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Good morning and welcome to the video course on advanced hydrology. We are into the 

last leg of this course and looking at the groundwater hydrology part. In the last class we 

looked at the anisotropic aquifer, we looked at how we can deal with the situation when 

we have a aquifer in which there are different types of soils. 
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So, if we come here I would like to quickly go over the material which we have you 

know dealt within the last class. So, we saw the horizontal case, what will be the 

expression for K x? And that is what it comes out when you have 2 layers of hydraulic 

conductivity K 1 and K 2. Then we moved on and we looked at the vertical case in which 

the equivalent expression for hydraulic conductivity comes out to be the harmonic mean 

and for the earlier case or the horizontal case it was the weighted average. And then we 

defined the Darcy’s law for any general direction beta from horizontal, and then we said 

that the K beta can be given by this equation number 14. Then we derived what is called 

the general flow equations, in the saturated zone the steady kind of flow in a confined 

aquifer. 



So, we took a cube and in which we written down the continuity equation which is of 

this form number 22. And then we wrote this equation in the Z direction and we 

combined all the mass fluxes in all the 3 directions, and the final continuity equation 

comes out as in equation number 23 right here this one. And then we embedded the 

Darcy’s law or the momentum equation along with this continuity equation. Once we 

substitute that and simplify and assume that the flow is incompressible and also isotropic 

that is to say K x K y K z all are same. Then that results in what is called the Laplace 

equation which is the governing differential equation for this kind of a situation. 

Then we moved ahead and we said that for the unsteady flow in a confined aquifer the 

compressibility effects become important. And without going through the complete 

derivation we said that this governing differential equation can be derived like this the 

equation number 26 which is called actually the diffusion equation. The left hand side is 

similar to the Laplace equation except that in the Laplace equation, the right hand side is 

0, but in the diffusion equation the right hand side contains the variable h with respect to 

time the derivative. Then we started looking at the two dimensional saturated flow in the 

unconfined aquifer. We said that the confined aquifer things are very nice flow is a truly 

horizontal same lines are parallel, but unconfined aquifer posses certain difficulties 

which ever listed here. 

(Refer Slide Time: 03:28) 

 



To overcome these difficulties Dupit in 1863, simplified this approach of attaching this 

problem. And he made certain assumptions and we listed them here the 1 and 2. Under 

these assumptions then we started to derive the governing partial differential equation for 

the unconfined case. We considered the cube similarly, like we did earlier. And then we 

started looking at the continuity equation. We said because of the steady flow your 

continuity equation will be like this. And then once we look at the cube and the water 

surface elevation which is at the or the groundwater table which is at the atmospheric 

pressure in the case of the unconfined aquifer. 
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You have slightly different fluxes. This is what we had written that in the x direction you 

have the mass in flux M x 1 is equal to rho v x h times delta y. And if you look at the 

units it will come out to be what kg per second. And if I go back so you are looking at 

this is the cross sectional area h times delta y. So, you are looking at the distance h and 

delta y is the distance or the side of the cube along the y direction and M x 1 is what is 

the input going in... So this is the expression for the input or the influx and similarly, the 

out flux coming out is by Taylor series expansion this term plus the changes in the same 

thing multiplied by the distance delta x. And then we said that if we subtract these 2 the 

net out flux will be M x 2 minus M x 1 which comes out like this.  

So, if we continue from here what we can do is we can say that similarly, we can write 

the expression for the net out flux in the y direction. So, if you did that you will have M 



y 2 minus M y 1 will be equal to what? Well it will be del del y of your rho the velocity 

in the y direction times h delta x is the area across which this flux is flowing. Then delta 

y is the direction in which some changes are taking place. 

Now, as per the continuity equation, so this is your x direction flux and this is the y 

direction flux. The continuity equation tells us what, this one controls double integral of 

the over the control surface of rho v dot d x is equal to 0, so that would basically mean 

that the sum of these 2 quantities should be equal to 0. So, you have del del x of your rho 

v x h and del x del y, you can take outside plus del del y of your rho v y h and del x del y 

outside is equal to 0. So, all I am doing is sum of these 2 equations.  

