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Lecture — 14

Hello everyone, welcome to lecture 14 of the course Applied Seismology for Engineers.
Myself, Dr. Abhishek Kumar. In earlier lectures, we have discussed different seismic waves
which are generated during the process of earthquake occurrence as well as the interaction of
the waves with the surficial layer of the earth. In today's lecture, we will be discussing in detail
one specific wave, that is, P wave, also known as the primary wave or longitudinal wave or
compressional wave. We will be discussing more about the nature of the wave; some portion
we have already discussed in earlier classes.

So, we will also be discussing in detail the governing equation which discusses the propagation
of the P wave through a particular medium. This will be required in order to determine how
much time a wave, which is primary wave in nature, will take between the epicenter and your
recording station in order to reach and get detected at the recording station. Before going to the
derivation for the one-dimensional equation of motion for the P wave, we will brush up on
some of the basics of the primary wave, which we have discussed in an earlier lecture. As we
know, earthquakes generally do not directly cause any kind of damage to the infrastructure and
so on with respect to the fatalities.

So, most of the time, it is the response of the infrastructure, which can be a building, a slope, a
dam, or a bridge, to how these infrastructures are going to respond to the loading induced by
an earthquake. That means whenever there is an earthquake, different kinds of waves will
generate from the epicenter and, depending upon the propagation medium, some waves will
get attenuated, and some may get amplified. So, this modified frequency content of the wave,
once it reaches the site where a structure is actually available, determines how the structure is
going to respond to these external loading conditions. This will define whether the structure
will remain intact, undergo cracks, partial damage, or complete collapse. Depending upon the
response of the structure to these seismic loading conditions, it will also govern whether there
will be any kind of fatalities to the intended user of that particular structure or not. So, finally,
it is not the seismic wave which is directly responsible for the damage; it is basically the
response of your infrastructure which is going to govern how a particular seismic wave and a
building, soil, or dam is going to respond. So, that is going to collectively define whether it
will be damaged or there will be fatalities.

Now, one thing we have discussed earlier is that depending upon the convection current,
different plates will be moving in different directions. In this process, there will be the
development of stresses within the plate itself. Subsequently, depending upon the type of
motion dominating at a particular fault, whether it can be strike-slip faulting, dip-slip faulting,
oblique faulting, or similarly, normal faulting or reverse faulting, each of these faulting types,



when these kinds of movements happen along the fault, will result in the storage of strain
energy.

When the strain energy storage exceeds or the building up of stresses exceeds the in-situ
strength of the rock medium available at your fault plane, the medium will definitely undergo
failure, including rupture. As a result, seismic waves will come into the picture. So, depending
upon the type of wave, the material through which the waves are passing will respond in
different ways. That means when we talk about primary waves, we will primarily be discussing
the primary wave in today's lecture. So, let us discuss the primary wave, and then we will
discuss the behavior of the propagation medium or the particles when the primary wave is
propagating through a particular medium.

What we are trying to understand here is when, at the source, a primary wave was generated,
as this wave propagates through a particular medium, what is happening within the medium is
governing the propagation of the primary wave through that particular medium. Subsequently,
depending upon the stiffness the medium is offering, there will be changes in the characteristics
of the wave. When I say changes in the characteristics, that means primarily, I am focusing on
the frequency content of the motion and its corresponding amplitude. So, let us discuss the
primary wave. This is a kind of revision of the previous lecture in which we discussed seismic
waves and their attenuation because we will be discussing seismic waves again after some gap
in the lectures. So, here I am giving an overview of the primary wave.
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As the name suggests, these are the waves that reach a recording station first. That means if
there is a recording station and an earthquake has happened at some epicenter, when the waves
start from the epicenter or focus, primarily, when these start propagating in all directions, the
primary wave will be the first one to reach or get detected at the recording station. Since these
waves result in compression and rarefaction in the medium through which they are propagating,
these waves are also called compressional waves. Thirdly, because the motion of the particle
through the medium in which the wave is propagating is also happening in the longitudinal
direction. To understand more specifically about the nature of particle motion, here is an
animation given at the bottom. So, you can see over here, depending upon the direction, if the
wave propagation is happening in this particular direction, the direction of wave propagation
is in the direction of this particular arrow, and subsequently, it is propagating through a medium.
I have considered any particular element, and then you can pick up any particular element or
one particular small part of this particular elementary rod. You can see whenever the wave
passes through this particular element, initially, the material undergoes compression, and then
the material undergoes rarefaction.



