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Lecture – 11 

Energy and Damping 

 

Welcome back to the Structural Dynamics course. In the last few lectures we have been 

learning about harmonic vibrations, that is the vibrations of a single degree of freedom 

system under harmonic forces. In the last week we also saw that, any periodic force can 

be represented in terms of multiple harmonic forces. So, a response to a periodic force of 

a linear system is equal to the sum of the responses to it is harmonics. Now, let us see 

how energy is balanced during harmonic vibrations. 
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Now, let us see the energy input to a single degree of freedom system under harmonic 

force. This is the equation of motion of a single degree of freedom system; we have mass 

damping and stiffness. So, this is the spring force, this is the damping force, this is the 

inertia force and the sum is equal to the harmonic force acting on the system.  

 

 



We also learned that this system has two types of response, transient response and steady 

state response. Transient response decays in time so, after some time only steady state 

response will be dominant and the steady state response is equal to x naught sin omega t 

minus phi. So, we learnt the expression for x naught that is the amplitude of the steady 

state response. So, we have derived this expression and this p naught by k is equivalent 

to the static response that is if this force was a static force the response would have been 

p naught by k that is force by stiffness. 

                                x(t) = x0                      

                                                                                             𝜙 =  

So, this p naught by k is the static response of the system and if you multiply it with this 

factor which is called dynamic response factor we will get the amplitude of this steady 

state response. And, the value of phi was derived as this 2 zeta frequency ratio divided 

by 1 minus frequency ratio square, this we have derived in our previous lectures. So, we 

can calculate the value of the steady state amplitude. 

 Now, let us look at the energy inputted to the system by this harmonic force. So, the 

energy input to the system in one cycle of the steady state response, by this applied force 

is equal to integral p t dx p t is this force and dx is the infinitesimal displacement of the 

system. So, if you integrate p t dx you will get the energy. And, we know that x dot is dx 

by dt. So, dx can be written as x dot dt. 

         / ,     

So, our energy will become integral 0 to 2 phi by omega that is equivalent to one cycle p 

t x dot dt. So, we can substitute the values p t is equal to p naught sin omega t and x we 

know we can differentiate this and get x dot that is the velocity. So, that would be omega 

x naught cos omega t minus phi and dt. So, if you can integrate this you will get the 

energy. 

So, if you integrate this we would get pi p naught x naught sin phi. And, we know that 

phi is tan inverse this ratio. So, we can find out what is the expression for sin phi? So, tan 

phi is 2 zeta this ratio divided by 1 minus frequency ratio square. So, we can calculate sin 

phi is equal to denominator will be square root sum of squares of these two terms and the 



numerator would be 2 zeta omega by omega n. And, we can simplify this we know that x 

naught divided by p naught by k is this expression. 

                                                                     

                                                                       

                                                                       

                                                                 

So, we can substitute that and we would get sin phi is equal to 2 zeta omega by omega n 

x naught by p naught by k. So, this we can substitute in the expression for energy and 

you will get the expression for energy as 2 pi zeta omega by omega naught k x naught 

square. Now, let us see how much is the potential and kinetic energy in one cycle of the 

steady state motion. 

                                                         

                                                                   =    
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So, potential energy is equal to the strain energy of the system. So, that is equal to 

integral fs dx fs is the spring force. We know that this fs is equal to k times x where, k is 

the stiffness of the spring and x is the displacement and x dot is the velocity dx is equal 

to x dot dt. So, we can integrate it over one cycle that is from 0 to 2 pi by omega.  

                                                                    
                                                                                     

                                                                    

So, we can substitute the value of x that is the displacement and the velocity and we will 

get this expression, we can integrate it to get the total strain energy in one cycle. As you 

can see this expression is a product of a sin and a cos. So, if you multiply the sin function 

and this cos function and integrate it over one cycle it would become 0. So, the total 

strain energy in one cycle of the steady state motion is equal to 0. 

So, now let us calculate the kinetic energy in one cycle. So, the kinetic energy would be 

integral the inertia force dx. And, we know that this inertia force is equal to mass times 

acceleration and dx is x dot dt. If, we substitute the value of acceleration and velocity we 

would get this this expression for acceleration, we would get if we differentiate this 

expression for displacement twice and this is the velocity. 

