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Good morning friends and welcome to the next class of this video course on Advanced 

Hydrology. We have been looking at the chapter on atmospheric hydrology in which we 

have already looked at the formation of rainfall and you know various types of models in 

which we try to find out what is the rainfall intensity coming out of a thunderstorm 

strength and what is the average rainfall special averaging and so on. 

In the last class we had looked at estimation of evaporation using energy balance 

method, which is one of the analytical methods, which we had said that we would look at 

in this course. Towards the end of the last class we looked at couple of empirical 

methods, Rowher’s method and Meyer’s method and then we said that these two 

methods are based on the aerodynamic method, which we would look at in the next class. 

So, today we would start the lecture by looking at what is called the aerodynamic 

method. 
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So, if we come here, aerodynamic method, we had seen earlier, that the energy balance 

method uses two equations, two basic laws, that is, continuity equation and the energy 



equation. And we saw, that the energy balance method for estimation of evaporation 

accounts for one major factor, which affects the evaporation and that, must be heat 

energy. However, there are many other factors or physical factors or hydrologic variables 

that affect the evaporation, alright, from a water body. 

The aerodynamic method accounts for two such other factors, what are those two, well 

we would look at them. Let me first say, that the energy balance method uses the heat 

energy and the aerodynamic method, which we will see today, is based on two factors, 

one of them is the humidity gradient, alright. What is humidity gradient? We had seen 

earlier, that there is a deficit of vapor pressure in the atmosphere, alright. So, depending 

upon the relative humidity in the atmosphere you have certain vapor pressure and 

corresponding to the existing climatic conditions, that is, temperature, you have 

saturation vapor pressure. So, whatever is the difference, alright, that is what drives the 

movement of water from the water body into the atmosphere. 

So, that is one factor, which is the humidity gradient. As we go up how the humidity 

changes as a function of height that is number one, and the other one is the wind velocity 

gradient, either the wind velocity or we can say wind velocity gradient, how the wind is 

changing as a function of depth. So, these are the two basic driving forces for the 

formation of evaporation and then removal of the vapor, alright, which has, you know, 

evaporated away from the water body. So, this, this wind velocity actually is what? It is 

the ability of the medium; it is the ability of the medium to transport the vapor or the 

water vapor away from the, away from the surface or the water surface, and how about 

the humidity?  

Humidity alright dictates the ability of the environment, I can say, or the climate to 

convert liquid to gaseous state. We assume, that the enough heat energy is available 

given the condition, that you have the heat beating up, then how much will be the 

conversion from liquid to gas will depend upon the humidity, which is existing in the 

environment or in the atmosphere. So, these are the two factors on which we would base 

our aerodynamic method. 

Now, what is this humidity gradient, alright, which will dictate what is called your m v 

dot? m v dot is what is that we call is the vapor flux, it is directly proportional to d of 

your qv over dz, where m v dot is a vapor flux going upwards and humidity gradient is 



represented by dq v over dz. Similarly, the wind velocity will dictate what is called the 

momentum flux tau and it will be directly proportional to d over dz. So, these are the two 

basic, you know, principles or laws of physics, which we are going to use in developing 

the aerodynamic method equations for evaporation. 

Now, before we go to that let me just try to explain you schematically what is happening. 

Let us say, that this is your water body or the water surface close to the ground, then 

what we do is, we take any two cross-sections, let us say z 1 and z 2, just above the water 

surface body. Then what is actually happening is water is getting evaporated, alright. 

This is evaporation, alright, due to the heat energy and the humidity gradient, the water 

gets evaporated into the gaseous ways and then because of the ability of the wind or the 

medium to transport that evaporated water away from the water body, you have some tau 

or the momentum flux taking place and that is removed from the effect of the wind. So, 

what we will do is we will write, try to write this expression, alright. 

So, the first one is we will say m v dot is equal to negative rho a K w dq or dq v over dz 

and I am going to number this equation as 3.5.11. Then what is rho a? It is the density of 

the air; K w is what is called vapor eddy diffusivity. It is a constant, which depends upon 

the environment, which dictates how much vapor flux would be there. And then q v as 

you all know is your nothing but the specific humidity. 