Now, we combine the CE and the momentum equation, what is the momentum equation? 

Well it is nothing but the Darcy’s law which is like this in the x direction. And what will 

be the y? It will be minus of K by del h del y. Also we assume isotropic aquifer, isotropic 

aquifer would mean your K x is equal to K y is equal to constant which is let us say K. 

Assume and you can say incompressible flow, incompressible flow means what the 

density changes are not important. So, that the density does not change as a function of 

space or time. So, this rho can come out of the derivative or it will drop off. 

So, once we use all these things what I am going to get is this; del del x over h del h del x 

that is term number 1 plus you have del del y of h del h del y is equal to 0. So, this is the 

form of the equation I get which is the governing differential equation we are trying to 

derive for this particular case, the unconfined case. So, what we do is we do slight 

mathematical or algebra like manipulations here. So, you can always multiply any 

equation by a constant. So, what I am going to do is I multiply this equation by 2, I can 

multiply this equation by 2, and right hand side is 0. 
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And then I use my knowledge of calculus to say that what is the derivative first 

derivative of or the second derivative of your this thing? Yes, if we look at the second 

derivative of this h square of your with respect to x, we can write this as del del x of 

twice h del h del x. Similarly, we can use del 2 del y 2 will be del over del y of what of 

your twice of h del h del y. So, it is basically if you take the first derivative of h square 

that is what it is going to be. So, what I do is I put these 2 in the equation above. Once 

we do that and simplify what we are going to get is, this or in the short form I can write 

this as del 2 h 2 is equal to 0. 

Now, this equation is called the Laplace equation, this is very similar to the Laplace 

equation which we had seen which was the governing differential equation for the steady 

flow in the confined aquifer. And we have just seen that the governing differential 

equation for the unconfined case is what it is similar to the Laplace equation except that 

the variable involved is h square rather than h. So it is del 2 h 2 del x square plus del 2 h 

2 del y square is equal to 0. So, then we say that this is the governing partial differential 

equation for what for two-dimensional flow we are looking at which is steady and 

incompressible density changes but ignored in a homogenous. All these are the 

assumptions while deriving this equation isotropic, isotropic means the K is same in all 

the directions and unconfined aquifer under the Dupits assumptions. That is what this is 

and what is this? This is given as or known as, we can say Laplace equation in h square. 



So, this is the equation we have derived which is which we said is the Laplace equation 

in h square which is the governing partial differential equation for unconfined case 

steady flow which is incompressible. And the aquifer is considered as homogenous and 

isotropic; this is the case we looked at in which there is no recharge. Remember in the 

case of the confined aquifer the recharge areas are very far away very small areas. But in 

case of an unconfined aquifer we may have recharged due to rainfall due to infiltration 

and the depercolation. And also due to some you know existence of some lake or pond or 

some agriculture practices and so on. So, in the real life there are lots of situations in 

which we have the mass in flux taking place in the vertical direction also right. Now, 

what we have derived is a governing differential equation by considering the flow only 

in the x and y directions. However, we may have a case or lot of practical situations in 

which we have the vertical flow also taking place in the form of a recharge. 

So, what we will do is we will try to write the governing differential equation for the 

case of unconfined aquifer with recharge, so that is our next thing. So, we have 

unconfined flow with recharge. As you can see what will be the changes? Well the 

governing differential equation will remain the same as far as the integral continuity 

equation is concerned that does not change whether you are considering 1 d flow, 2 d 

flow, 3 d flow, etcetera. So, it will be this equation which we had written earlier from 

your Reynolds’s transport theorem. This will remain the same. That is to say what, that is 

to say the second component in your Reynolds’s transport theorem which is the mass 

flux or the net out flux of the extensive property flowing across the control surfaces is 

equal to 0? That is your continuity equation. So that remains the same the only difference 

would be what you will have to account for the mass flux which is taking place in the 

vertical direction. So, let us look at that then we can say that the x and y direction fluxes 

remain the same. And then there will be additional mass flux which we need to consider, 

