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In the previous lesson, we learned about undamped free vibrations; in this lesson we will 

be learning about Damped Free Vibration. So, what is damping? Earlier, we have seen 

that when a structure is under free vibration its amplitude reduces with time and 

eventually the structure will go to rest. And, this property of a structure which makes its 

vibration diminishes in amplitude with time is known as damping. And, this damping is 

an energy dissipation mechanism in the structure. 

Now, let us see some of the sources of damping. Every material will dissipate some 

energy when it is under strain. So, when a structure is under repeated straining it will 

dissipate some energy. Then we have friction at joints, which is another form of energy 

dissipation and when a structure is getting strained some temperature is also developed. 

So, that will also cause some energy dissipation. And, when a structure is vibrating 

sometimes sound is produced, so, that will also cause some energy to dissipate.  



So, all these mechanisms will take away some energy from the system and in some 

structures, there will be additional damping devices installed. So, these devices will be 

designed in order to absorb some energy when that structure is under vibration. For 

example, damping devices are installed in structures to save it from earthquake loading. 

It is difficult to model all these damping mechanisms in a structure. So, often we assume 

an equivalent viscous damping model to represent the energy dissipation in a structure. 

So, in viscous damping it is assumed that the damping force is proportional to the 

velocity of the structure. So, the damping force can be calculated as c which is a 

damping coefficient multiplied by the velocity. So, the energy dissipation due to the 

model represented like this is equivalent to the energy dissipated in the actual structure. 
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Now, let us look at viscously damped free vibrations. These types of vibrating systems 

can be represented like this. The system will have spring with some stiffness and a mass 

and it will also have a viscous damper with a damping coefficient is equal to c. So, this is 

the equation of motion of this system it is like mx double dot plus cx dot plus kx is equal 

to 0; c as we have mentioned is the damping coefficient and this is a measure of energy 

dissipated in one cycle of free vibration. So, the energy dissipated when the structure 

makes one cycle of vibration is represented by c. 

 

                                                           



Now, we can rearrange this equation of motion like this just by dividing it by the mass 

and we know that k by m is equal to omega n square that is square of natural frequency.  

 

Now, we can define a critical damping coefficient c cr is equal to 2m omega n. So, this 

quantity is called as critical damping coefficient. We will explain the physical meaning 

of it later. Since omega n is equal to root of k by m we can write it like this 2m omega n 

is equal to 2 square root of km and we can also write it like this 2k by omega n. 

 

So, we just defined a quantity called critical damping coefficient. Now, we can define a 

damping ratio zeta is equal to c by c critical; that means, this damping ratio is a ratio of 

the damping present in the system to the critical damping. And, as you can see here the 

critical damping depends only upon the structural properties, the mass and stiffness 

because omega n depends only upon stiffness and mass.  

So, the critical damping coefficient will also depend only upon the system properties. So, 

this damping ratio is the ratio of the damping present in the system to the critical 

damping. Now, we can rewrite this equation of motion in terms of zeta. So, we have x 

double dot plus 2 zeta omega n x dot plus omega n square x is equal to 0. 
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Depending upon the value of zeta the damping in a structure can be classified into three. 

So, if the value of zeta is greater than 1, that means, the damping is more than the critical 

damping value that type of damping is called over damping. And, when zeta is equal to 

1, the structure is under critical damping; that means, the damping coefficient is equal to 

the critical damping which is equal to mass multiplied by natural frequency. And, when 

the value of zeta is less than 1, that type of damping is called under damping. So, in that 

case the damping coefficient will be less than 2m omega n. 
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Now, we will solve the equation of motion of viscously damped free vibrations. So, this 

is a free vibration. So, the force is equal to 0 and we also have initial conditions we know 

the initial displacement and initial velocity. So, this equation of motion, this is a second 

order linear differential equation, homogeneous linear differential equation with constant 

coefficients.  

                                                           

So, as we did in our undamped free vibration solution, we know that this equation has a 

solution of the form x is equal to e to the power st, so that means, we can substitute this 

in this equation and the identity will hold. So, when we substitute this function in our 

equation of motion, we get this and we can take this characteristic equation and solve for 

s. So, we know that for non-trivial solutions this part of the equation should be 0. So, this 

is the characteristic equation, we can solve this. So, we can solve this for different values 



of zeta. When zeta is greater than 1, that is, if the system is over damped, we get two 

values of s that is s 1 and s 2 which is equal to omega n multiplied by minus zeta plus or 

minus square root of zeta square minus 1. 

