwidth. So, if we can measure this half power bandwidth, we can calculate the 

value of the damping ratio as omega b minus omega a by 2 omega n. This can be 

expressed in terms of the cyclic frequencies as well. So, the zeta can be expressed as fb 

minus fa by 2 fn where f corresponds to the cyclic frequency that is omega divided by 2 

pi. 
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To understand the dynamic properties of structures we often test full scale structures 

using some harmonic excitation. So, to do that, we need to generate harmonic forces and 

now we will explore the working of a basic vibration generator. 

So, this vibration generator will have 2 masses which are of equal mass and they are 

placed at some eccentricity a from the center and these two masses rotate in opposite 

directions with some angular velocity omega. So, this will be rotating in clockwise 

direction and this will be rotating in anti clockwise direction. At time t, the eccentric 

masses would have moved by an angle equal to omega t. So, a force will act on each of 

the eccentric masses towards the center by the amount half me e omega square. The 

horizontal component of both of these forces will cancel out each other and the vertical 

forces remains. 

So, the vertical component will be equivalent to me e omega square sin omega t that is 

the sum of the vertical components of both these forces. So, this system will exert a 

harmonic force which is equal to this much to a structure which is attached to this 

vibration generator. So, if we compare it with our normal expression for the force. So, 

the p naught is equal to me e omega square. So, this will exert a force whose amplitude is 

equal to the eccentric mass times the eccentricity times omega square. So, we can use 

this and find out the response for a full scale structure. To test a full scale structure we 



can run the vibration generator at different values of omega and measure the response of 

that structure. 
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So, from the measured responses we can plot a curve like this. So, the x axis will be the 

forcing frequency for different values of forcing frequency, we will have the response of 

the structure. So, from this we can find out the maximum response. As we have seen it 

earlier when the damping is very less the resonant frequency is equal to the natural 

frequency. So, we can find the frequency corresponding to this maximum response, we 

can consider it as the natural frequency and the damping ratio of the structure can be 

calculated using the property of half power bandwidth. 

So, we can find out the resonant amplitude and we can find out 1 by root 2 times the 

resonant amplitude and we can calculate fb minus fa divided by 2 fn and that would be 

equal to zeta. So, using harmonic test we can calculate the damping ratio and the natural 

frequency of the structure. 
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Now, let us understand the force transmitted from a vibrating system to its support and 

this information will be used in designing the vibration isolation systems. So, we have a 

single degree of freedom system and it is acted by a harmonic force equal to p naught sin 

omega t. So, we have to find out the force transmitted to the support and this force will 

be equal to the force in the spring plus the force in this damper. So, the transmitted force 

to the base is equal to spring force plus damping force. So, which is equal to k that is the 

stiffness times the displacement response plus the damping coefficient times the velocity 

response. 

So, that is equal to this value that is p naught by k multiplied by Rd that is the 

deformation factor; deformation response factor multiplied by k sin omega t minus phi 

plus c omega cos omega t minus phi. So, the amplitude of this force can be calculated as 

p naught by k Rd times square root of k square plus c square omega square. So, that 

would be the amplitude of the force transmitted to the support.  

So, we can find out the ratio of the amplitudes of the transmitted force to the amplitude 

of the applied force and that would be equal to R d times square root of 1 plus 2 zeta 

omega by omega n the whole square you will get this term from this if you divide this by 

k you will get this. 

So, this ratio is known as the transmissibility. So, the transmissibility is equal to Rd 

times this term and we know Rd is equal to 1 by square root of 1 minus frequency ratio 



square the whole square plus 2 zeta frequency ratio the whole square. So, we can write 

the expression for transmissibility as this. 

  =  
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So, if you plot that relation the transmissibility versus frequency ratio, you will get 

curves like this. So, each curve will correspond to a different value of damping. So, as in 

the case of deformation response factors the highest peak at frequency ratio is equal to 

one will be for the lowest damping value, when the frequency ratio is much less than 1 

the transmissibility is equal to 1. 

So; that means, the applied force is transmitted to the support as it is. The vibration is not 

at all isolated in this case and when the frequency ratio is close to one the transmissibility 

is higher than one; that means, the transmitted force is more than the applied force. So, 

instead of isolating the vibration an amplification of vibration is happening when the 

frequency ratio is higher than root 2 the transmissibility is less than one; that means, the 

transmitted force is less than the applied force; that means, vibration isolation is 

happening when frequency ratio is more than root 2 and the relationship between 

transmissibility and damping also changes when the damping ratio is higher than root 

two. 



So, when the damping ratio is close to one the transmissibility was low if the damping 

was high. So, the highest peak was corresponding to the lowest value of damping, but 

after frequency ratio is equal to root 2 this relationship changes. So, beyond root 2 the 

transmissibility is high for higher value of damping the transmissibility is smallest for the 

smallest value of damping. 
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Now, let us see how ground motion is transmitted to a structure. So, we have this single 

degree of freedom structure with some stiffness and damping and it has a mass m and at 

the support a ground acceleration equal to x double dot g naught sin omega t is acting. 

So, this ground vibration will be transmitted to the system and we will find how that 

transmissibility is. So, the effective force acting on the structure because of this base 

acceleration would be equal to minus m multiplied by this ground acceleration. 

So, this is minus m x double dot g naught sin omega t and the displacement response due 

to this effective force can be found out like this, it will be minus m acceleration 

amplitude divided by k Rd times sin omega t minus phi and the acceleration of this mass 

the total acceleration of this mass will be the sum of the ground acceleration plus the 

acceleration of this mass that is the acceleration of this mass relative to the support. So, 

the total acceleration will be the sum of these two.  

So, we can find the ratio of the total acceleration of this mass to the ground acceleration 

amplitude. So, and that can be calculated as from this expression it would be equal to Rd 



times square root of one plus 2 zeta frequency ratio square, this is similar to the force 

transmissibility which we have seen earlier. 

So, the transmissibility here is the ratio of the amplitude of acceleration of this mass 

divided by the ground acceleration amplitude and that would be equal to this which is 

exactly same as the force transmissibility we have seen earlier. 

  =  
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So, here also the nature of transmissibility is similar to the force transmissibility. So, if 

we have to isolate a structure from ground acceleration, we have to make sure that the 

frequency ratio is higher than root 2 and when the frequency ratio is higher than root 2 

the transmissibility is proportional to the damping; that means, if the damping is less, the 

transmissibility will also be less. So, if you have to isolate ground acceleration, we need 

to have  a support with very less damping. This concludes our discussion on harmonic 

vibrations of viscously damped systems in the next lecture we will solve some examples. 