                                                     

                                                             

And, this is again product of sin and cos terms. So, if you integrate this over a cycle this 

integral will become equal to 0. So, the total strain energy and the total kinetic energy in 

one cycle of the steady state motion is equal to 0. So, this means energy is transferring 

from potential and kinetic energy during the vibration, but the total energy in a cycle is 0. 
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Now, let us see the energy dissipated because of damping. So, if we consider discuss 

damping, this is the equation of motion and we know the expression for steady state 

response. 

 

x(t) = x0               

                              𝜙 =  

 The energy dissipation in one cycle due to this viscous damping is equal to integral f D 

dx. And, f D is the damping force and that is equal to c that is the damping coefficient 

multiplied by the velocity. And, so, this energy dissipated due to damping is equal to 

integral 0 to 2 pi by omega c x dot x dot dt. 

                    / ,     

So, we can substitute the expression for the velocity and we would get this and if we 

integrate this we would get pi c omega x naught square. And, we know that the 

coefficient of damping c can be expressed in terms of the damping ratio zeta and so, if 

you substitute the value of c in terms of zeta you would get this expression 2 pi zeta 

omega by omega n k x naught square. And, this is equal to the energy input due to this 

harmonic force. So, this is the expression of the energy input we have derived earlier. 



                                       

                                    𝜉   =   Energy input 
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Now, based on the energy input and the energy dissipation, we will try to understand the 

displacement growth of a single degree of freedom system, when the forcing frequency 

of the harmonic force is equal to the natural frequency. That is when omega is equal to 

omega n and phi is equal to 90 degree. So, we have learnt earlier that for an undamped 

system, when omega is equal to omega n the displacement will keep on increase with 

time that is the displacement will increase unboundedly. But, in damped systems, 

because of the damping present in the system at omega is equal to omega n the 

displacement will not increase unboundedly.  

The displacement will grow until a steady state and after that the displacement amplitude 

is constant throughout the time. So, now, let us understand how damping is helping to 

have a bounded response at omega is equal to omega n. So, the input energy in the 

system, when omega is equal to omega n and phi is equal to 90 degree is equal to this pi 

p naught x naught where x naught is the steady state amplitude of the system. So, from 

this expression we know that this energy input varies linearly with the displacement and 

this is the dissipated energy. 



So, when omega is equal to omega n the dissipated energy will be equal to this and we 

can see that the energy dissipated is proportional to x naught square; that means, this 

varies quadratically with the displacement. Now, let us plot these two expressions. So, E 

I varies linearly with x naught. So, this is the displacement amplitude in the x axis and 

we have energy in the y axis. So, this E I is a linear and the energy dissipated is it varies 

quadratically. So, this is the curve for the red one is the curve for the dissipated energy. 

So, when the amplitude is very low the dissipated energy will also be very low, this 

increases quadratically. So, when the amplitude is low the input energy will be higher 

than the dissipated energy. So, the energy in the system is high. So, it will vibrate more 

so; that means, the displacement will grow. As the displacement grows the dissipated 

energy keeps on increasing quadratically, the rate of increase in the dissipated energy is 

more than, the rate of increase in the input energy. 

So, at amplitude is equal to x naught that is the steady state amplitude both the energies 

become equal. So, at steady state, input energy is equal to the dissipated energy. So, if 

the amplitude increases beyond x naught, that is beyond the steady state, then the 

dissipated energy would have been more than the input energy. So, if the displacement 

increases beyond x naught more energy will be dissipated so; that means, the amplitude 

will come down. 

So, when the amplitude goes below the steady state again the input energy will be more. 

So, that amplitude will tend to increase. So, the amplitude of the damped system will be 

bounded at this steady state. So, because of the damping present in the system, the 

amplitude of the damp system remains bounded when omega is equal to omega n. It 

would not keep on increasing, because after the steady state, if the amplitude becomes 

more than the steady state, the dissipated energy will be more than the input energy, that 

will force the amplitude to reduce. And, when omega is equal to omega n the steady state 

response can be written as p naught by c omega n. 