Finally, once the wave propagation is over through that particular element, the material comes
back to its original position. That means there will not be any volume change in the material.
So, the wave has propagated, but because of the nature, that is, compression and rarefaction,
which the wave causes to the propagation medium, initially, there will be compression,
followed by rarefaction, and then the material comes back to its original position. Subsequently,
the wave will pass, or there will be the subsequent movement of particles adjacent to the initial
particle, and that is how the wave will propagate to larger distances. The propagation of the
primary wave is primarily identical to a sound wave passing through a liquid. So, there will be
compression and rarefaction. These waves transmit the seismic energy, which they actually
originated from the focus of the earthquake, causing compression and rarefaction in the
material through which it moves. This can also be understood by the back-and-forth motion in
the material through which the waves pass.

As I mentioned, these are the first waves primarily used or generated from the source and
getting detected at the recording station. These are the fastest in terms of propagation
velocity—>5 to 8 kilometers per second in the Earth's crust, more than 8 kilometers per second
in the mantle, 1.5 kilometers per second in water, and 0.3 kilometers per second in the air. So,
this is roughly the propagation velocity of each of these waves. Generally, if you see the
amplitude of the waves, it is relatively less in comparison to other waves, that means shear
waves and surface waves. The amplitude of the wave will be lesser, but the propagation velocity
of these waves will be much faster than other kinds of waves. Now, again you can see if this is
the direction in which the wave is propagating, and this is the same direction in which the
material is undergoing compression and rarefaction. So, the direction in which the particle is
undergoing motion and the direction in which the wave is propagating are the same. In the end,
once the wave passes through a particular medium, there will not be any volume change.

So, this property of how the material is interacting with the propagation of the wave is very
important, that is, there is no deformation or volume change in the material through which the
wave passes. One important characteristic is this can travel through solid as well as liquid. As
far as the material is offering resistance to the propagation of these kinds of waves, the wave
can propagate through that particular medium. So, this is to give you an idea about what a
primary wave is. Now, based on our understanding so far about primary waves, we have
understood that whenever there is an earthquake, these waves will be the fastest to reach a
recording station. This is one primary reason why the primary wave's arrival time has been
used in many countries across the globe while developing earthquake early warning systems.

Considering the nature of particle oscillation generated by the propagation of these waves,
these are not actually causing a lot of damage primarily, but still, they can be used in order to
detect, because once the primary wave reaches the site, it means somewhere there will also be
a secondary wave which will be reaching the particular site and will actually induce shearing
in the medium, leading to different kinds of failures. So, in order to make sure that some
secondary wave is also on the way and about to reach a recording station, site, or building, you
can utilize the characteristics and the arrival time of the primary wave. Depending upon your
threshold value, which many of the early warning systems use, a person can decide whether it
exceeds the threshold value such that an alarm needs to be issued or if it is still within the
threshold value and there is no need to issue an alarm for the user or intended user in the region.
So, if you release an alarm, definitely people will come to know that an earthquake's relative
shear wave is going to hit, and then, particularly, they can move to a safer location, and your



high-speed moving train can be put to a complete halt such that the damage can be minimized
to a significant level.
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Continuing with the topic, we will be discussing further the derivation of the one-dimensional
equation of motion for the primary wave. That means we are interested in developing the
governing equation which is going to describe the motion or propagation of the primary wave
through a particular medium. As we discussed in the previous slide, in order to understand and
derive the equation, we will take one elementary strip. Over here, I have taken an elementary
strip of length L, and there are two cross-sections over here again within this particular
elementary strip. So, again over here, I can mention A as the cross-sectional area of the rod.
This is the cross-sectional area of a rod, considering a rod of length L and having a cross-
sectional area of A, subjected to the passage of the P wave. That means the P wave is passing
through this particular elementary rod, and you can also mark the direction of propagation as
the direction of the P wave propagation.