additional mass flux in the z direction which needs to be considered. 
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So, let us say that we have a similar situation like we discussed or saw earlier you take a 

cube it is not drawn very nicely, but you understand what we are trying to do. And then 

you have the groundwater table like we had considered last time. This is your X direction 

this is our Y direction and the vertical one is the Z direction that is the Z direction. And 

what we have is some recharge rate W is applied in the vertical direction. So, what we 

say is that let W be the recharge rate, what are the units of the recharge rate? Let us say it 

is meter cube per second per square meter of horizontal area. So, what is this; the 

essentially this unit is what meters per second or centimeters per hour or millimeters per 

day or something like that it may be the c pitch you know going into the ground 

corresponding to that what will be this mass flux in the Z direction? M Z 2 minus M Z 1 

or delta M Z. Well it will be rho W and it is occurring across which area del x and del y. 

So, if we look at the equations or the units rho is or kg per meter cube right W we said is 

meter cube per second per meter square. And the area del x del y is what? Meter square; 

so meter cube will cancel, meter square will cancel, the ultimately the final unit will be 

what it will be Kg per second? So, this is the mass flux which is taking place in the 

vertical direction. And now if you apply rho V dot d A is equal to 0 with considering X 

Y Z all the directions. Then what are we going to get? Well it will be del del x of your 

rho v x h del y del x that was part 1 plus del del y of your rho v y h delta x times delta y. 

Now, we have the third term which is rho W del x del y. So, we have added this in the Z 

direction, all of this should be equal to 0 as per your continuity equation. 



Now, we do the same thing and what is that we combine this continuity equation. So, this 

is your continuity equation right with the momentum equation which is your Darcy’s law 

and simplify. I am not going to do that, because we have seen it already for v x and v y 

we can write the Darcy’s law. And then we can make the assumptions that the 

conductivity is same in all the directions rho can be taken out from the incompressible 

flow and so on. Finally, what you are going to get is this del 2 h 2 over del x 2 plus del 2 

h 2 over del y square will be equal to minus 2 W over K. So, this is our governing 

differential equation and in short we can say del 2 h 2 is equal to minus of your 2 W over 

k where W is the recharge rate. 

So, this is your governing differential equation in unconfined aquifer with recharge. And 

then all the other assumptions or simplifications are valid here, that is to say it is a two 

dimensional flow. And the aquifer is homogenous it is isotropic and the flow is steady 

incompressible and so on. So, with this we come to the kind of you know a stop or a 

brief stop where we have looked at the derivation of the governing differential equations. 

In general what we are going to do next is that we will look at some situations or we will 

apply these governing differential equations which we have seen for different kind of 

situations which are encountered in practice. So, we will look at the confined aquifer 

case one dimensional flow, we will look at the unconfined aquifer, how the application 

of these equations can result into the solution of the real life problems encountered in the 

groundwater aquifers? So, let us move on to that. 
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So, now we will consider simplified groundwater flow situations, situations or problems 

that are encountered in practice. The first one of such cases we will consider actually 

first we will consider the confined aquifer. And in this what we will look at is steady, 

steady state one dimensional flow in a confined aquifer. And what we will be talking 

about basically here is you have a confined aquifer in which a flow will be taking place 

only in one direction, when will that happen? When a confined aquifer is sandwiched 

between 2 water bodies, let us say you have these 2 confining layers flow is taking place 

in only in x direction or in one direction. Then the hydraulic grade line or there has to be 

head difference or the driving force which will cause the flow to go let us say from left to 

right. So, there may be a lake on the left hand side or there may be a pond or a river on 

the right hand side with level difference which will cause the water to flow from left to 

right or right to left depending upon the relative elevation of these 2 water bodies. So, let 

us look at this kind of a situation, this kind of situation occurs when the confined aquifer 

is sandwiched between 2 water bodies. 

