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In the previous lecture, we had seen flow through confined aquifers in which there is an 
impervious layer at the bottom. It also bounded by an impervious layer at the top. It means the 
thickness of the aquifer remains constant, or in other words, it does not depend on the head. The 
piezometric head will vary if we take water out of the aquifer. It will then decrease towards the 
well but the thickness of the aquifer remains constant and therefore the flow area remains 
constant. Compared to this, the unconfined aquifer does not have any impervious confining layer 
at the top.  
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So if you look at an unconfined aquifer, there is a layer at the bottom which is impervious and 
then the ground level, the unconfined aquifer, the water table would be open and therefore the 
pressure on the top of this will be 0 or atmospheric. So once we start pumping an unconfined 
aquifer with some discharge Q, the water table will go down and it will keep on going down. We 
keep on pumping till it reaches some steady state conditions. We can notice the area of flow from 
here and earlier it did not have any pumping. The area of flow is the whole thickness of the 
aquifer. But as the cone of depression increases, the area of flow becomes smaller. The height h 
will represent the area of flow therefore the governing equations will be slightly different 
compared to the case of the confined aquifer. Let us look at the governing equation for an 
unconfined aquifer. Let us say that this is the ground water table which is having a certain slope. 
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The slope depends on the pumping rate. The higher the pumping rate, the more is the slope. This 
is the height h. We take an element which is delta x, in the x direction and delta y in the y 
direction. We then make some assumptions in order to solve this. First of all these assumptions 
were suggested by Dupuit’s and therefore they are called Dupuit’s assumptions. This enables us 
to solve unconfined aquifer flow problems. The assumptions are two. The first assumption is that 
the curvature of a stream lines is small. If you look at the stream line pattern in the unconfined 
aquifer case, they may look like this. But the first assumption says that the stream line curvature 
can be taken small and therefore the flow will essentially be horizontal. The second assumption 
is that the hydraulic gradient can be taken as the slope of the free surface. The hydraulic gradient 
will remain constant over height. So it will not be a function of z, where is the z is the vertical co 
ordinate. So if we take an element like this, the hydraulic gradient for this whole depth would be 
given by the slope of the water table and it will not change with depth. So using these two 
assumptions, we can now write the mass balance for this element.   
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We are drawing that element of the unconfined aquifer here which has a certain velocity qx. This 
velocity is coming in and therefore we determine can write the mass which is coming in through 
this case. So let us first compare the x direction inflow and outflow. The axis of course are x, y 
and z. Inflow in the x direction would occur through this phase. The velocity is qx multiplied by 
the area which will be h delta y. This gives us the amount of flow in terms of volume and since 
we are interested in the mass, we will multiply it with the mass density rho. Rho qx h delta y will 
be the mass of flow coming in from the left hand phase. There is some mass which is going out 
in the x direction from the right hand phase. We can determine that outflow, using the same 
Darcy as we used earlier, plus change of this quantity multiplied by the length delta x. If we 
consider the x direction flow from both phases, the net inflow of mass would be = – (Refer Slide 
Time: 08:28). If we look at this equation, qx can be obtained from the Darcy’s law, rho can be 
assumed to be constant. Delta y of course is the element thickness by this constant. We can write 
this equation as rho delta x, delta y, qx can be written as – k, using Darcy’s law, we will again 
assume that the aquifer is homogeneous and isotropic. So k does not change with location as well 
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as direction and therefore k can also be taken out of the differential. We can take k out of this 
and what we will be left with is del/del x of h partial h with x. We can further simplify this 
equation by noting that the h del h/del x term can be written as 1/2 partial of h square with 
respect to x.  
 
(Refer Slide Time: 10:20) 
 

 
 