Now, to further understand, we will consider an elementary length of dx. So, we had an element
of length L, and within that particular element, I am considering a small length, dx, on which
we will try to understand what the change in the medium characteristics will be when the wave
is passing through this particular element. Let us consider these as two cross-sections: cross-
section 1-1 and cross-section 2-2. So, two sections have actually been taken here, and I will be
interested to know if this is the direction of wave propagation—that is, the wave is propagating
from section 1-1 and enters the section of length dx and then leaves through section 2-2. So,
considering an element length of dx as the P wave passes through the elementary length of dx,
there will be development of axial stresses from sections 1-1 and 2-2. That means, when we
have these two sections, 1-1, the material is offering resistance, and between 1-1 and 2-2,
considering the length is dx and the material is also having some stiffness, there will be a
change in the stress between section 1-1 and 2-2. Considering the nature of the primary wave,
which causes compression and rarefaction, we will have axial stresses developed at sections 1-
1 and 2-2.

Now, one thing we should observe here is that when the primary wave, which has the nature of
compression and rarefaction, is incident at 1-1 and continues to 2-2, there will be some change
in the stresses between 1-1 and 2-2 because of the length dx. As a result, if I consider sigma x



is the axial stress developed at section 1-1. Let sigma x be the axial stress at section 1-1. Hence,
after the elementary length dx, the axial stress at section 2-2 will be, there will be a change in
the stress values between sections 1-1 and 2-2 because it is a material which is continuously
offering resistance to propagation. So, this will be sigma x plus dou by doux (sigma x dx). So,
this is along the length dx, if there is a change in stresses at the rate of dou by doux (sigma x),
then this is at section 2-2. So, here it is sigma x plus dou by doux (sigma x dx), and at section
1-1, it is sigma x.

Now, for equilibrium, one thing we have to mention here or assumption that has to be
highlighted is that we assume that these axial stresses are uniformly distributed across the
cross-section. That means across the cross-section A, either you consider section 1 or section
2, the stresses are uniformly distributed throughout the section. So, there is no variation across
the section in terms of stresses.
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With this, you can go ahead with the value of stresses between the two sections, that is, section
1-1 and section 2-2, following Newton's second law of motion. We know that force equals mass
times acceleration. Now, the total force acting on this elementary length or elementary rod, dx,
can be determined based on taking the difference between the two because at section 1-1, you
have some value of axial stresses which is assumed to be uniform throughout. Similarly, at
section 2-2, whatever is the state of stress, it is uniform throughout the section. So, using these
two—the cross-section uniform distribution and the value of stresses—one can determine the
value of stress at section 2-2 because it is propagating from 1-1 to 2-2. So, you will determine
that, and that will be the value sigma x plus dou by doux (sigma x dx) times A. This is the value
of axial stress multiplied by the cross-sectional area. So, this axial force at section 2-2 minus
the axial stress at section 1-1, we can also write it here at section 2-2: sigma x times A. So, this
is at section 1-1, this is at section 2-2, and this is the total force. What we will get here is dou