 

So, this we can find out from the expression of the amp steady state amplitude we have 

calculated earlier. 
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Now, let us understand, how the damping force is related to the displacement. So, we 

know that the damping force is equal to c x dot that is damping coefficient times 

velocity. So, we can substitute the steady state velocity and this cos function can be 

written in terms of sin function. So, we can write this like this. So, this is the 

displacement at any time t. So, that is x t square. 

                                                                  

 

                    

                                                               

So, the damping force is equal to c omega square root of x naught square minus x t 

square, x naught is the steady state amplitude, displacement amplitude and x t is the 

displacement at any time t. So, if you square this expression, we can rearrange it in this 

fashion.  

 

 



So, this is an equation of an ellipse with it is major axis as x naught and minor axis as c 

omega x naught. And, the area of this ellipse is equal to pi times major axis and minor 

axis. So, pi c omega x naught square is the area of the ellipse. 

So, let us plot the ellipse. So, this is how the function the damping force looks like. So, x 

axis is the displacement and y axis is the damping force. So, this damping force is a 

double valued function. So, for each value of x this will have 2 values, when the velocity 

is positive the damping force is positive and when the velocity is negative the damping 

force is also negative. Now, let us see how damping and the spring force varies with 

displacement. So, we know that the spring force is equal to k x and the damping force is 

same as c x dot. 

 

                                                                        

 So, the c x dot can be represented like this. So, this represents again an ellipse, but it is 

rotated and the rotation is determined by the term k x. So, this fs plus f D is represented 

by this blue ellipse. So, this is also an ellipse, but it is rotated. And, the area inside the 

ellipse will be same as the previous ellipse; because this is only get rotated. And, the area 

enclosed by this this curve that is this line k x is 0 because this is just a line. 

So, the area enclosed by that is 0 and the area inside this ellipses same as the previous 

ellipse. This force displacement curve is also known as hysteresis loop and the area of 

this loop will be proportional to the forcing frequency. So, if the forcing frequency is 

high the area enclosed, that is the energy dissipated will also be high. 
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Now, let us look at some properties of this hysteresis loop associated with viscous 

damping. So, this is the loop we just saw energy dissipated by the damping force that is 

the viscous damping is equal to the area inside this ellipse or the area inside this 

hysteresis loop. And, the hysteresis loop associated with viscous damping is due to the 

dynamic nature of the loading and this is called dynamic hysteresis. 

So, this particular force deformation behavior is due to the dynamic nature of the 

loading. And, this hysteresis should not be confused with the hysteresis when a cyclic 

load is acting on an inelastic material. So, when a cyclic load is acting on an inelastic 

element, then also we get some hysteresis loops and the shape of those loops will be 

different from this shape, but that will also dissipate some energy, but that will be due to 

plastic deformation. In this case in the case of dynamic hysteresis the material is elastic. 

So, even when the material is elastic some energy will be dissipated because of the 

damping action. And, this is also called hysteresis loop and this is due to dynamic 

hysteresis. And, the area inside this loop is proportional to the forcing frequency. So, if 

the forcing frequency is 0 the area will be 0; that means, this force deformation curve 

will be a single valued function. So, when will the forcing frequency is 0? So, forcing 

frequency is 0 when the force acting on the system is static. 

So, at that time the force would not be varying with time, so this frequency is 0. So, if a 

static load is acting on the system, then we will not have this dynamic hysteresis 



happening. So, at that time the force deformation relation will be a single valued 

function. 
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Now, let us use this dynamic hysteresis loop to calculate the equivalent viscous damping 

in a system. So, in the beginning we discussed that the damping in an actual structure is 

due to many different energy dissipation mechanisms. And, these mechanisms can be 

represented by an equivalent viscous damping. 

So, why do we choose viscous damping? Viscous damping is the simplest form of 

damping which can be used and the governing differential equation, if we use viscous 

damping is linear. So, it is easy to be handled. So, since this is a linear equation we can 

solve it analytically. So, the equivalent viscous damping is found out using harmonic 

test, we have already learned that using a harmonic test, we can find the half power 

bandwidth and using the half power bandwidth we can calculate the damping ratio. 