If we use this, we can write the net inflow. We get the second derivative of h square. So if we 
compare this with the unconfined aquifer and confined aquifer, we see that in confined aquifer, 
we had a second derivative of h, but here we are getting second derivative of h square. This was 
in x direction. We can write similar expression for flow in the y direction. The mass inflow in the 
y direction would be in the z direction due to the Dupuit’s assumption. There is no flow 
component velocity component in the z direction. Therefore the only flow in the z direction for 
this element would occur if there is some infiltration from the ground surface. This is known as 
recharge, for example there may be a rainfall event which will cause some recharge or there may 
be a river which might be contributing to the ground water. So this recharge is generally 
expressed in terms of R, rate of recharge which tells us about the volume per unit area per unit 
time. So R has units of (for example) rainfall in density, so it will be centimeter per hour or 
millimeter per hour or centimeter per second depending on the units we are using. So this if there 
is a rainfall then typically it will be then intensity it will depend on the intensity of rain I and 
depending on how much infiltration we are getting that R will be = that infiltration. So let us say 
that there is some recharge rate R and a mass which will come in because of this recharge from 
the top. We are assuming the bottom to be impervious. There is no flow from the bottom and 
therefore the recharge which occurs would be per unit area. We have recharge rate of R, 
multiplied by the area of element which is delta x, delta y and multiplying by the mass density 
will give us the mass inflow in the z direction. 
 
After knowing the net inflow of mass into the element, what we are left with is how to find out 
the change of mass within the element and for that we will be using the specific yield. How to 
find out the change of mass within this element using a specific yield? As we have seen already, 
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specific yield is the amount of water released from storage for a unit drop of head from the prism 
of unit base area. This is the base area delta x, delta y that will have to multiply a specific yield 
with delta x, delta y.  
 
(Refer Slide Time: 14:44) 
 

 
 

So if we write the total mass inflow combing all the x, y and z direction, in the x direction this is 
the flow in the y direction, this is the flow and then as we have seen here in the z direction, rho 
R. This should be = the change of storage within the control volume which we are considering. 
Mass released or mass change would be = the specific yield, Sy area and a change of head. This 
is because a specific yield is defined as the change per unit surface, per unit area of cross section 
for a unit change in head. So we have to multiply with the area and multiply with the change in 
head. This will give us the rate of change of mass within the control volume. Continuity equation 
says that this two should be equal. We can write the equation and since there is volume, it has to 
be multiplied by the mass density. So we can combine these and write it as k/2 rho del x del y. I 
will write here and then cancel it out, so these will cancel out and the final equation which we 
did plus 2R over k would be = 2 Sy over k.  
 
This is the equation which governs the change of head with time and space change with time is 
here and change in space will be given by these two terms when it is subjected to some recharge 
R. In most cases, which we deal with, we can assume the recharge to be 0. In a confined aquifer, 
of course since there is an impervious layer at the top, unless the layer is slightly pervious there 
will be no recharge. Therefore we have not considered recharge for a confined aquifer, but 
sometimes confined aquifers, the over line layer may not be completely impermeable. It may be 
an acquitted which will allow some leakage into the confined aquifer. In that case in confined 
aquifers also we should consider the recharge. This equation needs to be solved with different 
boundary conditions and initial conditions to get the variation of h in an unconfined aquifer. We 
will take some simple cases. For example if we take steady state flow, then this term will be 0. 
Similarly if we say that there is no recharge, then this term will drop off. So in the absence of 
recharge and for steady state conditions, an equation is obtained which is similar to the equation 
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which we had for confined flow. We had a laplacian of h = 0 there. So the only difference is that 
instead of h, now we have laplacian of h square as 0 which we can solve to obtain the value of h 
at different locations. 
 
(Refer Slide Time: 19:55) 
 

 
 