by doux (sigma x dx) times A. So, this is the total or net force which is applicable between
section 1-1 and section 2-2, which resultant propagation of the primary wave through a
particular medium. This will be equal to m times a. Let the earlier equation be numbered as 1,
and this equation be numbered as 2. So, here we can write as the right-hand side of equation 2,
that is, m times a. This can be written as, now, we have to make an assumption that rho is the
mass density of the medium of the rod material. That means the rod which we have shown in
the previous slide, that particular rod is having a mass density of rho. If that is the case, we can
write m times a as m, the mass, which means mass density multiplied by the volume. So,
volume is A, the cross-sectional area, and then dx, the length of that particular rod. So, the
product of these three will give you the mass times acceleration. So, when these waves, the
primary wave, propagate from 1-1 to 2-2, they are causing oscillation or change in the position
of the particle with respect to the initial position along the direction of wave propagation. So,
consider this particular change in the position of the particle represented by u. So, you can call
it as dou square u by dou t square. You can say u is the particle motion or change in the position
of the particle because of the propagation of the wave or particle displacement. So, we now
have also understood there is a particle which is undergoing motion, and this particle is
undergoing motion because the primary wave has a characteristic that whenever it propagates
through a particular medium, it will cause oscillation in the particle in the direction of
propagation, which, though it will result in compression and rarefaction, will finally cause the
material to come back to its original position. So, this is going to give you this is basically the
value of acceleration, dou square u over dou t square. Thus, combining or putting this particular
value, putting the value of m a in equation 2, will give dou by dou x dx sigma x dx times A
equals rho A dx dou square u over dou t square. Now, from here, we can understand this is
going to give you the value as dou by dou x dx equals rho dou square u over dou t square. So,
this is the same thing which has come over here. So, this particular equation I am giving as
number 3, this particular equation I am giving as number 4. So, here it is basically dx and A
were there on both the sides; the rest of the things will remain over here, just a correction: this
will be sigma x. So, dou by dou x sigma x equals rho times dou square u over dou t square.
Sigma x is the heuristic at section 1, and u is particle displacement with respect to the
propagation of the primary wave through a particular medium.
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Now, let us further see to this particular equation. We can write sigma x equals to M times
epsilon. Just I will mention over here is where M is the constraint modulus, which will ensure
no volume change due to the propagation of the P wave through the medium. So, the constraint
modulus we have used often; we correlate stress and strain by means of Young's modulus, shear
modulus; here we are using the constraint modulus because, as we discussed, when the wave
propagates, there will be some compression and rarefaction, but once the wave further
propagates, the material comes back to its original volume. So, in order to ensure that there
will not be any change in the volume, we will be using here compression modulus, constraint
modulus. Further, epsilon value will be equals to dou u over dou x, that means change in the
position of the particle over the distance dx. Remember, u is also in the same direction as we
are measuring dx, therefore. So, in equation 4, we were having dou by dou x sigma x. So, from
here, what we can get is M will be outside, dou over dou x of dou u over dou x, that is going
to give you dou over this sigma x equals M dou square u over dou x square. So, you have now
this particular equation, that is equation number 5 (I can name this) dou by dou x sigma x,
which was there in the previous equation, what was equation number 4: dou by dou x sigma x
equals rho times dou square u over dou t square. Now, the left-hand side of this particular
equation has been determined in terms of u value because the right-hand side is also in terms
of u value. So, we can write over here that is rho times dou square u over dou t square equals
M times dou square u over dou x square. I can write it over here also, this as equation number
6, rearranging the terms of equation 6, it can be written as it can be again written as. So,
equation 6, again we can write it as dou square u over dou t square equals M over rho dou
square u over dou x square. Consider M over rho equals to Vp square, where Vp is the



propagation velocity of the primary wave through a medium having rho as mass density and
M as constraint modulus. So, any medium which is having mass density of tho and M as
constraint modulus, we can determine the value of Vp, that is. So, here we can also write it as
that means Vp equals to square root of M over rho, putting this value of Vp you can just put it
in bracket. So, we can get dou square u over dou t square equals Vp square dou square u over
dou x square. Now, here you can see on one side the particle displacement with respect to space
and the particle motion with respect to time is correlated with the primary wave velocity. This
particular equation, that is equation 7, is known as the one-dimensional wave equation for the
primary wave or P wave. That is, the above equation is governing how the particle motion with
respect to space and time will happen for a medium having Vp as primary wave velocity.
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Now, we can write as Vp I have already mentioned that Vp is a function of constraint modulus
of the medium and mass density of the medium. Again, M is correlated with Young's modulus
and Young's modulus E, which is primarily used, and Poisson's ratio nu. So, if you know these
two values because that is how you can correlate actually Young's modulus and constraint
modulus. So, M will be equals to 1 over nu over 1 plus nu, 1 minus 2 nu times E or Young's
modulus. So, constraint modulus and Young's modulus are correlated for a particular medium
having Poisson's ratio of nu, Young's modulus denoted by E, and constraint modulus denoted
by M. So, again using these three parameters, one can correlate how much will be the value of
constraint modulus if Young's modulus is given or how much will be the value of Young's
modulus if constraint modulus is given, or when these two values are given, what will be the
Poisson's ratio of the medium. Now, one more information one can ask, because when the wave
1s propagating, it is not the particle velocity; it is the wave propagation velocity. Though the



