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Welcome to this lecture series on basic surveying. Now, today, we are on module 9 

which is about computation and adjustment. And we will be talking about the lecture 

number 2. 
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In this, we will be covering as you can see here again the concept of least square. Then 

how do we define the least square? Then we will be looking into the redundancy of a 

model. What is the redundancy? Why do we need it? How to plan for it? How to 

compute it? Then the adjustment can be carried out by 2 methods like condition equation 

method and observation equation method. There are other methods also, but we will be 

basically concentrating on these methods. So, we will start about these methods today. 

Next, we will start with again the concept of the least square. We have done it in the last 

lecture also, but again to revise it. For example let us say, we have a line and we want to 

take the measurement of line. So, what we can do? 
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As we can see here in the slide over here this is the line and this line is to be observed. 

We can do 2 things we can go for only 1 set means we take only 1 observation and the 

second set we can take 3 observations. So, the same line is being measured 3 times. 

Now, what is desired here? The desired is the estimate of this line. Are you want to know 

what is the, you know length or the estimate of this line which is the best estimate from 

our available data. How do we proceed? 
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In the first set we have taken only x 1 and what we know? We shall taking only x 1 well 

our solution will be unique means our estimated value is equal to x 1 only 1 observation 

we have taken. You know we just observed it once. So, we cannot say anything else, 

about that length of the line except that observation. So, our estimate of that observation 

or we can say adjusted value the final value is equal to the observation. But this is not 

desirable as we have seen, because we do not know, how much error was there in that 1 

observation? And whatever is the error amount we are going to take it we do not have 

any check. So, this is not desirable. 

Now, in set 2, we are going to observe the same line 3 times now this is very much 

desirable, because if in x 3 there is some error. The chances are in x 1 and x 2 the error 

will be less. The errors are always there, but we have a way to check for the errors. For 

huge amount of errors as well as you know we are carrying out multiple observations. 

So, that we have more set of data the redundancy is there. And this redundancy is very 

much desirable whenever we do surveying or any observation. But the problem in this 

case is, how to determine the desired? Our desired is estimate or the length of that line, 

but we have now 3 set observations x 1 x 2 and x 3 out of these 3 which 1 or average of 

all these 3 or average of any 2 of these. So, what we see? We have now, many possible 

solutions. So, if I write all these possible solutions the solutions could be. 
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Well, any one of this observation. The estimate is equal to any one of this observation or 

may be average as you can see here estimate is average of first 2 observations. Similarly, 

here and here or may be average of all 3 observations. So, what we end up with? We end 

up with a situation where, if we are not applying a proper technique. You know we end 

up with a problem that out of all these possible solutions which one is the right solution. 

Which one should we take? We should have the way to say that. 
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Now, to answer this question, we will go for the technique of the least square, because 

you know there in the ground is one physical line it has a length between 2 points. It 

cannot have multiple. You know lengths our multiple estimates as you have seen in the 

previous slide. It is 1 line so; it should have only 1 value. So, what will you try to do 

making use of all these observations which are desirable, because we want to have 

redundancy in the observations? We will try to estimate the best possible solution for the 

client a best possible length, how to do that? 
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So, we are looking for a technique which gives a unique estimate obviously. Now, this 

estimate should be the best under given conditions further the technique should account 

for relative quality of observations now, this also very important. We know about that 

stochastic model. Depending you know we took 3 observations x 1 x 2 and x 3. If we 

have some idea about the precision of these observations, the weight that we can give to 

these observations we should take that weight also into account. If we know x 3 was 

observed when the weather was very poor you know and we it was very difficult to 

observe in the field, but still we have an observation x 3. So, what we would you like to 

do you we would like to give x 1 and x 2 more weight and x 3 less weight. 

So, we should have some method of giving weights and these weights should be 

accounted for when we are computing the final estimate out of our adjustment process. 