Now, this equation, alright, I am taking from, from table 2.8.1 from chapter 2, alright, 

and this was part of your reading assignment in which you were supposed to look at 

some transport processes. Remember the convection, conduction and radiation, I said 

that the remaining things you go through on your own and there is a table, please look at. 

So, what we are doing is, we are drawing our knowledge from some other things we 

have seen earlier. So, this is the equation, which I have taken from table 2.8.1 and in that 

equation the concentration c has been replaced by q v, alright, and it is given on page 44 

or those of you who would like to verify this can go to page 44 of the (( )) book. So, this 

is the basic equation, which will govern the vapor flow rate depending upon the humidity 

gradient. Similarly, we will write or we say, similarly the momentum flux tau upward 

through the plane or through any horizontal plane is given by… 

Let me go to the next page. 
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Tau is equal to rho a K m and du over dZ. We always said, that tau is directly 

proportional to du dZ, alright and let us say, this is 3.5.12, alright, and in which your u is 

the wind velocity at height Z. And what we will take is, we will take two heights, Z 1 

and Z 2, and we will take the derivative of this wind velocity and humidity gradient and 

then try to derive this expression. K m is a constant in this equation, which is called the 

momentum diffusivity. It is the property of the medium or eddy diffusivity and as earlier, 

its units are L square over t. 

Now, what we do is now let us consider two horizontal planes at heights Z 1 and Z 2 

such that they are sufficiently close to each other; sufficiently close to each other. Why 

do we make that assumption? Well, the advantage is that whenever you have a non-linear 

relationship and you consider two points, alright, which are very close to each other, 

within those two regions or two points you can assume the relationship to be linear. 

So, what we are doing is, we are (( ))-wise linearizing the problem, alright. So, we can 

consider the things to be linear within those two, so Z 1 and Z 2 are close to each other. 

So, we can write the expression for the gradients using the linear assumption, so that 

what you can do with n is d of q v over dZ is equal to q v2 q v1 over Z 2 minus Z 1. And 

similarly, your velocity gradient will be equal to u 2 minus u 1 over Z 2 minus Z 1. 

Therefore, if I did, I use these two expressions in 3.5.11 and I divide that by 3.5.12. So, 

what I do is, I use this definitions of the gradient into the equations 3.5.11 and then 12 



and divide the two, that will give me m v dot over tau. These are the two equations, is 

equal to, rho a would cancel out, you have K w over K m times, Z 2 minus Z 1 will also 

cancel out, so you would have q v2 minus q v1 divided by u 2 minus u 1, or you can 

simplify this and find out the expression for m v dot, that is where the evaporation is 

hidden, is equal to tau times K w over K m. Take care of the minus sign and then you 

will have q v1 minus q v2, alright, divided by u 2 minus u 1, slightly arrangement of the 

above equation this we will call 3.5.13. 

So, this is the equation, which gives us the m v dot in terms of the q v, that is the 

humidity at cross-section 1 and 2 and also the wind velocity at cross-sections 1 and 2, 

and K w and K m are constants whose values can be calibrated or estimated somehow. 

However, there is one quantity on the right hand side of this equation, which is still 

unknown, alright, which is this tau. How do we find this tau? So, we still have to do 

something, you know, some jugglery here, mathematical manipulations to determine or 

estimate this value of this momentum flux tau. 
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So, what we are going to do next is estimation of this tau. What we will do is, we would 

use or we will use the concept of wind velocity in the boundary layer, in the boundary 

layer, over the, in the atmosphere, which is approximately 50 meters above the ground, 

alright, and how is that equation, the boundary layer or the velocity profile described in 

the boundary layer? This we will take from our knowledge of fluid mechanics, alright, 



and this is described by u over u star is equal to 1 over k log of Z over Z naught and this 

we would name a number as 3.5.14. 

I am sure you may have seen this equation earlier and this is the velocity profile or the 

logarithmic velocity profile in the boundary layer where u star is the shear velocity, 

which is given by square root of tau over rho a, k is what is called the von Karman 

constant, von Karman’s constant whose value is taken as 0.4 most of the times and z 0 is 

what is called the roughness height of the surface, which is the earth or ground in this 

case for which one can refer to table 2.8.2. You can find the roughness heights for 

different types of (( )) patterns. 