 

So, these are two real values. So, we have two real roots for this characteristic equation. 

So, we can write our general solution of this equation of motion as x of t is equal to 

linear combination of e to the power st; so, the linear combination of e to the power s 1 t 

plus e to the power s 2 t. So, if you substitute the value of s 1 and s 2 we get this.  

 

 

So, if you look at this equation closely, we can see that this value in the bracket this 

value this is a positive value because zeta is greater than 1. So, this entire value will be 

positive and same here also value inside the bracket is positive. So, since this is positive 

the exponential function this exponent is negative. So, these two terms are exponentially 

decaying terms. 

So, that means, our response our displacement response of this viscously damped free 

vibration is sum of two exponentially decaying terms. And, as we have discussed earlier 

the constant in this differential equation solution can be calculated using our initial 

conditions. So, we have done this use in the free vibration example, undamped free 

vibration example. So, here also we can substitute the value of initial conditions and 

solve for A 1 and A 2. So, that will complete our solution. 

Now, let us see how this solution will look like. We have already discussed that it will be 

the sum of two exponentially decaying terms. So, this is how our solution will look like, 

so it is an exponentially decaying function. It starts with a high value and it decays faster, 

mathematically this reaches 0 at time is equal to infinity. So, practically that means, this 

response is 0 after a long time. 



So, what does this behavior signifies? It says that an over damped system will not 

oscillate; that means, this curve this curve will never cross this x-axis. So, after we give 

this initial displacement or initial velocity, this system will go back to its original 

equilibrium position slowly and stays there. It does not oscillate this type of damping is 

used in door closers, automatic door closers. 
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Now, let us see the solution of the critically damped system. So, here we have damping 

ratio is equal to 1 that is the system is critically damped. So, now, let us see how the 

solution will look like. So, here we can solve this equation and when zeta is equal to 1, 

we get the solution to s as minus omega n; that means, we get a single real value 

solution. So, for these types of problems the general solution as given by x t is equal to A 

1 plus A 2 t multiplied by e to the power st. So, here s is minus omega n. So, here we 

know that this is an exponentially decaying term. So, we will get behavior similar to the 

previous one the over damped system because of this function. 

 

  

Now, let us look at this part of this solution. So, this is an equation of a straight line. So, 

if your constants which we can find out using our initial conditions if this A 1 and A 2 

are in such a way that this equation can be equal to 0 once. So, if the value of t is equal to 



this much this can become 0 and the x will have a solution equal to 0. So, this will 

happen only once because it is a straight line and it will cross the x-axis only once. We 

can calculate these constants A 1 and A 2 by you make use of the initial conditions. 

So, now, let us look at the nature of the solution. So, this equation can have two types of 

behaviors depending upon the values of A 1 and A 2. The first one is similar to the over 

damped condition. So, from the initial displacement position it directly goes back to the 

equilibrium position and stays there that is the behavior we have also seen used in over 

damped system. The other one is when this part becomes zero; that means, this crosses 

the x-axis once and then comes back to the equilibrium position and stays there. So, this 

critical damped system can oscillate once. 

So, these types of systems are used in designing weighing scales, where when a weight is 

put on the scale it deflects and when the weight is removed it goes back to the original 

position. So, those to design those systems we consider critically damped conditions. 

(Refer Slide Time: 14:00) 

 

Now, we will look at the solutions of under damped systems; that means, damping ratio 

is less than 1. So, in all engineering structures in civil engineering structures this 

condition applies. For all the buildings and other structures, we will have damping ratio 

much less than 1. So, now, let us look at the solution of these type of vibrations. As we 

did earlier, we can formulate the characteristic equation and then we can solve this 



characteristic equation. So, here when the value of zeta is less than 1, we will get two 

solutions for s, they are complex conjugates. 

