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Hello, all. Welcome back. We were discussing about level pool routing for carrying out the 

reservoir routing in the previous lecture. Today we will move on to the topic of river flow 

routing. In the case of routing we are finding out the discharge or the corresponding water level 

at the downstream section by making use of the known stream hydrograph data at the upstream 

section. Two different techniques for carrying out routing we have covered that is hydrologic 

routing and hydraulic routing. It can be applied in the case of reservoir and also channels. We 

have already completed the reservoir routing in the previous lecture. We were making use of the 

hydrologic modelling technique that is by making use of the continuity equation along with the 

storage function we have carried out the reservoir routing. The reservoir routing method which 

we have utilized is also known as level pool routing. In that case, along with the continuity 

equation, we were making use of the invariable storage function. But in the case of reservoirs 

which are narrow in reach at the upstream end and the depth is less compared to the length of the 

reach and also in the case of channels we cannot assume the storage function as invariable 

storage function. So, in the case of level pool routing we have made use of a storage function in 

which the storage is a function of outflow. But that is not the case with the channels or rivers in 

that the storage is variable storage function. Let us see how this variable function is utilized 

along with the continuity equation for carrying out the routing in the channels or rivers. 
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So, today's topic of discussion is hydrologic river routing. In this case, we will be making use of 

a variable discharge storage relationship that is the variable storage function. The storage in the 

case of channels depend on both the inflow and outflow. On the other hand, what we have seen 

in the case of reservoirs, the storage was a function of outflow only. There was no relationship 

with respect to inflow. But in the case of channels or streams, the storage is a function of both 

inflow and outflow. 

The schematic representation of channel is given over here. We are having the inflow at the 

upstream end and the outflow coming at the downstream end. You can imagine the river that is 

we are having a river like this and at the upstream end the streamflow represented by the inflow 

hydrograph or we used to represent it by notation I(t) is known to us. By making use of that we 

need to find out the outflow hydrograph at the downstream end. This is the upstream end and we 

are having the downstream end where we need to determine the outflow hydrograph. Outflow 

hydrograph means the temporal variation of streamflow at the required location at the 

downstream section. For that we will be considering a reach, length of the river or channel for 

which we need to carry out the flow routing. In that river itself, at the upstream section, we will 

be having the inflow hydrograph. Through the upstream section, the flood wave will be entering 

the river and it passes through the downstream section. As it passes through the river from the 

upstream to downstream the changes will be taking place in the flow characteristics. So, based 



on that what will be the streamflow or the outflow hydrograph at the downstream section that 

needs to be determined by making use of the river flow routing. 
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Different stages of channel storage during the passage of flood wave we need to understand. You 

have already studied in hydraulics different types of flow prevailing in the open channel. So, 

here in the case of river flow during the normal conditions we can consider as uniform flow 

condition. During the time of flood wave passing through the channel usually we will be carrying 

out the study considering the flow to be gradually varied flow. Sometimes it can be rapidly 

varied flow also, but in the case of hydrologic routing we will be considering the flow to be 

gradually varied flow. So, different stages of channel storage based on different types of flow 

conditions we need to understand. Channel having uniform flow. You already know what is 

meant by uniform flow, that is with respect to space there will not be any variation in the flow 

characteristics. If we are having uniform flow in a channel, then we can conclude that inflow is 

equal to outflow. Since there are no changes taking place in the flow characteristics, as the space 

changes we can assume or we can consider that inflow is equal to outflow that is ( ) ( )I t Q t= . 