So, we will look at this in the graphically or in a figure first. And then we will work on 

this is the impervious horizontal boundary or strata. Then you have another confining 

layer this is also impervious. And then you have the ground somewhere up here. So, this 

is your ground level or the surface of the earth and down here, let us say you have some 

water body where water is up to this and upstream let us say you have another water 

body. So, this may be let us say a lake this may be a river or a small lake or anything. 

The thickness of this aquifer is let us say b this is your confined aquifer hydraulic 

conductivity is K. And let us say that this is the piezometric surface, how will it look like 

that is what we want to find out. So, what we want to find out is basically this solution h 

as a function of x, what is x? Well x is the direction of flow which is in this direction 

from left to right. And let us say that these 2 water bodies are some distance l apart it 

may be 100 kilometers or you know whatever, but we know that distance. So, this is the 

situation. 

Now what we do is we consider a unit width which is perpendicular to the board we are 

looking at. So, this is the aquifer this one; this is the aquifer. And if you look 

perpendicular to this we are looking at unit width, let us say 1 kilometer or may be one 

meter or whatever across that phase, how much flow will be taking place? What will be 

the velocities and what will be the head as a function of x? As we go into the aquifer that 



is our objective of the confined aquifer. And we care saying that the flow is steady it is 

one dimensional and all the other assumptions are valid that is aquifer is homogenous, 

incompressible flow is taking place. We will always assume these things and it is 

isotropic actually the question of isotropic does not arrive here, because we are 

considering only flow in one direction. 

So, what will be the governing differential equation of this? What is the governing 

differential equation for one dimensional flow in a confined aquifer from left to right in 

this case which is steady and homogenous and isotropic and incompressible and so on. 

All those things we just saw that this is a Laplace equation which was a del 2 h over del 

x square plus del 2 h over del y square and so on. But we have only one basic dimension 

flow is taking place only in x direction. So, what will be the governing differential 

equation well Laplace equation in x only one dimension so that is what it is going to be 

you have del 2 h over del x square is equal to 0. 

What will be the boundary conditions from the knowledge of your mathematics? You 

know that each differential equation actually I can write, because there is only one so I 

can use a capital D actually. So, let me remove this is the total derivative you can have d 

2 h over d x 2 that is equal to 0. So, boundary conditions are what, I think I have not 

defined them here so let me do that. So, let us say that the height of the water surface in 

water body upstream is h 0. So, this is your upstream water body upstream means what 

the h 0 is higher than the water surface elevation here, let us say this is h 1. And we are 

measuring all the elevations from the bottom layer which is this 1. So, what are the 

boundary conditions? Well at x is equal to 0 what is h? h is equal to h 0 right. Similarly, 

the other one is x is equal to l at a distance of l what is h? h is equal to h 1. 

So, these are the 2 boundary conditions which we need we have a differential equation of 

second order. So, we need two boundary conditions to solve it, what will be the solution? 

Well we integrate this equation twice it is very easy to find out the solution is going to be 

what C 1 x plus C 2. So, this is your final solution but we do need to find out these 

coefficients of integration C 1 and C 2. And how can we do that well we apply the 

boundary conditions. So, if you apply the first boundary condition that is x equal to 0 and 

h is equal to h 0 will give you what x is 0 means C 1 will drop out. So, what we will have 

is C 2 is equal to h naught. So, you have the value of C 2 from the first boundary 

condition, what will be the second one? 



Well to obtain C 1 we just use the second boundary condition so at x is equal to l, you 

say h is equal to h 1. So, if you put these things in this equation or in your solution, what 

you will have is h 1 is equal to C 1 times l plus C 2, what is C 2? C 2 is h naught we just 

found out. So that will give you c of one is equal to what h 1 minus h naught divided by l 

So, we have found both C 1 and C 2. So, we put these 2 values back into your solution 

what you are going to get is this. 
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So this is a very straightforward a simple problem actually in which you have this 

solution h as a function of x is going to be given by this equation plus h naught. Let me 

see if I can number these equations otherwise we will be running into problems later on. 

So, the problem which I have defined here is let us say this is equation number 1. The 

solution which I found this one let us say is 2 and the final solution which I found in the 

next page with the value rho C 1 and C 2 is let us say 3. So, what does that mean? That 

means your hydraulic grade line is what is linear? 