So, this entire thing all these can be realised by least. And we have all already seen. How 

do we write the least square? The sum of square of residuals we can take the weights also 

into account should be minimum. We have seen that also by using you know line fitting 

example, we wanted to make or the best fitting line was the one for which or rather 

which deviates least from all the sets of points. All the points there that are the best 

solution which deviates least in overall stands and that can be done by the least square. 

Now, what is this criterion of the least square? How do we actually do it? So, what we 

will do. 
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We will assume l let us say is a vector of observations anything it could be the 

observations for a line, there is a line. And we are observing the length of this line x. x 1 

x 2 x 3. So, l is the vector of observations we have taken 10 20 30 100. Whatever number 

of observations? Next we take v as the vector of residuals. We know what the residuals 

are? If in observation I add the residual we get the estimate, l is the vector of estimates.  

And these they are related that this. That l had is equal to l plus v as we are saying. If we 

add residual to the observation we get the estimate. Now, this estimate should be 

consistent with our model. We have seen now, that our observations should satisfy some 

model. We have seen those geometric conditions observation conditions we have seen 

those. So, our observations should satisfy those. So, by the least square approach, what 

we will do? We try to find the estimates which will also be consistent with our model. 
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In addition, we already know that we should take into account the stochastic model. 

Where, we account for it by the weight matrix. Now, over here how do we decide the 

weight there are various criterion. One of them is that the weight is inversely 

proportional to the variance in any observation. We are taking for example, let us say for 

length. A length is being observed and it has been observed let us say n number of times. 

Now, the other day also the same length was observed x and again observed. Let us say n 

number of times this was observed by a person A this was observed by a person B. 

Now, out of 2 sets of these observations, what we can do? We can find the mean; we can 

find the variance standard deviation. And more is the standard deviation of these 

observations. What is the meaning of it? They deviate more from the mean. So, the 

deviation of the observation the variance is more so; that means, the precision of the 

observation is less. So, if the precision is less we would like to give less weight to the 

observation. So, because of this only we know it we have already discussed this 

previously that weight matrix is inverse of covariance matrix or more appropriately the 

cofactor matrix. 
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Fine, we know by the least square method, how do we apply it? As you can see over here 

that phi is v transpose w v and v phi is not scalar here phi is a scalar. And these are the 

matrices where w is for weight v is for residual and v make this minimum. How do we 

handle it? We handle it by finding the partial derivative of phi with respect to residuals. 

And equating to 0this is how we make phi minimum. So, that is the way we carry out the 

solution. 
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What we will do? We will look into some examples in a moment. But if depending our w 

if our w, w is the weight matrix. If the observations are uncorrelated observations were 

the sets of observations and they are uncorrelated. There is no all observations are totally 

independent no correlation between then if it is. So, the w matrix will be a diagonal 

matrix and our least square solution appears like this which we can further write as. So, 

we are taking weights into account here. w 1 v 1 square plus w 2 v 2 square plus So, on 

and w n vn square. And what we would, we will try to do? We will try to make this 

minimum in our least square approach. 
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Further if the w all the all the observations you know there may be situations. When all 

the observations have been taken with the same weight if we know that the weights are 

same. Then in that case this w matrix will become an identity matrix if it is. So, we end 

up with that this phi is equal to sigma i varies from 1 to n v i square. And we will try to 

make that minimum all right and we can expand it further like this. 
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Fine now, one question over here. Since our high school days or even before that, we 

know that whenever we are taking any observation. We are taking the weight we have 

some chemical and we are weighing it. What we do? We weigh the chemical let us say 

20 times and then finally, because now, we got 20 of values. We take arithmetic mean of 

that we have been asked to measure know the length of a line. We measure it 100 times 

10 times 30 times as desired and we take the arithmetic mean of that. 

Now, what is this arithmetic mean? Has it got any least square sense is it the best 

estimate in the least square sense. That is the question something which we may have 

been doing since our high school days. We (( refer time: 14:32)) compute for any sets of 

observation. We straight away compute the arithmetic mean. So, let us look at that now. 