So, we use this equation 3.5.14 for 1 and 2, cross-section 1 and cross-section 2 or 

horizontal plane 1 and horizontal plane 2. We apply this 3.5.14 at these two horizontal 

planes, so that it will give you the velocity u 1 and u 2. You do that and we, and then you 

subtract the two equations, what you would get? So, I am going to say 3.5.14 writing at 1 

and 2 will give you u 2 minus u 1 is equal to, after certain simplifications you have u star 

over k times natural log of your z 2 over z naught minus log of z 1 over z naught. Should 

be very easy to see, I have directly applied that equation, you can simplify that and it will 

be u star over K times natural log of Z 2 over Z 1, Z naught will cancel out. 

So, what it gives you? It gives you u star, remember, or we are doing all this, why? We 

want to calculate or estimate tau momentum flux and that tau is hidden in the u star. u 

star is equal to square root of tau over rho a, alright. So, this u star then is equal to K 

times u 2 minus u 1 divided by natural log of Z 2 over Z 1. I have just come from here to 

here, but u star is what it is equal to, square root of tau over rho a, alright. That means, 

you just simplify for tau, that will be your rho a times K u 2 minus u 1 divided by natural 

log of Z 2 over Z 1, all of that raise to the power what? Because there is square root here, 

square. 
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Now, substitute this expression for tau into 3.5.13. What is 3.5.13? If you go back, this 

equation m v dot, m v dot is what we are interested in, substituting into 3.5.13 what you 

would get is, I will give you the final expression as m v dot is equal to K w k square rho 

a q v 1 minus q v 2 times u 2 minus u 1, this whole thing divided by K m of natural log 

of Z 2 over Z 1 and all of that square. This is your final equation and we number it as 

3.5.15. 

So, this is the final expression for m v dot or the vapor flux, alright, which is moving 

upwards and which is taken away to the wind velocity, alright. It has considered two 

main concepts or two driving forces, one is the humidity gradient, other is the velocity 

gradient, which are the two other major factors affecting evaporation. Now, on the right 

hand side of this equation you see the lots of, you know, quantities, alright, and it is not 

very easy to apply in real life. So, what people have done is, people have tried to 

simplify this. 

So, what we will look next is or analyze is how we can simplify this, so that we can use 

this equation for estimation, alright. But before we go to that I must point out, that this is 

your famous equation, which is named after Thornthwaite-Holzmen; that is the name of 

this equation, Thornthwaite-Holzmen equation. It was developed by this gentleman in 

1939, alright. We need to measure q v, we need to measure u at different heights, alright. 

Also, we need to know rho a and various k’s, different types of k’s. 



So, there is lots of measurements to be taken of, or lots of quantities or you know, 

coefficients to be estimated. Now, what we do is then we look at certain simplifications 

of this Thornthwaite-Holzmen equation, alright. What I will do is, I will list the 

simplifications one by one and then you know, finally, derive or write the compact form 

of this equation. The first simplification is, we get rid of these two coefficients k w over 

k m, alright. We say, that this is constant and fortunately, it is close to one, both of these 

constants are close to each other, their magnitudes. So, we can disregard their variations 

with respect to the different climatic conditions and we can say that this ratio is constant 

and almost equal to 1, so that we do not have to estimate both of them. 

Number two, let us say u 1 is 0 at Z 1 is equal Z 0, what do we mean by this? This is a 

fairly reasonable assumption wherein we are saying, that the wind velocity close to the 

ground, very close to the ground, is equal to 0 due to your boundary layer. You know 

that due to no slip condition. The velocity or the fluid velocity right next to a plate is 0 

due to the no slip condition. So, we are trying to use that. We say that the u 1 is 0 at the 

roughness height. Number three, so that the u 1 will vanish from this equation. 

We say that the air is saturated. This is another simplification or assumption, that air is 

saturated with moisture where at Z 1 is equal to Z 0, close to your water body. You are 

trying to find out evaporation from a lake or from reservoir, so right next to your water 

body or Z is equal to Z 0. Let us say, in this case you are saying, that the air is saturated, 

so that you can measure the temperature close to the water surface body and then you 

can calculate what is called the saturation vapor pressure, alright and that will, you know, 

you can convert that into or we can find out what is q v 1, alright. So, q v 1 and q v 2 is 

the thing that appears in this equation. 