                                 = 0 

 

So, s 1 and s 2 are equal to omega n multiplied by minus zeta plus or minus i square root 

of 1 minus zeta square. So, we know that the general solution of this differential equation 

is the linear combination of e to the power s 1 t and e to the power s 2 t. So, we can 

substitute these values here and here we define that this omega n square root of 1 minus 

zeta square is equal to omega d. So, that is the damped natural frequency of this system. 

So, our equation will look like this after the substitution. Here as we did in the undamped 

system, we can write this e to the power i omega D t terms in sine and cosines. 

 

                      

 

  

So, we can make that substitution based on Euler’s equation and we can write the 

complete solution as e to the power minus zeta omega n t multiplied by A cos omega D t 

plus B sine omega D t; here omega D as we have defined it is omega n that is the natural 

frequency multiplied by square root of 1 minus zeta square. And, so, this part of the 

equation is similar to the undamped vibration except the fact that we have omega D 

instead of omega n, but we have an exponentially decaying function multiplied to it. So, 

that will depend upon the damping ratio and the natural frequency. 

Here also we can calculate the constants A and B from the initial conditions. So, we can 

substitute the initial velocity and initial displacement. Calculate solve for A and B, so, 

we can find A is equal to x 0 which is the initial displacement and B is equal to this 

much, initial velocity plus zeta damping ratio omega n and initial displacement divided 

by omega D. So, if we look at it if we can set zeta is equal to 0, this part will become 0, 

sorry, this part will become 1 and omega D will become omega n zeta is equal to 0. So, if 

zeta is equal to 0, this will converge to the undamped free vibration response. 



=                 

 

So, now let us see how the response will look like. This is a sample response. so, the 

system will vibrate. So, this is the x-axis. So, it will vibrate about its equilibrium position 

and eventually the vibration amplitude will reduce and eventually it will go to rest. This 

is similar to what we have seen in the case of a cantilever under free vibration. The 

cantilever was vibrating and the amplitude of vibration was reducing at each cycle and 

eventually the displacement became 0. 
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Now, let us see the response of damped free vibrations at different values of damping. 

So, this is the solution. So, if we take only this part, this is similar to the undamped free 

vibrations, but the frequency is different instead of omega n we have omega D here. So, 

the time period, the natural period is also different. So, this is the period for the damped 

system so, but the behavior is similar to the undamped vibration. So, this part of the 

solution this does not decay in time. The amplitude is constant throughout the time, but 

when you look at the complete solution a solution looks like this 

} 

 =                             =   



This plot is for a damping ratio of 2 percent that is zeta is equal to 0.02. So, this is how 

the responses is. So, the amplitude value of the peaks decay with time and the equation 

of this envelope curve is given by rho e to the power minus zeta omega n t. So, this is 

similar to the, this function and this rho can be calculated like this is square root of this 

constant a square plus b square. So, this depend upon the initial conditions and the 

system parameters omega n and omega D. So, this is the solution when zeta is equal to 

0.02; that means, when we have 2 percent damping in the system. 

So, let us see what happens when the damping is increased. So, when the damping is 

increasing when the damping is 5 percent, the decay is more faster. Earlier it was this it 

was decaying slowly, now it is decaying faster. So, when we increase the value of 

damping this the decay becomes faster still. So, this is when damping is 10 percent. 
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And, when damping is 20 percent it decays much more faster. So, there are only a few 

cycles remaining before the system comes back to its equilibrium position. 
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Let us find the period and frequency of an under damped system. So, this is the 

displacement response of an under damped system under free vibration. So, the initial 

displacement and the slope are corresponding to the initial conditions given to the 

system. The natural period of this damped free vibration will be different from that of the 

undamped free vibrations. So, this damped natural period can be calculated like this. 

This will be equal to the natural period divided by square root of 1 minus zeta square. 

Since for undamped systems zeta is less than 1, so, we have T D greater than T n; that 

means, the period of this damned vibrations will be greater than that of the undamped 

response. 

The natural frequency of damped vibration can be calculated like this is the natural 

frequency multiplied by square root of one minus zeta square. So, the damped natural 

frequency will be less than that of the undamped natural frequency. So, in a way we can 

say that the effect of damping is making the system a little bit more flexible, that is 

omega D the natural frequency is decreasing when damping is applied. 
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Now, let us see how the responses decay with time. So, this is the equation of the 

displacement response in under damped system.  