Let us take an example in which similar to the confined aquifer case, which we had considered in 
ground level, let us say there are 2 water bodies in which have elevations of h1 and let us say that 
there is a length l. x is 0 here and then at certain x, we want the location of the ground water 
table, so till the confined aquifer case, we have seen that the water table was a straight line 
because h was linear. Here it will not be a straight line, so we should find out whether it is like 
this (Refer Slide Time: 21:02) or it is like this or like this. So we are interested in finding out the 
value of h at any x and to solve this problem, we can assume that there is steady state condition - 
one dimensional flow. If we assume one dimensional flow, then the equation becomes straight 
forward. What we assume is no recharge and steady state one dimensional flow. If we make 
these assumptions, the governing equation will be reduced to the following, this term will be 0, R 
is 0, this term will be 0, steady state and this term will be 0, because the flow is one dimensional. 
So we are left with this very simple equation which we can solve and obtain h square to be 
linear. These constants can be obtained from the boundary condition and in this case, the 
boundary conditions are x = 0 h is = h1 and x = l, h = h2. So you can see that C0 will be = h1 
square and C1 will be = h1 square – h2 square over L. Using these two values of C0 and C1, we 
can obtain the value of h and since h square is linear, the actual ground water table will not be 
linear and we can see the discharge Q.  
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At any location x, Q can be given as KiA, where K is the conductivity, hydraulic gradient and 
the area of flow, i in this case is del h/del x and this negative sign will be present because we are 
saying that the flow will be in the direction of decreasing head and the area of flow at any 
location, where the he height is h, if we consider unit width perpendicular to this, the width is 
perpendicular to the plane of the paper. Let us say delta y is = 1, so per unit width, the discharge 
can be given as – k del h/del x into h and this can also be written the same way we have done 
earlier for deriving the equation. We had seen that del h/del x del h/del x could be written as 1/2 
partial 1/2 h square with respect to x. Using that we can write this in terms of partial of x square 
with respect to x square and we know that from this equation, this is partial of h square with 
respect to x. We know that partial of h with respect to x is = C1 and therefore Q will be given by 
– K/2C1. If there is some recharge, here, we had assumed that recharge is = 0 and if there is 
some recharge, then we will have to add the recharge term and from this equation, this 2R/K 
term will also arrive.  
 
The equation derivation is similar but now we have to account for the recharge and in this case 
we will see that the ground water table may rise above the level h1 because there is recharge 
coming in here at the rate of R. Because of this recharge, ground water table may rise and we can 
find out the equation of this line by solving this equation with the boundary condition which are 
same x = 0. Using these 2 boundary conditions, we can obtain the value of h and if there is no 
recharge then of course – k/2C1 and C1 have already been obtained from here. 1 square – h2 
square over l, so without recharge Q will be Q/2 into C1. k/2 into h1 square – h2 the square over 
L and there is a negative sign here. C1 is – h1 square – h2 square over L and then this is the value 
of Q. With recharge, we have to add this 2R/k term and then we can solve the equation in similar 
form.  
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h square will be C0 + C1x – R/k x square and now this comes again by solving the differential 
equation which we had written here and applying the boundary conditions, we can obtain the 
value of C0. C0 will again be = h1 square, but C1 in this case will be different from the C1 which 
we had derived earlier when R was 0 in this case the C1 turns out to be – h1 square – h2 square 
till using the boundary conditions x = 0 h = h1 x = l, so Q again will be given by the same 
equation – k by 2C1 but now C1 will be a function of R. So we have k can we have have one 
square while in this case it was only h1 square – h2 square over L, here it would be h1 square – 
h2 square – R over k l square over 2L. 
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If we draw the profile of the water surface, this is the ground level. There may be a water body 
here. In practice, this may denote a river or a canal. So if we have two rivers or two canals which 
are running parallel in the unconfined aquifer, the water level in absence of recharge would look 
like this by plotting the equation and when we have recharged, the water level would look like 
this. In order to find out this equation and just by looking at this, we can see that there is a point 
here where h will be maximum and if you look at this, whatever flow is occurring on this side 
will move towards the water body on the left and similarly the ground water flow from this side 
will move towards the water body on the right, so this portion can be called a ground water 
divide. Because of the presence of a gradient in this direction, here and the gradient in this 
direction here, the ground water will flow towards one side, towards this side and towards this 
side. Therefore, this line can be thought of as dividing the ground water such that one thought 
flows in to one water body and the other in the other body. We can find out the location of this 
point also, for example the Q value is known to us. Now this may not happen in all cases. It 
depends on the rate of recharge. If the rate of recharge is small, it may not happen. It may be 
below h1 all the time. 
 