So, we are trying to simplify or estimate some of these things using these simplifications. 

Next simplification is, we use the expression for q v, that is, specific humidity as 0.622. e 

over p, we have derived this already, where e is your vapor pressure, which we can 

measure in the atmosphere. How we can measure the vapor pressure? Where we will 

measure the dew point temperature and we use the equation for saturation vapor pressure 

that will give you the vapor pressure. p, of course, is the atmospheric pressure, which we 

can, of course, measure, alright. So, measurement of e and p, then will give you the 

estimation of q v, alright. 



And then what is relative humidity? It will be nothing but e actual over e saturated. We 

have seen this earlier, alright, so that you can have q v 1 as 0.622 of your e sat close to 

the ground, cross-section 1 is very close to the ground. So, you have e s over p at Z 0 and 

then q v 2 will be what? It will be 0.622 of your e actual certain at height divided by p at 

Z 2. What is the change in pressure? As you go up at cross-section 2, we have this 

relationship. Once we know the pressure on the ground we can find out its variation as a 

function of height. So, we have all those things, alright. 

And from here, actually, I can say then what is e a, is your relative humidity times e s. 

You can measure the temperature at a certain height. We can calculate the saturation 

vapor pressure corresponding to that temperature and once we have the relative 

humidity, we can find out what is the actual vapor pressure, alright. 

Now, what we do is we put all these assumptions or these simplifications back into 

3.5.15, which is your Thornthwaite-Holzmen equation and simplify this. 
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So, if you say, that putting all of the above values or simplify the expressions and 

equations, that is, into 3.5.15, what do we get? You would have m v dot is equal to 0.622 

of your k square, k is the von Karman coefficient, 0.4 times rho a, density of the air, 

times your e s minus e a times of your u 2, u 1 has gone and all of this divided by p is the 

atmospheric pressure, which can be measured, times natural log of Z 2 over Z 0, Z 0 is 

the roughness height corresponding to different surfaces and for water body it is given in 



the table, which I just mentioned, whole square, and this is 3.5.16 now. So, this is your 

final expression or the Thornthwaite equation. 

However, we still need to find the rate of evaporation. So, what we do is, we use the 

continuity equation, which we have seen already, alright. So, you have m v dot is equal 

to what? It is nothing but rho w times e a and you are saying area is equal to unity from a 

per square kilometer or unit area. You are trying to find out what is m v dot or e a is the 

rate of evaporation from a water body based on the aerodynamic method. So, A, A here 

refers to the aerodynamic. 

So, if you put this thing in here, so that you can have e a, is equal to some constant B 

times e s minus e a. So, this is our compact final little expression, 3.5.17, where what is 

the value of B? B is called the constant, which combines all those things, 622 k square, 

von Karman constant, 0.4 square times, rho a times u 2. So, it is taking care of the wind 

velocity, the density, lots of play factors over the atmospheric pressure, rho w and natural 

log of your Z 2 over Z 0 whole square and we say, that this is 3.5.18. 

So, this combination of 3.5.17 and 3.5.18, so this is your final aerodynamic method or 

the Thornthwaite-Holzmen equation for estimating the rate of evaporation from a water 

body, earlier we called a reservoir in which we just need to calculate some over a 

measure, rather measure the humidity and temperature and pressure and vapor pressure, 

these things and we can calculate the rate of evaporation. 

Now, see, that on the right hand side there are two things that appear, one is the vapor 

pressure deficit, that is, e s minus e a and other is the wind velocity, as far as the physical 

factors are considered. So, we have already seen the empirical equations. So, what I am 

going to say is, that many empirical equations are based on, many empirical equations 

are based on this, I am going to say aerodynamic method equation, aerodynamic method, 

Thornthwaite-Holzmen equation for example. What are those empirical equations? Well, 

yesterday we have looked at Meyer’s formula, Meyer’s formula and other one was the 

Rowher’s formula, there are many more, but these are the two we had seen yesterday. 