So, if you go back and see, this is your hydraulic grade line, so this is the solution which 

is going to be linear. So, if you want to find the height of the piezometer in any of the 

distance x, you can linearly interpolate that, so it is the simplest of the problem. What 

will be the discharge? This is the solution once we have the solution, we can find out the 

discharge per unit width of the confined aquifer will be given by what? Well this is the 

discharge we can use the Darcy’s law, this is going to be equal to what? Minus K d h d x 



v is equal to K I, but if this is the discharge I can multiply it this by b and this is 

multiplied by 1 unit width. 

So, you are multiplying by the area. So, this is basically your discharge intensity, what 

will that be? What is that will be minus K b, what is d h d x? You can differentiate this is 

the solution equation number 3 you differentiate that, that will give you the d h d x which 

is nothing but equal to this expression. So, it will be d h d x is h 1 minus h 0 right divided 

by l. So, what will q be the final expression? Then you say is h naught minus h 1 over l 

times K b. Or you can say that this is going to be h naught minus h 1 over l times T, 

where T is your transmissive. What will be the units of this? This will be meter cubed 

per second per meter width of your aquifer. And let us number this equation as 4. 

So, this way we see that we have looked at a situation in which we can solve the problem 

of a confined aquifer in which one dimensional flow is taking place. And the aquifer is 

sandwiched between 2 water body it is a very simple case in which the solution is linear. 

So, we can find out the velocity we can find out the hydraulic head. And we can find out 

how much flow actually will be taking place from left to right or right to let. So, now 

what we are going to do is we will look at the unconfined case, we just looked at the case 

of a confined you know a flow or the confined aquifer one dimensional flow. Now, we 

will look at the similar situation where we have unconfined aquifer. 
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So, let us see you have unconfined case or unconfined aquifer. And what we are going to 

do again is we will look at the one dimensional flow in the saturated zone we are with 

the recharge, will recharge under Dupits assumptions. This will be the most general case 

as far as the one dimensional flow is concerned. And then if the recharge is not there we 

can just put W is equal to 0 in the resulting equations. So, we would like to derive an 

expression which is the most general one. 

So, what I will do is I will first look at the schematic, we have a similar situation in 

which this is your ground, and you have an upstream water body. And you have a 

downstream water body. It may be lake or a river this is your horizontal impervious 

boundary of your unconfined aquifer. So, there is no confining layer at the top, this is my 

direction of flow x, the distance between the 2 water bodies is l. And then on top of this I 

have a uniform recharge which is feeding the ground level, this may be the infiltration 

due to rainfall or you know any other artificial needs. So, this is your uniform recharge 

and the rate let us say is W like we had defined earlier. Let us say that your final solution 

may be something like this that is what we are interested in; this is your ground water 

table. And we want to find out the equation of this ground water table in the unconfined 

aquifer under recharge rate of W. 

So, let us say at any distance x what is the h of x that is what we want to find out. And all 

the distance is we are measuring are from the bottom and the upstream water body as an 

elevation of h naught like before. And this is h 1 let us say the location of this maximum 

water surface or groundwater table is we denote this as h m. And let us say this occurs at 

some location a then we would be we would need to find out let us say how much is the 

groundwater contribution. What is the, this discharge which is taking place into the 

downstream water body? And then how much is the base flow or the discharge which is 

taking place at x is equal to 0. So, this is the flow situation, the first thing we have to do 

is write the governing differential equation. And we had just derived the governing 

differential equation which is what it is del 2 h 2 over del x 2 is equal to what? Minus 2 

W over K. this is the governing differential equation for the unconfined case one 

dimensional steady flow. And I could have written total derivatives here, but you 

understand we have flown in one direction. Similarly, what are the boundary conditions 

well h is equal to h naught at x is equal to 0 the conditions are same in fact, like earlier 

the differential equation is different this is at x is equal l. 



So, at h at x is equal to l the hydraulic is h 1 at 0 it is h naught, what will be the solution? 