Now, here in this again we have a line as you can see the line is over here. And we want 

to take the observation of this line and we have taken the observations as x 1 x 2 and x 3. 

What we want? We want to find the most valuable value of this line or we should 

estimate of that line. The adjusted value, this is what we want, how do we do it 

conventionally? We find the arithmetic mean arithmetic mean is x 1 plus x 2 plus x 3 

divided by 3, because we have got 3 observations. 

So, we can find the arithmetic mean, but is this really the best estimate if we carry out 

the same problem by the least square. This ((refer time: 15:37)) we are going to check. 

Well, in the case of the least square what we can do? As we always write we can write 



 

here x i hat is x i plus vi. So, what we are doing here? x i is observation v i is the 

residual. So, if we apply the residual on the observation what we get? We get the 

corresponding estimate. So, we are getting the corresponding estimate here. So, this 

thing can be written for all the observations, because over here the observations are x 1 x 

2. So, we can write it as x 1 hat is x 1 plus v 1; x 2 hat is x 2 plus v 2; x 3 hat is x 3 plus v 

3 we can write it like that. Now, further as you can see I am bringing these v i on left 

hand side. So, the right hand side becomes x i hat minus x i x i hat minus x i. 

Now, the least square what is the least square? In the case of the least square right now, 

we are considering all the observations. x 1 x 2 and x 3 all the observations had been 

taken with unit same weight. So, there is no w here no weight here. And then the least 

square says sigma of v i square it should be minimum. So, this is what we will try to do 

now. Now, if sigma of v i square is minimum. What is sigma of v i square? Sigma of v i 

our v i is over here that is our v i its value is x i hat minus xi. So, we write it here sigma 

of x i hat I will write i for sometime then later on I will not use this i. We will talk about 

that why it is so? So, sigma of x i hat minus xi square this should be minimum. In order 

to make it minimum, what we need to do? We need to find the partial derivative of this 

phi with residuals and make them equal to zero. So, let us do it now, to do it. 
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To do it ((refer time: 18:32)) that is our if you are doing it. So, del by del x i of sigma x i 

hat over here minus x i square this should be equal to 0. Now, if you differentiate this 



 

with respect to xi it becomes minus 2 sigma x i hat minus x i . So, this should be equal to 

zero. Now, please do it yourself also. Now, this 2 is eliminated and we take this sigma 

inside. So, we can write this as sigma of x i hat minus sigma xi is equal to 0. Now, we 

have been using this sigma x sorry this xi hat. So, far; however, it is a single line for each 

observation x 1 hat x 2 hat these are the for each observation these are the estimates x 3 

hat well this is 1 line there. So, all these should be equal. So, x 1 hat should be equal to x 

2 hat should be equal to x 3 hat and this we are writing now, as x hat. 

So, if you are doing it for only 3 observations hat I can do here I can write it as three 

times x hat this minus look at this sigma xi is sum of all the observations. So, x 1 plus x 2 

plus x 3 and that is equal to 0. Well, from here we can write that x hat which is the 

estimate of this line from least square is x 1 plus x 2 plus x 3 divided by 3 and the same 

is also the arithmetic mean. So, what we have proved here. We started with the concept 

of the least square, starting with that concept we found the residuals we we made this 

sigma of sum of residuals square sum of residual square. We made it equal to the 

minimum and in doing that we arrive at the conclusion, that the estimate or the best 

possible estimate. That we can achieve for this set of observation by least square is same 

as the arithmetic mean. 

So, or if our observations are of same weight that is important here you know we did not 

consider the weight here our weight matrix was identity. If our all the observations for 

example, the chemical that we are weighing if we are ((refer time: 21:33)) weighed it 10 

times and all in all of these. Whenever we are weighing we are saying that well weight of 

the observation is the same the quality of observation precision of the observation is 

same. In that case taking the arithmetic mean is same as carrying out the risk for 

solution. Let us look at another concept that is redundancy and a model. 