You see, that this is the most general or the mother of all the evaporation equation, 

Thornthwaite-Holzmen equation and many empirical equations are based on this 

aerodynamic method. 



Now, what we will do is, we will move on and look at what is called the combination of 

these two methods. So, we have looked at two analytical methods, one is the energy 

balance equation or energy balance method and the other one is the aerodynamic. 
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So, now, we will look at what is known as the combined aerodynamic and energy 

balance method. As the name suggests, that we are combining two methods here, one 

method accounts for one factor, alright, physical factor, that affects the evaporation, 

which is the energy balance method, which takes care of the heat energy. There is 

another method, which accounts for two more factors, which is the humidity and the 

wind velocity, alright. 

All three are important, but however, many times what happens is, sometimes the wind 

and the humidity gradient may not be that important or heat energy is the only important 

thing, alright, or the predominant thing. I should say, in those cases you can use the 

energy balance method, alright. In other cases, where the energy is not so important, but 

the winds and the humidity gradient are, you know, predominating factors in particular 

climatic conditions, then you can use the aerodynamic method. However, it is not easy to 

find out the conditions or situations where either of these two methods can be used very 

accurately because all the three physical factors are important, alright. 

So, what we do is, we try to combine or we try to exploit the advantages of both the 

methods. So, let me write it down then. Aerodynamic method uses wind and relative 



humidity controls or aerodynamic method is used when these factors control in the actual 

life, real life situation, and the energy balance method is used when the heat energy 

controls. However, normally, both or this all three factors control, means, some 

combination is needed. 

Now, when we talk about this combination, alright, what we will do is, we will not only 

combine these two methods, but we will also look at one key parameter, which is the 

sensible heat, H s, which we had not taken care of when we derived the energy equation. 

So, what we will do is this combined method, which we are going to develop, will not 

only be accurate as far as the being able to account lot of factors are right while deriving 

these, deriving this equation, but also it will take care of H s, H subscript s, which is the 

sensible heat loss that to the atmosphere in certain form because that is very difficult to 

estimate. So, let us look at that. 

Sensible heat energy, which we had neglected while developing the energy balance 

method, H s, as I said, is difficult to measure. So, what we will do is we will account for 

this H s indirectly, alright. So, this combined method will be able to account for H s 

indirectly, that is, we do not have to measure it, but we will account for that using some 

mathematical, you know, manipulations. So, let us look at that for H s. What is H s? It is 

the sensible heat flux, alright, through the air physically by convection. It is the sensible 

heat flux, which goes back into the atmosphere out of the R n that comes in, alright, 

through convection. So, that is physically what this physical variable is. 

Similarly, to that is what we have l v m v dot is, it is the vapor flux. We have seen that 

already in the aerodynamic method. It is the vapor flux through the air by convection. 

So, what we are trying to do is, we are trying to say, that H s, that is, the sensible heat 

flux process and the l v m v dot or which is the vapor flux process through the air, they 

are similar processes because they are caused by the process of convection. So, we say, 

that they are similar processes. So, we can take them to be proportional to each other. 

Why, because both of these processes being caused due to the convection in the air, 

alright. So, whatever is the convective condition, that will dictate H s, that will also 

dictate e vapor flux, alright. 

So, what we say is, that we if we take the ratio of these two, then that will be constant, 

alright, and then we try to find that constant. So, once we know one part, we know the 



other one, alright. So, then we define or let us define a ratio, which is called Bowen’s 

ratio, beta. How do we do that? It is the ratio of H s and l v m v dot, that is all, alright, 

which is we say, 3.5.19. 
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So, with G is equal to 0 we still make the assumption, that the heat lost to the ground is 0 

or we are not able to measure it, but that is actually quite, you know, reasonable 

assumption because G, as compared to H s and R n, is very small. So, we can make that 

assumption still, alright. So, that means your energy balance then looks like, looks like 

your R n minus H s minus G is equal to l v m dot v. And we say that G is equal to 0 and 

what is l v m dot v? 

We have just said that, that is, beta times H s using the definition of the Bowen’s ratio. 

So, if you simplify that, then you will have R n is equal to l v m v dot times 1 plus beta. 