So, now we will find out how to calculate the equivalent damping using the energy 

dissipated. So, the energy dissipated by the structure during a cycle will be equal to the 

energy dissipated by the viscous damping in the cycle. So, we can equate these two and 

find out an equivalent damping ratio. So, we can do a harmonic test, we can excite the 

system using harmonic forces with different forcing frequency and we can find this 

dynamic hysteresis loop then we can measure its area. 



So, that will give us the energy dissipated. And, the strain energy of that system will be 

equal to half k x square k x is the stiffness of the spring and x naught is the amplitude. 

So, this shaded portion indicates the strain energy and this curve the area of this, area 

inside this curve indicates the energy dissipated. So, we can equate this energy dissipated 

to this expression, which we have derived earlier and we can find the zeta equivalent that 

is the viscous damping ratio equivalent to this amount of energy dissipated. So, this 

energy dissipated would be due to many different energy dissipation mechanisms, but we 

can represent it equivalently by using a viscous damping system. 

                                                                            ES0 = 1/2 k x0
2    

ED 𝜉eq =  4 𝜉 eq ES0             𝜉 eq =            𝜉 eq =       when  

So, if this expression can be written in terms of strain energy. So, that would be equal to 

4 pi zeta equivalent omega by omega n strain energy. So, from this we can calculate the 

zeta equivalent that is damping ratio equivalent as 1 by 4 pi omega by omega n 

multiplied by E D that is the area of this enclosed curve divided by the strain energy. So, 

if we do the harmonic test at resonance, then the forcing frequency is equal to the natural 

frequency, then we can calculate the damping ratio using this expression, that is when 

omega is equal to omega n. 
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Now, let us see some examples of non-viscous damping. So, the first one we are 

considering is rate independent damping. So, we have learnt that energy dissipated by a 

viscous damper is proportional to the forcing frequency omega, but some experiments on 

metallic structures showed that, the energy dissipation due to cyclic straining of a metal 

is independent of the forcing frequencies. 

So, this type of energy dissipation or this type of damping is known as a rate independent 

damping, because it is independent of the frequencies. And, this damping is also known 

as structural damping, solid damping, and hysteresis damping. And, this damping is due 

to localized plastic deformation in the material within the elastic limit. So, this is a static 

hysteresis. So, at very localized positions plastic deformation is happening and because 

of that some energy is getting dissipated and that energy dissipation is independent of the 

forcing frequency. 

So, because of this mechanism, the damping is called rate independent damping. So, the 

damping force in this case is modeled as eta k by omega, where omega is the forcing 

frequency and it is proportional to the velocity of the system single degree of freedom 

system. So, this eta is the measure of the damping in this system. This shows the energy 

dissipation with respect to the forcing frequency in two different cases of damping. In 

viscous damping as we have learnt earlier the energy dissipation depends on the forcing 

frequency, but in the case of rate independent damping this energy dissipation does not 

depend on the forcing frequency, but these two energy dissipation becomes equal at 

omega is equal to omega n that is the forcing frequency is equal to the natural frequency. 

=  

 

So, this is the equation of motion when we consider rate independent damping. So, the 

viscous damping coefficient c is replaced by eta k by omega where omega is the forcing 

frequency. So, we know that zeta the damping ratio is equal to c by c cr where c is the 

viscous damping coefficient. So, here in this case we can replace the value of c as eta k 

by omega. So, we would get zeta is equal to eta by 2 multiplied by the frequency ratio. 

The energy dissipated due to this rate independent damping can be calculated by 

replacing the value of zeta in the expression for E D in the case of viscous damping. 