 It will depend on the rate of recharge and we can find out the critical rate of recharge at which 
the ground water divide will occur. For this we need to write the equation for Q as we done 
earlier. You can see that at the ground water divide Q will be = 0 because before that Q will be in 
the negative direction after that Q will be in the positive direction and just at the ground water 
divide Q will be = 0 and this will give us a relation between the recharge rate and the location x. 
For example when there is no recharge, we know that Q is k/2 h1 square – h2 square over l which 
is not dependent on x. If we have the recharge then Q will depend on x. There is a constant term 
Q which is the same as without the recharge. If you look at this term, this gives us the constant 
term. The second term will be with recharge, so R by k1 square and this Q will be dependent on 
x, also, 2 R / k x. If you look at this point, this line, the Q term has to be 0 on this line and 
therefore what we get is 2 R/k. Let us call this point x0. So 2R/ kx not will be space dependent 
or, a spatially variable value of Q changes with space because of the recharge. There is some 
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recharge coming in from the top and there is some flow. Let us say it is coming in from this 
water body or going into this water body. If we take any section here, the amount of flow which 
is coming in because of recharge is R into whatever delta x we have considered, so if you take Q 
at any section here and Q at a section here, the difference between these two Q's will be the 
amount of recharge coming into this from the top which is R delta x. When we look at this 
situation where we have some values of x0 – 2 R/k x0 should be = – C1. So x0 will be = k/2 R C1 
and C1 that has already been obtained is h1 square – h2 square – R/k1 square over L. We can 
write x0 as L/2, so this gives us the position of the ground water divide and for ground water 
divide to occur, x0 must be positive and therefore we can find out the critical recharge rate which 
will cause a positive x0. So for x0 to be positive, we can find out the critical recharge rate R 
should be greater than kh1 square – h2 square over L. What we have seen here is that if recharge 
is greater than this value h1 h2 l and k, they are the properties of the medium and the boundary 
conditions. If recharge rate is greater than this, then we will have a ground water divide 
otherwise we will not have a ground water divide. 
 
 (Refer Slide Time: 39:20) 
 

 
 

So for unconfined aquifer, flow between 2 water bodies, one dimensional steady state condition, 
we have derived some expressions for example, this h square using this h square, we have 
obtained as a constant value C1 and a time space dependent value 2 R/k x. When we find out the 
Q as – k/2, it will have a constant value and a time dependent value which is Rx. This is the 
contribution of the recharge up to a certain distance x. So for example, if we have this recharge R 
occurring here and there is some Q here, I will show it in the positive direction. It maybe towards 
the water body, then at any other x, it says Q here would be Q at 0 + Rx and this term Rx 
therefore represents the contribution from the recharge to the discharge. We have seen that there 
will be some point x0 at which the water table will reach a maximum value and therefore it can 
be taken as the ground water divide. The location of this point x0 can be obtained by putting Q = 
0 and since Q is = – k C1/ 2 + R x, x0 will be given by k/2 RC1 which can be obtained as this. 
For ground water divide to occur, x0 should be positive and therefore R has to be greater than k 
h1 square – h2 square over L.  L will be large.  h1 square  – h2 square, k will all be small. R is 
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larger than this means, if L is very large then, this value will be very small and a very small value 
of R will be sufficient to cause the water divide. This Q of course can be found out at any 
location. In the portion before x0, Q will come out to be negative and in the portion after x0, Q 
comes out to be positive. It means it is going in this direction before x0. This is a one 
dimensional flow situation which may not occur in practice very often. The most common 
situation occurring in practice is flow towards the well. We will next look at this case of an 
aquifer, unconfined aquifer being pumped at a rate of Q and we will try to find out the steady 
state draw down cone. This cone of depression at any distance (we will be using R because we 
want to use radial coordinates) at any distance R, the height of water table H or in other words, 
we can also think of in terms of draw down s. Given that initial thickness of the aquifer is capital 
H, the equation will remain the same. Let us assume that there is no recharge. So R is = 0, no 
recharge and then we also assume that there is some water body applying, there is enough water, 
and that it had reached a steady state and there is no further depression of the cone.  
 
In that case we have our governing equation as Laplacian of h square = 0, because there is no 
recharge steady state conditions and as we have seen earlier for radial coordinate system, we can 
write the laplacian of h square as this. We need two boundary conditions to solve this. Generally 
there will be 2 draw down values available to us or we must have two draw down values 
available to us. Let us say at r1 h1 and r2 h2. Now these r1 and h1 and r2 and h2 can be taken any 
where but a commonly used method is to take r1 as the radius of the well.  
 