So, you see, that in R n we have incorporated beta, which incorporates H s or the 

sensible heat laws, alright. So, we are indirectly accounting for this H s without actually 

having to measure it and let me number this equation as 3.5.20, alright, alright. 

So, now, the only problem is how to calculate or estimate this beta, right, alright or this, 

what we will do is, we will use two transport processes similar to the two transport 

processes we had used in deriving the aerodynamic method. So, in this case what we will 

do is use two transport processes. So, let me be more specific. In the Thornthwaite’s 

method, Thornthwaite-Holzmen equation, in deriving that, which were the two transport 



processes we used? One was the vapor transport and other was the momentum transport, 

right. We had said that vapor, first the liquid gets converted into vapor. So, there is a 

vapor transport taking place and then once the vapor gets accumulated, it is transported 

due to the wind action, alright. So, we, you looked at the momentum transport. And for 

the Bowen’s ratio or estimating the Bowen’s ratio we will use the two transport 

processes, which are involved here, which is vapor and the heat transport, alright. 

So, we have already seen what is m v dot. It was, we had taken while deriving the 

aerodynamic method as this equation and I am going to number this as 3.5.21. And the H 

s is minus rho a c p K h dT over dZ, alright. This is 3.5.22 and all of these are coming 

from your table 2.8.1 from page 44, which we had seen earlier. 

So, these two equations correspond to the two physical transport processes for the 

transport of heat energy. One is the m v dot, which is for the vapor transport actually and 

H s is for the sensible heat transfer. I will not go into the details of this, you can look at 

these equations and the associated material. However, let me define what are the 

quantities in the second equation? This c p is the specific heat at what? Constant 

pressure; k h is the heat diffusivity, alright; and temp, T is of course, the temperature, 

alright. So, this H s actually depends upon what it is, a process of convection, alright. So, 

it depends upon the dT dZ or how the temperature is varying as a function of height. So, 

H s is directly proportional to dT dZ. 
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Now, what we do is we consider the two planes at Z 1 and Z 2, alright and do a very 

similar analysis, that is, you will have H s over m dot v. You take these two equations, 

divide each other, what you will have is this, c p K h T 2 minus T 1 divided by K w of 

your q v 2 minus q v 1. And we go back, you divide this by this, d q v over d z is, you 

have taken as q v 2 minus q v 1 over Z 2 minus Z 1. Similarly, dT dZ you have taken as 

T 2 minus T 1 over Z2 minus Z1 and you divide these two equations, things will cancel 

out and this is what you will get. So, this is 3.5.23. 

Now, let us put q v as 0.622 of your e by p and divide by l v, alright, this equation, 

alright. In 3.5.23, the operation we are doing is, we use q v is equal to 0.622 e by p and 

then we divide this equation in the, on the left hand side if you see it is H s over m v, 

alright. So, if you divide by this l v, we will have on the left hand side, what, H s over l v 

m v dot. It is equal to what? The Bowen’s ratio that is what we are trying to find out, 

alright. So, what we will have is Bowen’s ratio beta is equal to H s over l v m v dot is 

equal to what, this whole thing, c p K h p T 2 minus T 1 divided by 0.622 of your l v. 

You can verify, that K w and e 2 minus e 1 or you say, beta is equal to some gamma, 

alright, times just the physical variable, which you will measure, T 2 minus T 1 over e 2 

minus e 1. This you say your equation number 3.5.24 and this gamma is called the 

psychometric constant, which is c p K h p over 0.622 l v k w. This is 3.5.25, which is the 

definition of your gamma. 

So, what have we done so far in the combined aerodynamic energy balance method? The 

only thing we have done is, we have taken care of the sensible heat H s, alright. We are, 

we have said, that in the energy balance method we ignored it and we said that we can 

take that equal to 0, but in many practical situations you cannot ignore the H s, alright. 

So, what we have done is, we have gone around the two physical processes and then we 

have estimated H s in the form of Bowen’s ratio, which has come out to be equal to or 

given by this expression 3.5.24. 