 

= π =2 π  

So, we have derived the expression of energy dissipated during viscous damping. So, in 

that expression we just need to replace the value of zeta by this. So, if you do that we 

would get the energy dissipated in independent damping as pi eta k x naught square, x 

naught is the steady state displacement amplitude. So, this can be again represented in 

terms of the strain energy in a cycle. So, that would be 2 pi eta E S naught. So, E S 

naught is equal to half k x naught square; so, this is the expression of the energy 

dissipated due to rate independent damping. 
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So, let us find out the steady state response. So, this is the expression for steady state 

response, we need to find the amplitude and the phase angle. So, the amplitude and the 

phase angle can be calculated again by replacing the value of zeta in the expression for 

viscous damping response. So, this is the amplitude of the steady state and it can be 

obtained like p 0 by k. So, this is the static response due to a constant force p naught. 

x(t)  =  x0  

                                   𝜙 =  



So, this is the static force and this is the deformation amplitude factor. And, in the case 

of rate independent damping this will become 1 by square root of 1 minus frequency 

ratio square the whole square plus eta square. So, in the case of viscous damping if you 

remember instead of eta it was 2 zeta frequency ratio. Similarly, we can calculate the 

value of phi by substituting zeta in terms of eta and we would get it as tan inverse eta by 

1 minus frequency ratio square. And, here if phi, look at it, the maximum response that is 

resonance occurs when omega is equal to omega n.  

So, when this omega is equal to omega n we get the maximum response. So, in the case 

of viscous damping the resonance used to occur when omega was slightly less than the 

natural frequency, but in the case of rate independent damping resonance occurs when 

omega is equal to the natural frequency. And, the phase angle used to be 0 when omega 

was 0 in the case of viscous damping, but in the case of rate independent damping if 

omega is equal to 0 then this phase angle phi will become tan inverse eta. So, these are 

the two differences comparing to the viscous damping. 

So, now let us see how the deformation response factor looks, when we use this rate 

independent damping? So, this is the deformation response factor that is the steady state 

amplitude divided by the static amplitude x naught by p naught by k and this is how the 

phase angle varies. So, I have plotted the values for 3 different values of eta; one is when 

there is no damping in the system that is eta is equal to 0. So, in that case when omega is 

equal to omega n the response grows unboundedly. 

So, it is very large and when eta is equal to 0.1 and 0.2 the amplification at omega by 

omega n is finite and the amplitude reduces as the damping increases. This is similar 

when we considered viscous damping also. As the damping increases the amplitude 

decreases and this is how the phi angle the phase angle changes. So, when there is no 

damping in the system, the fee angle is this it follows this curve. 

So, if omega is less than omega n the phi angle is 0 and if omega is greater than omega n 

the phase angle is 180. The variation of phase angle with respect to the frequency ratio 

changes as the damping increases. So, the green curve is for eta is equal to 0.1 and this 

black one is for eta is equal to 0.2. So, as we have discussed now when the forcing 

frequency is 0 the phase angle is not equal to 0, but it is equal to the tan inverse eta 

value. 



So, here when omega is 0 we have nonzero value of phase angle, this is the property of 

this rate independent damping. So, in the previous slide we have seen the energy 

dissipated and that is equal to pi eta k x naught square. So, using this expression we can 

calculate the equivalent viscous damping. So, what is the equivalent viscous damping 

value corresponding to the rate independent damping? So, we can represent this rate 

independent damping in terms of viscous damping. 

ED =  2 ES0 

So, to do that we have to equate the dissipated energies at omega is equal to omega n. 

This is the expression for the energy dissipated when omega is equal to omega n for rate 

independent damping. So, we can equate this to the expression of energy dissipation due 

to viscous damping. So, that is 2 pi zeta k x naught square. So, if you equate these 2 we 

can find out the equivalent value of zeta that is the equivalent viscous damping 

corresponding to the rate independent damping. 

ED 𝜉eq                         𝜉eq  

So, if we solve this we get the zeta equivalent is equal to eta by 2; that means, the effect 

or the energy dissipation due to rate independent damping can be represented by viscous 

damping, if we consider an equivalent viscous damping value and this equivalent viscous 

damping ratio is given by eta by 2. And, now we will see how this deformation response 

factor and the phase angle changes when we use this equivalent viscous damping. So, we 

have plotted the values of the deformation response factor and the phase angle using 

dotted lines. So, as you can see here both the curves are very close; that means 

approximation in using this equivalent viscous damping is very accurate. 