 

(Refer Slide Time: 21:56) 

 

What we do in the field? We always desire to get something in the field for example, to 

determine the area of a rectangle to determine the length between 2 points, to determine 

angles between 2 points at an observation point. These are the things which are desired 

to determine for example, the shape of a triangle these are the desired things. In order to 

achieve realise this, what is desired? What we do? We carry out some observations. 

Now, in order to realise something which is desired we can decide the way we carry out 

the observations in different way. Person A can carry out the observations in 1 scheme 

person B can carry out the observations in a different scheme person C can carry out the 

observation in a different scheme. 

So, I will give you 1 example here for example; let us say here is the length. We need to 

determine the estimate for this. What we can do someone measures this length let us say 

x 1 x 2 x 3 x 4 and he says well summing sum of all these will give me my final length. 

Someone decides to do it in such a way, because the instruments that he has do not 

permit this kind of observation. So, what he does? He takes a measurement of this land 

which is let us say x 1 and then he measures this one x 2. 

So, these 2 persons he had a different model and he also has a different model. Similarly, 

someone says why to do these all observations. He does measurement of this land also it 

by a different colour. He measures this length for example, if this is the length, he 

measures this length only once for example, x 1. Someone says well I will not take only 



 

single measurement. I rather carry out multiple measurements x 1 x 2 and x 3. X 1 is also 

this full measurement x 2 is also full measurement and x 3 is also full measurement. So, 

what I am trying to say, in order to realise the desired thing we can define the model in 

different way now, because our aim is that model will help us later on to adjust our 

observations. 
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Further in any model we should have some redundancy that we have also seen. For 

example here, in this triangle the desired is to determine the shape of the triangle. We 

can determine the shape of this triangle only by observing theta 1 and theta 2, because 

the theta 3 can be realised by we can realise the theta 3 by this also. So, the shape of the 

triangle is known, but here in this case we do not have any redundancy in the model. So, 

before we begin our survey, before we go to the field we rely or rather we try to plan it 

out. What will be our model of for the computation, whether our model will be able to 

have some redundancy? Because the redundancy is required in order to eliminate the 

errors or in order to have a check on the error. 

Whether it will be possible to carry out least square solution for our estimate, for our 

desired quantity whether it is possible or not? Whether our observations whether the way 

we have decided that we are going to take the observations will be able to fulfil our 

requirement. I will give you one example of that. Well, anyway we will start by some 

notations we write n naught n naught is the minimum number of observations which are 



 

required to determine our selected model. Now, here in this case the minimum required 

is 2 n naught is 2, because if both observations are very correct no errors. We can know 

the shape of the triangle. So, the minimum required are 2 in this case. 
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But, if we have done let us say theta 1 theta 2 and to include redundancy. We are doing 

theta 3 also we have taken 3 observations. If this is the case though the desired is two our 

number of observations is 3. We define the term redundancy as r is n minus n naught; 

that means, the extra observations we need only n naught observations to define our 

model, but we are taking n number of observations extra observations. So, 1 in this case r 

is equal to 1 thus the redundancy in our model. 
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This is also many times called degrees of freedom and will be more than equal more than 

0 now, one more example here. 
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Well the idea is we want to fix location, size and orientation of a triangle. These are the 3 

things which we need to fix location. Where it is located? It is size and its orientation. 

What all observations are required the minimum number of observations. Let us say 

someone who went to field has carried out theta 1 theta 2 theta 3 these 3 observations as 

well as he has also observed the bearings of the lines. For example, here it is phi 1 phi 2 



 

and phi 3 these are the bearings as well as 1 has also observed the length l 1 l 2 and l 3. 

Do we really need all these in order to determine in order to fix the location, size and the 

orientation of the triangle? What is the minimum required? So, in this case these are the 

observations, what is the redundancy? 