Now, in terms of all of this parameters what people have done is, we had, they had 

shown or we will write that now. It can be shown or derived, that your combined 

evaporation is given by this equation delta over delta plus gamma times E r plus gamma 

over delta plus gamma times E a. It is a simple combination actually. You see, that this is 

a weighted average, alright, of the two evaporation rates and let me number this as 

3.5.26. 



So, in this equation what we are saying is that this rate of evaporation e, alright, has a 

certain weightage. This is E r; E r is what? E r is the energy balance method. This E a, E 

a is what? The rate of evaporation calculated using aerodynamic method. So, we are 

combining these two and we are giving them different weightages, alright. One weight is 

delta over delta plus gamma, other is gamma over delta plus gamma and you see that the 

sum of these two weightages is equal to 1. 
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Now what is this delta? Well, we have seen already, delta is nothing but the slope of the 

saturation vapor pressure curve as a function of this temperature. This we have seen 

already in the beginning of this chapter, alright, and gamma we have seen already 

derived above. And let me write simply that or simplify, that r, E r is equal to R n over l 

v rho w. This we had derived already and E a, this your energy balance and E a is capital 

B times e s minus e a. We have just derived, which is the aerodynamic method. 

So, this is your final expression then 3.5.26, which combines the energy balance and the 

aerodynamic method, which is the most accurate method as it is able to account for both 

the methods. Not only that, but it is also taking care of the sensible heat, H s. 

So, what we are going to do the last thing in this chapter or the next thing in this chapter 

is, we would look at what is called the evaporation over large water bodies and this is 

what is actually called Priestly and Taylor method. And this was proposed by these two 

gentlemen in 1972. What they have done, these two gentlemen is, that they have 



conducted many experiments, alright, across many different types of lakes of different 

sizes and shapes and in different climatic conditions. And what they have found is some 

interesting observation, alright. They have combined; they tried to combine the two 

methods. So, they, they would find out the evaporation from the lakes, alright, using the 

energy balance method and also the aerodynamic method and then they found, that the 

ratio of these two methods is a certain percentage of the other. 

So, what we will do is, let me write it down, their observation is, that the energy balance 

considerations govern the evaporation. They said, the main factor for causing 

evaporation and is the energy, alright, after that you have the other factors, which will be 

certain fraction, although they will be important, but the major factor is the energy, 

alright. The other conclusion they have had was that they found, that the second term, the 

second term in your combined method is about or approximately 30 percent of the first 

one. 

What is the second term? Well, the second term in your combined method is the 

aerodynamic term, alright, which is, which has the certain weightage times E a, and E a 

is the rate of evaporation estimated due to the aerodynamic method. So, what they are 

saying is, that the importance of the aerodynamic method is about 30 percent of the 

importance of the energy balance method, alright. 

So, if you use that expression or their conclusion, then you can say, that the combined 

evaporation E is equal to alpha times delta over delta plus gamma. What is this factor 

delta over delta plus gamma? This is the weighting factor for the energy balance method 

in your combined method, you see. And we have put an alpha in front, what will be this 

value of this alpha if the weightage of the second term is 30 percent? Well, you have the 

30 percent here and 100 percent here, if you sum the two it will be 1.3. So, you see that 

your value of alpha will be 1.3. 

So, what they are actually saying is, that for the large water bodies or the large lakes, 

alright, you actually do not have to make lot of measurements, which are involved in the 

aerodynamic method, alright, your q v, the wind velocities, pressure and so on. You can 

take advantage of the aerodynamic method by this observation, which they have made 

alright. So, if you look at this equation, alright, excuse me, and let me put, that this is 

equal to E r. E r is the due to radiation or the heat energies. 



So, what they are saying is that the evaporation is equal to 1.3 times this factor times E r, 

and E r involves only one measurement, which is the net radiation, you see. So, we are 

able to account for all the factors without actually having to measure most of them. This 

is the major advantage of this Priestly and Taylor method, which gives you quite 

accurate results, as far as the rate of evaporation is concerned, and you do not have to 

measure a lot of these physical parameters. 

So, with this I think we come to the conclusion of this chapter on the atmospheric 

hydrology or atmospheric water. In the next class we would like to start the next chapter, 

which is on the surface water. So, with that I would like to close today’s lecture. 

Thank you. 