So, in this figure the dotted line, which is representing the response due to the equivalent 

viscous damping at a frequency, which is slightly lower than the natural frequency. And, 

when we are considering equivalent viscous damping we get phi angle is equal to 0, 

when omega is 0, but in the case of rate independent damping at omega is equal to 0 the 

phase angle will be tan inverse eta. So, we will get a non-zero value, but other than that 

the phase angle is approximate when we use this equivalent viscous damping. 

So, in the case of rate independent damping we can use viscous damping to represent this 

energy dissipation. 
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Now, let us see another example of non-viscous damping. So, this is called as coulomb 

friction damping and it is due to the friction between two surfaces. So, when this mass 

moves over the surface because of the friction there will be some energy dissipation, we 

have seen this type of damping during the free vibration case. So, in the case of harmonic 

vibration the equation of motion as this, m x double dot plus k x plus or minus F is equal 

to p t the harmonic force. 

 

Here, we know that this F is the frictional force and that is equal to the coefficient of 

friction times the normal force acting on this surface. So, in this case this could be the 

weight of this mass and the friction force is in the opposite direction of the motion of this 

mass. So, if the mass is moving towards right, the force will be acting towards left and 

when the mass is moving towards left the force will be in the right direction. 

So, because of that we have this plus or minus sign in this equation of motion. So, in 

each half cycle this sign will change. So, we had solved this equation for the free 

vibration case. So, now, we will not be solving this, but we will just examine some of the 

results. So, the energy dissipated in this friction is represented by this force displacement 

curve. So, as we discuss now when this mass is moving towards the right, the force will 

be acting in the opposite direction. So, if we consider this x to be positive when it is 



towards right. So, when the mass moves from right to left then the force will be acting 

towards right 

So, when the displacement changes from plus X naught to minus X naught the frictional 

force will be positive F and when it goes right wards when the mass goes right wards; 

that means, when the mass moves from minus X naught to X naught the friction force 

will be in the opposite direction that is minus F. So, this is the force displacement curve 

due to this friction damping. So, the energy dissipated due to this friction will be equal to 

the area enclosed in this curve and that will be 4 times F x naught. So, this is the energy 

dissipated due to friction. 
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So, we have seen that the input energy to the single degree of freedom system, due to this 

harmonic force is equal to pi p naught x naught, when omega is equal to omega n that is 

when the forcing frequency is equal to natural frequency. And, x naught is the steady 

state amplitude and we also saw that the energy dissipated by friction is equal to 4 F 

times x naught. 

 

 



So, now let us plot this expression. So, this is the energy amplitude plot and this input 

energy is linearly proportional to this amplitude and the energy dissipated due to friction 

is also linearly proportional to the amplitude. So, both these curves are linear and if the 

frictional force divided by p naught is less than pi by 4 then the input energy will be 

higher than the energy dissipated due to friction this is when omega is equal to omega n. 

So, because of this at omega is equal to omega n when this condition is satisfied the 

magnitude of the motion will be unbounded this will not be limited, because the input 

energy is more than the energy dissipated. So, if this F by p naught is higher than pi by 4 

in that case the motion of the single degree of freedom system will be bounded. So, the 

response at omega is equal to omega n will be limited if this value is greater than pi by 4, 

otherwise it will be unbounded. 

So, now let us calculate the equivalent viscous damping in the case of coulomb friction. 

So, we can equate the energy dissipated due to friction to the energy dissipated due to 

viscous damping. So, if we do that we would get zeta equivalent is equal to 2 F by pi 

frequency ratio k x naught. We can use this equivalent viscous damping to calculate the 

solution of this coulomb friction dam system approximately. And, this approximate 

solution is accurate only if this F by p naught ratio is less than pi by 4. 

𝐸𝐹 𝜉eq                𝜉eq  

So, if this friction in the system is large and if this F by p naught is higher than pi by 4 

then this approximate solution calculated using this equivalent viscous damping will be 

over. So, this gives an accurate result when the damping in the system is low. 