direction of wave propagation and particle motion is in the same direction, still the particle
velocity as well as wave velocities are two different properties. So, please note here that Vp,
that is P wave propagation velocity, and is not the particle velocity or the velocity with which
the particles are undergoing to and fro motion, is not particle movement or particle
displacement corresponding velocity. So, in order to determine it, u we discussed as u was
particle displacement when the primary wave is passing through the medium, dou u over dou t
is the particle velocity or the velocity with which the particles are moving. So, dou u by dou t
one can write as dou u by dou x times dou x over dou t. Dou u by dou x is, we know that it is
the value of epsilon, that is normal strain, and then dou x by dou t is the value of Vp for our
primary velocity. This particular value of epsilon can be correlated with respect to constant
modulus as sigma x over M, which can further be correlated as rho times Vp square and Vp.
So, this can be written as sigma x over rho times Vp. This is the value of dou u over dou t, or
which I can write as u dot. That means the particle velocity, or the velocity with which the
particles are undergoing movement to and fro motion, that is directly proportional to the axial
stress, and so u dot is directly proportional to sigma x, and the constant of proportionality, that
is rho times Vp, is called as— not directly proportional, it is proportional to sigma x, and then
rho times Vp is called as specific impedance of the material of the medium, which can be
determined as once you know the mass density and wave propagation velocity, we can
determine the value of rho times Vp, which is the specific impedance of that particular medium.
Once this value is known to you, depending upon the axial stress generated at a particular
section, one can determine how much is the particle oscillation velocity across that particular
section, that is section 1 1 or section 1 2. So, this derivation, which we have discussed over
here, is helping us to understand when the primary wave is incident on a particular medium,
how the propagation velocity will be governed by means of constant modulus, by means of
mass density of the medium, and how the change in particle position with respect to space and
time is also governed by means of the one-dimensional equation of motion, which is given in
the previous slides. So far, we have understood how the governing equation of motion can be
determined for the primary wave. Secondly, the square root of the ratio of constant modulus
over mass density of the medium will give you how much the primary wave velocity is. One
thing is clear over here: as far as the medium is offering resistance in terms of constant modulus,
the primary wave will be able to propagate through that particular medium. Secondly, once we
know the primary wave velocity of a particular medium, we can also determine how much the
particle motion will be through that particular medium. As far as the medium is offering
stiffness in terms of constant modulus, the primary wave will be able to propagate through that
particular medium. So, unlike shear waves, we generally do not pass through or generally do
not travel through liquids. The primary wave can travel through liquids as far as it is
propagating through a medium, and the medium is able to offer stiffness in terms of constant
modulus, which is also available for liquids. The primary wave will be able to propagate

through that particular medium. So, we can number this particular equation as equation number
8.