The solution is going to be you just integrate it twice. So, the equation will come out like 

this you will have h square is equal to minus W by k of your x square plus C 1 x plus C 2 

where C 1 and C 2 are the constants of integration which need to be determined using the 

boundary condition coming from here to here should be very easy. We are just 

integrating it twice. Now to determine these coefficients, let us use these boundary 

condition, the first one is h is equal to h naught at x is equal to what? 0, so put x is equal 

to 0 in this equation and h is equal to h naught. So, what are you going to get is h 0 

square is equal to what? x is 0, the 2 terms will drop out that is your C. So, this is the 

value of your C 2. The second condition says what h is equal to h 1 at what at x is equal 

to l. So, you just put these things you will have h 1 square is equal to minus W over K of 

your l squared plus C 1 l plus C 2 and C 2 is what? h naught square we just found out. 

So, once you simplified this you will have C 1 is equal to minus of your h 0 square 

minus h 1 square minus W l squared over K. This whole thing divided by l you can 

verify that that is going to be your C 1. And let me number this equation this whole 

governing differential equation with boundary condition is equation number 5. So, we 

put C 1 and C 2 back into your solution into the solution meaning what into this 

equation? What you will get is the solution h square is equal to minus W over K x 

squared minus h 0 square minus h 1 square minus W l squared over K. This whole thing 

multiplied by x and this whole thing divided by l plus C 2 which is h naught square. So, 

this is the solution of the groundwater table which we are looking at here; this one this is 

the groundwater table equation h which is given by this equation. And let me number 

this, this is as equation number 6, now what is this? 
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Well this is the solution of one dimensional saturated flow in unconfined aquifer under 

all the assumptions, Dupit’s assumption homogenous aquifer which is incompressible 

flow isotropic and so on. Now, this equation 6 which we have derived it represents what, 

what kind of an equation is this? This represents the equation of an ellipse. If you go 

back to your knowledge of mathematics this looks like the equation of an ellipse and you 

see this you see that as h increases or actually the h increases initially. In the ellipse, 

what do you have the, the y variable increases initially becomes maximum at certain 

distance x. Let us say that value is h m and let us say that this occurs at x is equal to 

some distance which we do not know we need to find it out. And then h decreases to 

what value h is equal to h 1 at x are equal to l. So, initially you see that it starts at h is 

equal to h naught it becomes maximum h m. And then it goes back to the boundary 

condition the boundary conditions have to met on have to be met on either side. 

Now, what is this h m? h m is the maximum groundwater table whenever we have an 

unconfined aquifer. And there is a recharge taking place; we know that the groundwater 

table will rise in the middle somewhere and finding out the location of this maximum 

head or the maximum groundwater table. And what will be the value of this h m? The 

magnitude and location of this h m is extremely important. For example, in agricultural 

practices, in the fields we apply water for you know irrigation purposes. Then we need to 

know that how much water we apply? What should be the recharge rate? So that this h m 

does not become higher than a certain value, or in other words we may say that the 



distance between the ground and this h or the maximum h should be some safe a limit. 

So that there is no water logging and there is no problems. 

So, determination of this location of this maximum groundwater table is important. And 

let us do that how can we do this location of what is called the water divide. The location 

of the maximum head is called the water divide. Why, as the water flows in either 

direction from the water divide. Go back and see if this is your water divides this 

location. Then what is happening is the water will be flowing in this direction, and it will 

be flowing in the other direction so this is called the water divide, because water will be 

flowing in either direction. How can we find the location of this? We can use the 

knowledge of our mathematics. What will be the slope of the groundwater table at this 

location? It has to be 0, this will be a horizontal line. So that is the property of the 

groundwater table we will use at the water divide the location can be then found how by 

setting d h d x is equal to 0 is not it? Or you can set twice of h d h d x is equal to 0 it is 1 

and the same thing you have the equation or the solution of this h in terms of h square 

this one. So, what you do is you take the first derivative of this equation 6. So, it will be 

twice of h d h d x, so you differentiate on the right hand side equate it to 0 that will give 

you the location of the water divide. 