There will be variation in the flow characteristics with respect to time, but we are assuming that 

the flow is uniform. So, there will not be any variation with respect to space. So that we can 

assume that inflow is equal to outflow. Water surface elevation is parallel to the bed of the 

channel always. In this case, in the case of uniform flow conditions, the water surface elevation 



will be parallel to the bed of the river. So, we can represent it by means of a figure, before the 

flood how the flow is taking place. We are having an inflow and the corresponding outflow. We 

have considered a channel reach and into the channel reach inflow is entering that is the flood 

wave is entering and it is leaving at the downstream end. The channel reach we are considering 

in such a way that at the upstream end, we are having the known hydrograph and at the 

downstream end based on the known hydrograph at the upstream we need to find out the flow 

characteristics. So, the channel reach at the upstream we are having inflow and downstream we 

are having the outflow. In the case of uniform flow condition, these inflow and outflow are 

equal. So, it can be represented by means of this figure. This is represented by prism storage. So, 

this can be assumed to be similar to that of a reservoir case.  In the case of level pool routing 

related to reservoir routing, we are assuming the storage is directly proportional to outflow, that 

is invariable storage function is considered. The same condition is applicable here in this case of 

uniform flow, that is in which inflow is equal to outflow. The storage is represented by prism 

storage. There is no extra flow coming into the system may be due to rainfall or due to the 

joining of the tributary to the river system, nothing of that kind is happening in this case. In the 

normal way, the flow is taking place for which the flow can be considered as uniform and, in that 

case, we will be representing the storage function as the prism storage for which we can assume 

a storage function which can be represented by invariable storage function as in the case of 

reservoir routing. 

Now, imagine the condition of a flood wave entering into the system at the upstream. So, that 

flow condition which we have assumed that is the uniform flow condition as altered. So, at that 

time we will be assuming the flow to be gradually varied flow. So, during the advance of a flood 

wave, what will happen? As the flood wave enters the channel, upstream water surface elevation 

becomes more than the downstream water surface elevation, that is when the flood wave is 

entering at the upstream end, flood wave may be caused due to so many reasons that I am not 

going into now, but imagine the case with a flood wave is entering into the river channel at the 

upstream end. At that time, the water surface elevation at the upstream end will be greater than 

that of the water surface elevation at the downstream end. In such cases ( ) ( )I t Q t  and we can 

represent the case of an advance of a flood wave by making use of this figure. As the flood wave 

is entering, it can be represented by means of a rising of water level in the inflow region, 

upstream region. So, this is the case before the flood, we are having the prism storage. Along 



with that as the flood wave has entered into the system, we will be having an extra flow into the 

system, which creates the upstream water level more than that of the downstream water level. So, 

we are having the inflow I(t) and the corresponding outflow Q(t) from the downstream section 

for which Q(t) needs to be determined based on the value of known I(t). 

Here we are having an extra triangular shape storage is formed due to the advancement of the 

flood wave at the upstream end. That type of additional storage is called wedge storage. So, this 

is represented by the wedge storage. In the case of a flood wave entering into the channel, 

upstream side we are having the wedge storage that is known as the positive wedge because there 

is an increase in the water level and at the same time storage is also increased due to the 

advancement of the flood wave. 
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Now, as the flood wave traverses through the channel from upstream to downstream, it cannot be 

represented by means of the triangular wedge always there will be undulations taking place in 

the water surface as it traverses from upstream to downstream. Now, we will consider the case 

with receding condition of the flood wave. As the flood wave recedes, what will happen? The 

water surface elevation at the downstream will be higher than that of the upstream water surface 

elevation. The flood wave has entered at the upstream end, it was traveling from upstream to 

downstream. During that time undulations on the water surface will be taking place and as it 

recedes, the water level at the upstream end has come back to the normal level, but the 



downstream end water level will be increased. When we compare the upstream and downstream 

water levels, the downstream water level will be greater than that of the upstream water surface 

elevation. And in this case, ( ) ( )I t Q t . Since ( ) ( )I t Q t , it results in a negative wedge. What 

we have seen in the case of a positive wedge opposite to that will be taking place in this case 

during the time of flood wave recession. A negative wedge will be formed as the receding of 

flood wave takes place. 

Schematically, the receding of flood wave can be represented like this. We are having the prism 

storage and the flood wave has moved from upstream to downstream. Upstream water surface 

elevation reduced but at the same time the water elevation at the downstream has increased. So, 

it can be represented like this. We are having the inflow and the corresponding outflow at the 

downstream end and the extra wedge formation at the downstream can be represented by means 

of a negative wedge. As the floodway passes through the channel completely, what will be the 

situation? The flood wave started at a particular point at a particular time it has travelled all 

throughout the channel reach and it has completely passed through the channel reach. Then the 

water surface elevation in the channel will be coming back to the earlier state, that is all the 

wedge storage is vanishes. It results in 0 wedge. Total storage will be coming back to prism 

storage and at that time water surface elevation at the upstream and downstream will be same. 