In order to know the redundancy, we should know what is the minimum number of 

observations which are required, in order to solve this problem in order to fix this 

problem? Well in this case the minimum required, because we need to fix the location 

size and orientation. If I somehow can observe the coordinates x 1 y 1 x 2 y 2 x 3 y 3. 

Let us say somehow we have observed these coordinates. If it is done the size of the 

triangle is fixed, the orientation of the triangle is fixed and the location of the triangle is 

also fixed all these are fixed. So, what we see only by 6 observations. So, we will to say 

our n naught is equal to 6. 
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You can say this same problem in a different way also the same triangle. Well I observed 

1 value of phi. So, orientation is fixed. I observe 2 angles theta 1 and theta 2. I observe 

the length l 1. What we have done so, far? So far we have fixed the size of the triangle 

and the orientation of the triangle. But still the location of triangle is not fixed. To fix the 

location we also observe x 1 and y 1. So, these are again 6 at some y 1 theta 1 theta 2 phi 

and l 1 again n naught is equal to 6. So, whichever way we go we need minimum number 



 

of 6 observations in order to find the solution of this problem. The problem was to fix the 

location size and orientation of the triangle. 
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But the number of the observations that we had taken, we had taken the number of 

observations were nine our n was 9. So, our redundancy r will be 3. So, in any model we 

can work out the redundancy like that. And this is important because we make use of this 

later on1 final thing about this redundancy. As we saw that you know we define a model 

it should have proper redundancy ((refer time: 32:03)) we want our observations with the 

redundancy. But not always if there is redundancy we can solve for the model. Now, I 

will give you one example here. 
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Let us say again the aim is to determine the shape of this triangle. If this is the aim well 

we can do, because we have now taken the observations theta 1 and theta 2. And we need 

only these 2 observations in order to solve for this problem, but the solution will be 

unique something which is not desired. Unique means we do not have any redundancy in 

the observations. In this case if only number of observations that we have taken h 2 that 

is is not desired. What we want to do? We want to have redundancy well what we do we 

also observed now theta 3. So, now what we have done? We have increased the number 

of the observations n is equal to 3 and now the redundancy is 1 that is n minus n naught.  

So, we have a redundancy in our sets of observations, but can we solve for our model. 

Can we find the estimate of our desired quantity? No, still we cannot find the best 

estimate for our desired desired quantity, because still for the shape of the triangle. For 

the shape of the triangle this angle still needs to be determined from theta 1 and theta 2, 

because we do not have any observation here. So, what do I mean? I mean in this case 

the desired cannot be achieved cannot be computed. So, not always a model can be 

solved even if the redundancy is more than zero. So, this is important. Introducing 

redundancy in the observation is not the only thing rather introducing the redundancy in 

such a way that the desired can be estimated is required. 
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Now, we will go for our approaches for adjustment. We have 2 methods for carrying out 

this we say the condition equation method and observation equation method. We will see 

them one by one. What these are? So, first we will try to understand these, what is the 

concept of condition equation and what are the concept of observation equation? This is 

what we will try to understand now. Now, in the case of the condition equation, the 

condition equation method it tries to frame conditions on the observations that we have 

carried out. It does not take the parameters of the model into account parameters means 

the desired things. 

For example, if we are observing a length of line as you can see here. A length is there 

and we want to observe its length. So, our parameter is x hat. That is the desired thing 

that we want to determine. So, we do not take this into account rather we frame our 

condition equations using the observations. How we can do? Now, here in this case let us 

say we have taken 2 observations x 1 and x 2 this was measured once x 1 1 measurement 

and then another measurement of the same line x 2. So, our n that is number of 

observations is equal to 2. 