(Refer Slide Time: 46:17) 
 

 
 

On a very large scale if I show the well radius, this is the ground level initial water table at a 
depth of H and then a steady state draw down cone may look like this from the centre of the well. 
We can write Rw at the radius of well and we have already defined a radius of influence, which 
is the distance beyond which there is no draw down and we denote it by capital R, although we 
have used for recharge rate also but there should not be any confusion. This R is the radius of 
influence so by measuring the draw down in the well sw, we can say the height of water in the 
well is hw. So the equation which we are solving is the Laplacian. So they have two boundary 
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conditions, r = rw, h = hw and r = r, h = capital H. The solution of this equation can be obtained 
as we have done for confined flow case where C1 is some constant and therefore it will give us 
identical to the confined aquifer. The only difference is that instead of h, we now have h square. 
This tells us how the head varies in the aquifer and we can also find using the boundary 
conditions the values of C1 and C2. C1 is the one which is really important for us, so we can 
write C1 as h2 square for any r1 and r2 and we can write h2 square – h1 square or if we take these 
rw, h2 can be taken as capital H. 
 
 (Refer Slide Time: 49:38) 
 

 
 

So if we take rw and r values, then this will be equivalent to R/rw. The discharge at any point Q 
can be written as 2 pi rkh and I am not putting negative sign here because this discharge is in the 
negative r direction. Therefore I am not putting this negative sign. Now in this h del h/del r, this 
2 pi r is the circumference at any distance r and h is the height of aquifer at that point. 2 pi rh is 
the area and k del h/del r is the velocity. Now h del h/del r can be combined as pi rk and del/h 
square. The term 2 h and del h/del r can be combined to form this term. Q becomes pi rk del h 
square/del r and as we had seen from here, or here del h square/del r will be C1 over r. It will 
become pi k C1 which we have already derived in terms of any h1 and h2 or if we take the radius 
of the well and the radius of influence. As we have seen for the confined aquifer case, 
measurement of draw down is much easier therefore we want to express this equation in terms of 
draw downs. The only problem here is that this h is a square and we know that the h is capital H 
– draw down s. So when we do h square because of the presence of the square term, we cannot 
say that the difference of these two squares is the same as difference of the draw down square 
because it is not linear.  
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Therefore sometimes we approximate it and write this equation in a bit of a modified form and 
by using some approximation, we can write this term h square – hw square as H + hw, H – hw. 
Once we separate them out, then this H – hw term is nothing but the draw down in the well sw. 
This is very easy to measure in the field. The other term which we have is H + h w and 
sometimes we have to make some approximation. For example here, we can say that H + hw will 
be very nearly = 2 H if sw is small. For a small draw down (Refer Slide Time: 54:23). The logic 
is that the draw down is very small compared to the thickness of the aquifer H. If sw is quite 
small then we can assume that H + h w will almost be equal to 2H and therefore Q can be written 
as 2 pi 2k pi H and H – hw is sw k into H is the transmissivity of the aquifer as we have seen k 
into the thickness of the transmissivity. So we can write this as 2 pi Tsw.  
 
This gives us an equation which can be used to estimate the transmissivity of the aquifer. This 
equation is exact but cannot be used to estimate the value of k, typically because sw and H values 
may not be known very exactly but the draw down in the well, sw can be obtained easily. R and 
rw are also easy to obtain and therefore for a known value of T, we can find out known value of 
Q and we can find out transmissivity using this equation. This is useful for estimating the 
parameter values. After looking at the confined and unconfined aquifers in all cases, we have 
assumed that Darcy’s law is valid. Sometimes Darcy’s law may not be valid, the flow may not be 
laminar and 
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where we know that the head loss is proportional to (Refer Slide Time: 57:01), when the flow is 
turbulent, the head loss is typically proportional to some power of Q. Generally we can take it to 
be a square. Sometimes it is 1.7 – 1.8 but we can say that head loss is proportional to Q square. 
All the analysis which we have done till now does not account for variation of head loss as Q 
square. It only says that since we are using Darcy’s law, the head loss or we say that Q = – K 
delta H over L, which says that delta h is proportional to Q. We will look at cases where the flow 
is not laminar but turbulent especially near the well. So here the velocity may be small but as we 
go near the well, the velocity becomes very large and the flow may not be laminar. It may 
become turbulent and then there will be an additional loss because of this proportionality Q 
square. Similarly near a well, we have a screen and there will be some head loss when the flow 
passes through the screen. The total draw down in the well will be a combination of these three 
terms, laminar loss, turbulent loss and the screen loss. We will look at a way to combine these in 
order to obtain the total well loss which will define some kind of efficiency of the well. 