So, after the flood, we can represent the water surface elevation as we have expressed in the first 

figure. So, initially we have started with the flow as uniform. In the uniform flow condition 

inflow and outflow both are equal. 

As the flood wave traverses, an initial positive wedge is formed at the upstream end. As it 

traverses from upstream to downstream, the wedge undulations in the water surface will be 

taking place and at the time of receding a negative wedge is formed at the downstream end. And 

after the flood wave has travelled from the downstream section, or receding of the flood wave 

has completely taken place, the flow will be coming back to the normal condition with the inflow 

and outflow having the same value with the water surface elevation at the upstream and 

downstream in equal condition. At that time the wedge storage will become 0 and the channel 

will be consisting of only prism storage. So, this is the case as that of the uniform flow condition. 

And at that time, ( ) ( )I t Q t= . From where we have started we have reached there itself. So, in 

between these stages flood wave is entering the channel it is moving away from the downstream 



location where the flow details have to be calculated we need to get the Q value or the flow 

characteristics at the downstream location based on the known flow characteristics at the 

upstream location as the flood wave traverses from upstream to downstream. 
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So, now we will look into the storage function. We have seen the detailed description about the 

movement of flood wave from the upstream to downstream. Now, let us discuss about the 

storage function related to this prism storage and the wedge storage. Different stages of channels 

shortages we have seen. Now, how can these storages be represented? Prism storage is similar to 

that of a reservoir storage. In the case of reservoir storage that is in the case of level pool routing 

we know the storage function was represented by means of an invariable storage function that is 

storage as a function of outflow and in the case of prism storage, we can consider it is similar to 

that of a level pool routing. So, reservoir storage how we have represented similar way we can 

represent the prism storage as function of outflow. 

Now, coming to the wedge storage. Wedge storage is not like that. It is changing. As the flood 

wave is entering into the channel reach, positive wedge is formed. Then as it recedes, negative 

wedge is formed at the downstream end. So, the wedge storage is a function of input. Input 

means the inflow. How much inflow is entering the channel, the wedge storage is a function of 

inflow that is wedge storage is related to the flow which is entering into the channel at the 

upstream end.  



The total storage is the sum of prism storage and wedge storage. The total storage in the entire 

channel reach can be represented by taking the summation of this prism storage and the wedge 

storage. That is represented by the mathematical equation given by this expression  

/ /(1 )m n m nb
S xI x Q

a
 = + −   

In this, I and Q, we know. I and Q are representing the inflow and outflow. x is the coefficient 

corresponding to inflow and outflow. a and n are the coefficients corresponding to the stage 

discharge characteristics in the channel. We know what is meant by stage, that is the water 

surface elevation with respect to a certain data. So, there is a certain relationship between stage 

and discharge that we have already discussed at the time of stream flow measurement. So, this 

coefficient a and n are corresponding to the stage discharge characteristics in the particular 

channel which we are considering. And b and m, b and m we are having b, coefficient b and m, 

these are the coefficients that represent the average stage volume characteristics of the channel 

reach. b and m are related to the average stage volume characteristics. a and n are representing 

the stage discharge characteristics. So, different coefficients we have seen a and n, b and m. a 

and n are related to stage discharge characteristics, b and m are related to stage volume 

characteristics of the particular channel which we are considering and the coefficient x 

corresponds to the inflow and outflow. So, the expression represented by this equation S is equal 

to given by that particular expression is the general form of storage function, variables storage 

function which is depending on the inflow and outflow, which is the function of both inflow and 

outflow. Now, we will move on to the case with river routing, hydrologic river routing. This is 

the general representation of the variable storage function, which is the function of inflow and 

outflow. 
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Now, let us move on to the hydrologic river routing, which is known as Muskingum method. 