So, let us do that that will imply your minus 2 W over K x minus h 0 square minus h 1 

square minus W l squared over K. You can do that easily over l. All of that equal to 0 

would mean what? Let me give you the next step which is going to be your 2 W x over K 

will be equal to W l squared over K l. You can simplify this, plus your h 1 squared over l 

minus h 0 squared over l so that will give you your x is equal to K by 2 W outside. And 

then you will have W l over K plus h 1 square minu S h naught square over l or you can 

simplify this further it will be l by 2 plus K over 2 W l times h 1 square minus h naught 

square so that would basically mean that your x is equal to a is equal to what? l by 2 

minus K over W of your h 0 square minus h 1 square over twice of l. So, after you 

simplify this whole thing, this will be the location of your water divide. And then we say 

that this is your equation number 7. So, you get the location of the water divide. Now, 

how can you find the value itself, what will be h m? 
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So, to determine the magnitude h max, all you do is you put your x is equal to a is equal 

to whatever the expression we have found which is this one, you put this in the solution 

is what I think it is equation 6, let me go back and check equation number 6. So, this is 

the solution so you put x is equal to whatever we had found for a in this equation. And 

that will give you the value of h max. We will not do that you can verify that on your 

own. The next thing which we are going to do is we look at the discharge that will be 

taking place per unit width per unit width of aquifer at any location; at any location x can 

be found as follows. Let us say q x is going to be equal to what, it will be v x multiplied 

by the area the discharge is going to be what, the velocity times the area across which it 

is taking place, what will that be as per the Darcy’s law I can say v x is minus K v h d s 

right and what is the area? Area is going to be h times 1. 

Now I had just derived the equation for d h d x which was minus of W x over K plus h 0 

square minus h 1 square minus W L squared by K this whole thing divided by 2 L. So, if 

I use this then I can say what will be your q x. You see that the h d h d x appears in this 

equation h times d h d x. And that is what we have just found out after differentiating the 

solution. So, I put this, this whole expression on the right hand side into this. And then 

simplify what I am going to get is this is your K of your W x over K minus W L over 2 K 

plus h 0 square minus h 1 square over 2 L or your q x is equal to W times x minus L by 2 

plus K by 2 L of your h 0 squared minus h 1 square. So, this is the equation for finding 

out the discharge per unit width of the unconfined aquifer at any location x, I am going 



to number this equation as 8. So, you see that this discharge which, which is taking 

place; it may be either in the positive direction or it may be in the negative direction 

depending upon the location you know that at x is equal to a is the water divide. 

So, to the left of the water divide flow will be taking place in the negative x direction, 

after the water divide it will be taking place in the positive x direction. And the other 

important thing to note here is that this discharge per unit width of the aquifer will be a 

function of x. Like in the earlier case in the confined case, we had seen that it is constant 

it is the same discharge taking place from left to right which is not the case here. So, 

what we can do is we can find out the groundwater flow contribution at x is equal to 0 or 

the upstream water body and also at x is equal to l. We can find out how much flow 

actually will be taking place or how much groundwater contribution will be taking place 

into these water bodies? How do you do that? Well we just put x is equal to 0 and x is 

equal to l in equation 8. 

So, if you do that, you will have q 0 is equal to minus W L by 2 plus your K by 2 L of 

your h 0 square minus h 1 square, this is my equation number 9. And at x is equal to l the 

q of l is going to be W L by 2 plus your K over 2 L times h 0 square minus h 1 square. 

This is your 10. And then you can simplify this further actually you can use q naught you 

will have q l is equal to W l plus q 0. I am not going to do that you can work on that. And 

let me say that if this was 10 a, I am going to say that this is our 10 b. So, this way we 

see that we can find out how much will be the groundwater flow which is taking place in 

a unconfined aquifer with recharge at the upstream water body and the downstream 

water body. I am afraid I am running out of time here I would like to stop today. And 

then look at some other simple groundwater flow situations in the confined and 

unconfined cases. So, we will stop here and come back tomorrow. 

Thank you. 