} 

The amplitude of this response decays in time because of the affect damping. So, let us 

calculate how much is the decay in one cycle. So, we know that the response at time t is 

this. So, we can calculate the response at time t plus T D, where T D is the natural period 

of this damped system. So, this cos and sine terms are periodic. So, this part of the 

equation will be seen at t plus T D also. So, cos omega D t will be equal to cos omega D 

t plus T D. 

  =  

So, this part of the equation will be same at t plus T D as well. So, the only change is 

here. So, we can write the ratio x t by x t plus T D is equal to e raised to zeta omega n T 

D we can rewrite this we can expand this value of T D. So, we will get e to the power 2 

pi zeta by 1 minus zeta square under root 1 minus zeta square. So, now, we can take 

logarithm at right hand side and left-hand side. So, we say logarithm of this ratio is equal 

to zeta omega n T D which is equal to 2 pi zeta by 1 minus zeta square. 



δ = ln =    

So, if the value of zeta is very small; that means, this quantity is equal to 1, in that case 

we can say that this quantity is approximately equal to 2 pi zeta and this quantity is 

known as logarithmic decrement. So, logarithmic decrement is the logarithm natural 

logarithm of the responses at two consecutive peaks. So, this plot shows the variation of 

logarithmic decrement with respect to zeta, the damping ratio.  

So, as you can see this blue line shows the exact value of logarithmic decrement which is 

2 pi zeta divided by square root of 1 minus zeta square and this straight line is the 

approximate value of the logarithmic decrement which is 2 pi zeta. As we can see here 

for lower values of zeta these are equal. So, for say if zeta is less than 0.2 we can 

calculate logarithmic decrement using this approximate value itself because the 

approximate and the exact values are same for lower values of zeta. 
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Now, let us see how damping in the system can be measured from it is free vibrations. 

So, this is a free vibration response of an under damped system we can measure the value 

of the displacement at each of these peaks. So, now, the decay in displacement in a single 

cycle can be represented like this, that is the ratio of the peak at the displacement at one 

of the peaks divided by the displacement at the next peak. So, this ratio is equal to e to 

the power logarithmic decrement; we just defined logarithmic decrement in the previous 

slide. 



So, similarly you can also we can also calculate the decay in a few number of cycles; that 

means, you can divide the displacement at one peak by displacement after j cycles. So, if 

j is equal to 4, we can this ratio will become u 1 by u 5. So, we can equate that to e to the 

power j delta which is logarithmic decrement. So, you can calculate this ratio from the 

free vibration response and you can take the logarithm of this and divide it by j and we 

can calculate the logarithmic decrement and we know that the logarithmic decrement is 

approximately equal to 2 pi zeta. So, using this relation you can calculate zeta as 1 by 2 

pi j logarithm of the ratio of the peaks. 

So, j indicates the number of cycles we are considering if we are just considering one 

single cycle then you can just divide this displacement by this displacement and use this. 

So, this zeta or the damping ratio can be calculated using the displacement time history 

as well as the acceleration time history.  

So, in all practical situations measuring acceleration is easier than measuring 

displacement. So, for a real structure the acceleration time history will be more available. 

So, we can calculate the damping using the acceleration time history also. The procedure 

is just the same, just calculate the ratio of the peaks, take logarithm and divided by 2 pi j 

you will get the damping ratio. So, this is how we measure the damping of a system 

using its free vibrations. 
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Now, let us see how energy dissipation is done in a viscous damping system. So, energy 

dissipated in viscous damping is equal to the integral of the damping force dx right. So, 

so this gives the energy, this dimension is that of energy. This integral is equal to if you 

integrate from 0 to the time t cu dot that is what f D is. So, f D is equal to cu dot and dx 

is equal to u dot dt. So, if you integrate this, we will get how much energy is dissipated 

by the time t. So, we discussed that in free vibration initially we are disturbing the 

system. 

=  dt 

So, when we are disturbing the system, we are giving an input energy to the system. So, 

that input energy which was received at the beginning is getting dissipated because of 

damping. So, as time increases the dissipation also increases and after some time the all 

energy is being dissipated. So, that is when the vibration stops. So, that is when the 

system comes back to its equilibrium position and stays there. 