How many observations we need in order to find that unique value of that length of the 

line only 1 observation of course, in that case there will not be any redundancy, but that 

is the minimum 1 which is required to find the solution. So, we say n naught is equal to 1 

only 1 observation. So, the redundancy is 1. Now, here it is important. What is the 



 

redundancy in the model? We can write the equal number of condition equations using 

our observations. Now, here r is equal to 1. So, we need to write 1 condition equation 

and that condition equation will take into account only the observations. How do we 

write this? We write it this way well let us get into it. What is the meaning of this? 
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I am writing x 1 hat is x 2 hat. Obviously x 1 hat is x 1 plus v 1. X 2 is x 2 plus v 2. X 1 

is an observation x 2 is also an observation while, v 1 and v 2 are the residuals. So, once 

we apply this residual on x 1 we get x 1 hat and similarly here we get x 2 hat. So, in any 

observation if we are applying the residual, we are getting the estimate of that 

observation. And all these estimates should be same, because finally, it should give me 

the line the actual line. So, all these x 1 hat should be equal to x 2 hat means that is equal 

to x hat. 

So, our condition equation in this case is x 1 hat is equal to x 2 hat. So, what we have 

done in this condition equation. We have framed a one condition equation, because our r 

was equal to 1. So, we can frame one again this important one independent condition 

equation. In our last problem it may be possible that we may frame some condition 

equations which are dependent on the previous ones. So, it should not be. So, all the 

condition equations should be independent. So, that is the condition equation that we 

have framed. 
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So, similarly we can frame the condition equations for more complex problem. I am 

taking one example here. Again the example is frame starting from the benchmark we 

are carrying out the levelling in order to determine the RLs of various points. Let us say 

the points for which we need to determine the RLs are point number 1, point number 2 

and point number 3. We want to determine the RLs of these points. So, what we do? 

starting from the benchmark which is known I take an observation along this route and 

the value of the difference in RLs is l 1. So, by that I can determine RL of point 1. So, 

this is a unique solution. We do not want it that way. 

Well further because we had to determine RLs for 3 points. I can go further 2 point to by 

observing this l 2. Then 1 redundant observation l 3, because now, this l 2 can be 

computed l 2 can be computed through this route as well as this route. So, we have 

introduced the redundancy in the observation. Further in order to determine the RL a 

point 3 have been known the RL of point 2. I am finding the difference in elevation 

between these 2 points that is l 5. So, I can determine the RL of point 3 also. 

But I am also taking 1 more observation here that is l 4. So, again there is redundancy. 

So, what all observations that we have carried out? We have carried out l 1 l 2 l 3 l 4 and 

l 5 these are differences in elevations. While the desired are relative valuations RLs of 

0.123 let us write them as x 1 x 2 and x 3. So, the RL of these points are x 1 x 2 and x 3 



 

these this is the desired thing. While we have carried out l 1 l 2 l 3 l 4 and l 5 

observations now, what we will do we will try to analyse this problem now. 
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For this problem number 1 what is the minimum number of observations which are 

required in order to find x 1 x 2 and x 3? Well you can guess very easily while we can do 

starting from the benchmark I can take this route I take the observation l 1. So, I know 

the RL of 0.1. Similarly, starting from benchmark I can take this route and determine l 3. 

I can find the RL of 0.3.2. And finally, I can take this route and determine the RL of 0.3 

by taking these observations. So, this is the only you know 3 observations. We can carry 

out only 3 observations in order to solve this problem, but in a unique way. That is 

important we need only 3 observations yes in order to solve this problem, but our 

solution is a unique solution. We do not know about errors it is not. It is a unique 

solution. 

You know we have been talking about that the significance of the redundancy there is no 

redundancy in the observations in our model. Well the actual number of observations 

that we have taken is 5. So, the redundancy here in this case is 2 which is n minus n 

naught that is the redundancy. So, what we will have we should have 2 number of 

condition equations which are independent. So, we need to write those condition 

equations now. How do we write it? Well the condition equations can be written now, as 



 

if you look first in the loop here starts from benchmark go to 0.1 go to 0.2 and again go 

back to benchmark. 