Different river routing techniques are there, but here we are going to discuss about Muskingum 

river flow routing. Muskingum is the name of the river in the United States. In this method, the 

storage volume of flooding in a river channel is considered as a combination of wedge and prism 

storages, that is here in this case we are considering the storage function as a variable storage 

function. On the other hand, in the case of reservoir routing, that is in the case of level pool 

routing, we were making use of the invariable storage function which was a function of outflow. 

In the case of Muskingum river routing technique, we are going to make use of a storage 

function which is a function of both inflow and outflow. 

Now, in this case, we are going to assume the cross-sectional area of the flood flow is directly 

proportional to the discharge at the section. Cross-sectional area is directly proportional to the 

discharge. The variable storage function is represented by this equation 

/ /(1 )m n m nb
S xI x Q

a
 = + −   



In the case of Muskingum flow routing technique, the coefficients that is the ratio of m and n is 

taken as unity 1
m

n

 
= 

 
 and b by a is considered as K 

b
K

a

 
= 

 
 . So, if you are considering 

1
m

n
=  and 

b
K

a
= , the storage function takes the form  

 (1 )S K xI x Q= + −  

So, the expression has taken a simplified form by assuming 1
m

n
= and 

b
K

a
= . 
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So, this is a channel reach. Here we are having both the wedge storage and the prism storage. So, 

these wedge and prism storages are separated by means of this red line. A red marking is made 

for separating the wedge storage and the prism storage. In the actual condition, field condition, 

there is no separation between these two. For the mathematical calculations we are separating 

into two by means of wedge and prism storages that is marked by these red dotted lines. We are 

having inflow coming at the upstream end that can be represented as the sum of Q and I Q− . 

Why we are writing like that? Total is I Q Q− + that is I only, inflow, and our outflow is capital 

Q. In the case of prism storage, both inflows and outflows are equal. So, what is the outflow that 

is represented by Q that is taken as the inflow also. So, the remaining wedge storage will be total 



inflow minus this Q, that is why it is represented like that. Corresponding to wedge storage 

inflow is I Q− and corresponding to prism storage it is same as the outflow. So, the volume of 

prism storage can be taken as K multiplied by Q, that is in the case of prism storage, we can 

consider the case as similar to that of reservoir storage. Level pool, routing how we have 

considered the invariable storage function, the same thing is applicable to prism storage that is 

S KQ= . Prism storage is equal to KQ and the wedge storage is represented by ( )Kx I Q− , 

because wedge storage is a function of I Q− . This is our wedge storage. It can be represented as 

( )Kx I Q− , where K is the storage time constant equivalent to the time of travel of the flood 

wave through the channel reach. K we have considered as 
b

a
 that is representing the channel 

property. It is representing the storage time constant. What is this storage time constant? It is 

equivalent to the time of travel of the flood wave from upstream to downstream. x is the 

weighting factor. The total storage can be considered as the sum of these two components 

represented by the prism storage and the wedge storage. So, the total storage S can be written as  

( )S KQ Kx I Q= + −  

So, this is the storage function which is considered in the case of Muskingum flow routing. 
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We are just going to rearrange the terms to get this storage function corresponding to 

Muskingum method of river routing, that is  

( )S KQ Kx I Q= + −  

( )S K Q xI xQ= + −  

So, this will be taking the form, finally,  

 (1 )QS K xI x= + −  

where I is the inflow and Q is the outflow, x is a coefficient related to inflow and outflow, and K 

is the value representing the time taken for the flood wave to travel from upstream to 

downstream. That exact value we would not be having idea, but that can be assumed based on 

the time to be corresponding to the inflow hydrograph. So, this represents the linear model for 

routing flow in streams. So, this is our storage function. S is represented in terms of inflow and 

outflow that is the variable storage function. Now, this storage function along with the continuity 

equation, we will be making use for finding out the outflow hydrograph. 
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So, this is our storage function  