Q 1: Determine P wave velocity for following
materials;

Steel 7.82 2.78x10%1
Water 1.0 2.34x10°
Rubber 1.28 1.15x10*2

Now, let us discuss one numerical problem. Suppose, in general, you have been given the mass
density of a particular medium, how much the constant modulus of a particular medium is. You
can determine how much the primary wave velocity is. Depending upon the propagation
medium, one can determine primary wave velocity. As we discussed at the beginning of this
particular lecture, whether the primary wave is propagating through air, whether it is passing
through water, whether it is propagating through rock, it is propagating through rubber, it is
propagating to different mediums, the primary velocity keeps on changing. We will be using
the information on primary wave velocity more frequently when we are trying to locate the
epicenter of an earthquake. So, using the record, which is being detected, or which has been
available at a recording station, we will try to find out how much the arrival time of primary
wave velocity is, what is the arrival time of the primary wave at your recording stations. Once
that arrival time is known to us, using that information, we can find out, taking that primary
wave velocity into account and the time of arrival, we can find out what is the radial distance
within which the epicenter of your earthquake is located. When this exercise is repeated for
more than three recording stations, we will get a more accurate idea about the potential location
in which the epicenter of an earthquake is located.

So, in today's lecture, we will also try to solve a numerical where we can determine how much
the primary wave velocity is through different mediums. So, we will also get an understanding
about depending upon the medium properties, that is, the constraint modulus, which is given
over here. So, here, three mediums are given: steel, water, and rubber. The specific gravities
are also given. Rather than mass density, we have been given the specific gravity of that
particular medium, and we have been given the constraint modulus value. We could have also
been given the Young's modulus as well as the Poisson's ratio. So, again, one can determine
how much the constraint modulus is using the equation which was given during the derivation.
Now, it is asked to determine how much the primary wave velocity is.
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So, using this, we know the primary wave velocity is the ratio of constraint modulus over mass
density of the medium. So, for case 1, that is for the case of steel, the constraint modulus value
is given as 2.78 x 10"11 Newton per millimeter square. Specific gravity is given. So, 7.82 is
the specific gravity of the medium, multiplied by 1000 grams per meter cube, that is going to



give you how much will be the value of. So, 78200 kg per meter cube. One has to be very
careful while dealing with the units because one is given in Newton per meter square, and the
other one is given in kg per meter cube. So, using these two values, one can determine the value
of Vp equals 2.78 x 10"11 over 78200. So, this is going to give you the mass density and
constraint modulus based on the ratio one can determine. So, you will get the value equals 5962
meters per second. That is the velocity with which the primary wave will pass through the
medium of steel, having a specific gravity of 7.82 and constraint modulus equals to 2.78 x
10711 Pascal.
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Go with the second part, that is, for water, having mass density of 1000 kg per meter cube and
constraint modulus equals to 2.3 x 10”9 Pascals. One can determine the Vp value equals to
square root of 2.3 x 1079 over 1000, which is going to give you the primary wave velocity of
1516 meters per second, which is equal to 1.5 kilometers per second. So, this is the velocity
with which the primary wave will propagate through a particular medium. C, that is given for
rubber, the value of mass density is given as 1.28, the specific gravity is given, multiplied by
1000. So, 1280 kg per meter cube is the mass density of the medium, and the constraint modulus
is given as 1.15 x 1012 Pascals. Hence, the value of Vp, one can determine as 1.15 x 1012
over 1280, which will result in 29973.9 meters per second or approximately 29.9 kilometers
per second as the propagation velocity of the primary wave through the rubber medium.

So, overall, in this particular lecture, that is lecture 14, we try and understand how a primary
wave passes through the medium. During the passage of the primary wave, there will be a
change in the axial stresses because the particle is undergoing to and fro motion in the direction
of wave propagation. Taking those variations in axial stresses, cross-sectional details, and
stiffness of the medium, one can determine how much the change in the particle motion with
respect to space as well as time, which is directly a function of primary wave velocity. Further,



how primary velocity is correlated with respect to Young's modulus, we have also discussed.
Then, if the primary velocity is known to you, how one can determine the particle oscillation
or the particle motion or the displacement value. Using these, we tried solving one numerical
problem where the mass density of the medium and constant modulus are given, or the specific
gravity of the medium is given, and constant modulus is given. Converting each of these
parameters into specific units, one can determine the value of primary wave velocity, as well
as the primary velocity of all the mediums.

So, thank you, everyone. We will continue with respect to the derivation for the one-
dimensional wave equation for the shear wave in lecture 15. Thank you.