So, here is the loop. Here is a loop means, we are starting from the benchmark going to 

0.1 going to 0.2 and again coming back to the benchmark. And what we are observing? 

We are observing the difference in elevation l 1 is difference in elevation between 

benchmark and the 0.1 l 2 is difference in elevation between 0.1 and 0.2 and l 3 is 

difference in elevation between 0.2 and the benchmark is a closed loop. So, what we can 

do? using this closed loop we can write one condition equation and that condition 

equation will look like l 1 hat plus l 2 hat minus l 3 is equal to 0. 

Now, please mind it, I have put an arrow here. That arrow shows that this is the direction 

or this is the positive observation. This is the positive observation this is the positive 

observation. So, the sign this is why, I have used minus here. Further we have another 

loop and in this loop if we start from the benchmark go to 0.2 then come back through 

0.3 to benchmark. We can write for this loop as l 3 hat minus l 5 hat minus l 4 hat this is 

equal to 0. So, what we have done? These are 2 independent condition equations. So, the 

condition equations basically have a form of, because these are the condition equation.  

This is a matrix notation here it is a function of the adjusted observations the estimates 

that is why you are using l hat here. And the relationship between adjusted observations 

whatever all the possible relations which are there which are independent we write them 

in this form. So, these are the condition equations. So, later on we will make use of these 

condition equations in order to find the solution by least square. 
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Now, here in this case, once using our solution of these equations will have a method in 

order to solve for this equation of for these 2 equations. So, that we can find l 1 hat l 2 

hat l 3 hat l 3 hat and l 4 hat and l 5 hat. So, once these are known means l 1 hat l 2 hat l 

3 hat l 4 hat and l 5 hat these are known; that means, we have now, the adjusted values of 

these. If you write for example, l 1 plus l 2 minus l 3 that will not be equal to zero we 

know it because these are the observations, but for l 1 hat plus l 2 hat minus l 3 hat that 

will be equal to 0, because these are the estimates. Once we know the estimates what we 

can do? we can find the value of desired quantity. So, what is the desired quantity? For 

example the x 1 X 1 is the RL of this point this is benchmark plus l 1 hat.  

Similarly, the x 2 could be benchmark plus l 1 hat plus l 2 hat and x 2 can be also written 

as benchmark RL of benchmark plus l 3 hat. Now, in this case this 2 x 2 will be same, 

because in our least square solution this functional model has been taken into account. 

So, whatever the way we find the value of x 2 what the values should be seen if our 

solution is correct. So, similarly we can also determine the x 3 h benchmark plus l 4 hat. 

So, our desired quantities can be now computed if we know these estimates. So, this is 

the method of condition equation. Now, we will see the method of observation equation. 

Now, we are going for the observation equation method. In the case of the condition 

equation method we saw that, we frame the condition equations using estimates of the 

observations. For example, l 1 hat l 2 hat l 3 hat that we have seen only estimates or 



 

observations were taken into account and we try to write r number of r means the 

redundancy independent condition equations. And then we solve for them in order to 

determine the value of estimates of the observations. And then we find the desired 

quantity. Now, here in the observation equation method, it is different. Here in this case 

we include the estimates of the observations. Yes, but in addition, we also include the 

model parameters means the desired quantity. What is the desired quantity? We also 

include that in the equation here. Now, how we do it let us see it? 
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We have a line over here and we want to observe this line. So, the desired quantity is x 

hat. What we do we carry out 2 observations x 1 and x 2? Someone measured this line x 

1 and then again x 2 2 observations have been taken. Now, we know now, u here comes 

for the number of unknowns in terms of the desired quantity. So, the desired quantity 

here is the length of the line. So, here is 1 unknown. So, u is equal to 1. n naught as in the 

previous case the minimum number of observations. Which can determine this 

unknown? n the actual number of observations which are actually taken. R is the 

redundancy. Now, here in this case the total number of observation equations that we can 

write is equal to C. C means r plus u. Over here in this example C C is equal to 2. 

Because we are including the model parameters also into the computation processes in 

our least square solution or in writing this observation equation. So, we will need to write 

C number of observation equations. Now, how do we do it particularly now, in this 

example? 
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We know x hat is x 1 plus u this is equal to x 1 hat also you know we can write. Because 

we know for this problem x 1 hat and x 2 hat these 2 are same; obviously, which are 

equal to x hat. So, x hat is our unknown. This is the only unknown. What we have done? 

We have taken these as observations. So, what we are doing? We are relating unknown 

with the estimate of the observation. So, how we can relate it? We can write 1 equation 

as we have written over here you know. X hat is equal to x 1 hat. X hat is equal to x 2 hat 

this all we can write. And x 1 hat is x 1 plus v 1. X 2 hat x 2 plus v 2. So, these are the 2 

observation equations. Which we are able to form they are independent observation 

equations. They are relating important thing is that they are relating the unknown with 

estimate of the observation. So, generally, this will be the form of our observation 

equations. 
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Now, we look in the same example which we have done earlier. Now, in this example we 

know the desired quantities are x 1 x 2 and x 3 desired quantities. And we have carried 

out the observations l 1 l 2 l 3 and l 4 which we know these are the observations which 

have been carried out. Now, what are the model parameters the unknowns? The 

unknowns are the final estimates of x 1 x 2 and x 3. So, the total numbers of unknowns 

in this problem are 3. N naught means 3 we have seen it before and in this case is 5. So, r 

is 2. So, the C will be r plus u. So, that is equal to 5 what is the meaning of this? The 

meaning is, if we are including these parameters also into the equations along with the 

estimates of observations. We will need to write 5 observation equations in this case. 

What this observation equations will be? 
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The observation equations I have written over here. First observation equation x 1 hat I 

am writing ((refer time: 53:45)) here, because that is the estimate of this is benchmark 

plus l 1 hat, because it is relating the parameter with the estimate of the observation. 

Similarly, we can write one more also. And finally, in all these observation equations are 

it is important these are independent. This is important. Whenever we have a problem, 

we are going to solve a problem. We must ensure that the observation equations which 

we are writing should be equal to first the C and all these should be independent. Once 

we have written these observation equations. We will apply the least square solution to 

these. And we have a method by the least square when we can find the solution of these 

equations. And through that solution as is obvious we will find the values of the model 

parameters as well as we will find the values of the estimates of observations. 
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So, what we will determine by applying the least square we will find the desired 

quantities as well as l 1 hat l 2 hat l 3 hat l 4 hat l 5 hat. Of course, these are not really the 

desired thing. We do not need them, but well these are computed in between our desired 

quantities are the one is which are actually being computed here. So, our effort will be to 

determine these desired quantities value. So, what we saw today? We saw again the 

concept of the least square, then the criterion how to we you know go about the least 

square, then the redundancy of a model why it is important, why it should be there? 

We also saw one important thing even, if there is redundancy it is sometimes so, that the 

model cannot be solved. So, whenever you are planning the survey we should ensure that 

the model or the observations are defined in such a way that we can have the redundancy 

in the observations as well as we can solve for the desired quantities. Then we saw 2 

method or 2 approaches of condition equation and observation equation. We can form 

the condition equations using the estimates of observations and the numbers of the 

condition equations are equal to the redundancy. 

Then in the observation equation not only the estimates of observations we also include 

here parameters of the model the unknowns the desired quantities. And the number of the 

equations in this case was redundancy r plus u number of the unknowns. So, we need to 

write that many number of unknown equations. So, we just have an idea of condition 

equation and observation equation now. Next what we will you do we will frame for the 



 

(( refer time: 57:03)) for some example and we will try to solve it by the least square. So, 

we will see the least square solution in these 2 approaches. 

Thank you. 