 (1 )QS K xI x= + − ,  



in that we are having x and K which are unknowns along with Q. Only the inflow hydrograph is 

there with us and some of the initial conditions related to discharge. So, the value of x depends 

on the shape of the modeled wedge storage. What are the values which can be used for the 

coefficient x? It ranges from 0 to 0.5. From the experimental study conducted in channels, it is 

found that the value varies between 0 and 0.5. When x is equal to 0, you will look at the 

expression x is equal to 0 we are having S KQ= . What is this? It is nothing but our invariable 

storage function. There is no wedge and hence no backwater and this is the case with the level 

pool reservoir routing. So, our storage function takes the form S KQ= . When the value of x is 

equal to 0, it is similar to that of a reservoir that is we are having the storage function represented 

by the invariable storage function as in the case of reservoir that is S KQ= . When x is equal to 

0.5, that represents a full wedge that is the maximum value of x that is 0.5, it is representing the 

full wedge. In natural streams, x is between 0 and 0.3 with a mean value near to 0.2. In the case 

of natural streams, it is not going up to 0.5 it is between 0 and 0.3 and the mean value will be 

coming around 0.2. Now, what we are going to do, how to carry out the routing in the case of 

channel by making use of Muskingum flow routing. Here also we will be dividing the time step 

into n number of t  intervals. As we have done in the reservoir routing, here also we are going 

to divide the time into different intervals. Entire time is divided into different intervals so that 

each interval is very small. We can assume the variation taking place in the inflow and outflow 

and the corresponding storage to be linear. 
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So, the values of storage at time j is equal to 1. We are dividing the entire time step into n 

different time steps. At the point j we are considering the node jth node and that j is equal to 1 

that is we are starting from the beginning.  

So, when 1j =  ,  

( )1 1 11S K xI x Q= + −    

And when 1j j= +  that is 2, we have considered a time interval of t  at the beginning of 

t and at the end of the t  that is what we are representing here jth node and ( )1j + node. Here, 

for example, we are considering the first-time step in the beginning and at the end. So, S1 is 

represented by the above expression and S2 can be represented by  

( )2 2 21S K xI x Q= + −    

Now, we can find out the change in storage over the time interval t as 2 1S S− . Just we are 

subtracting 1S  from 2S that is what is written over here in this equation 

( ) ( ) 2 1 2 2 1 11 1S S K xI x Q xI x Q− = + − − + −        



But we know from continuity equation the change in storage can be represented by making use 

of this equation 

( )1 1( 1)

I( ) Q( )

j

j

S j tj t

S j t j t

dS t dt t dt

+ + + 

 

= −    

This we have seen while explaining reservoir routing. Same integral equation we are utilizing 

and we are considering or we are assuming t is very small, so that we can assume the variations 

in I, Q and S to be linear. So, we can replace this equation by the average values. The same 

procedure which we have utilized in the case of reservoir routing, we will make use for the 

continuity equation. So, we can write the expression for change in storage 2 1S S− by this 

equation that is  

( ) ( )1 2 1 2

2 1
2 2

I I Q Q
S S t t

+ +
− =  −   

Now, we are having two expressions for change in storage, one is from the Muskingum storage 

equation, second one is from the continuity equation. We will equate both these change in 

storage functions. 
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So, these two are equated and now we will do the rearrangements of the terms. Certain values are 

known to us. For example, inflow hydrograph is known to us. So, the values corresponding to 

inflow for different time intervals are known to us. But the outflow values are not known to us 

except for the initial conditions. So, we can rearrange the terms in this equation in such a way 

that all the known terms will be on one side of the equation and unknown terms related to 

outflow will be put on the other side of the equation. The terms are rearranged to get the final 

form 

( ) ( )
( ) ( ) 1 2 1 2

2 2 1 11 1
2 2

I I Q Q
t t K xI x Q xI x Q

+ +
 −  = + − − + −        

( ) ( ) ( ) ( ) 1 2 1 2 2 2 1 1

2
1 1

K
I I Q Q xI x Q xI x Q

t
+ − + = + − − + −      

 

( ) ( ) ( ) ( )1 2 1 2 2 2 1 1

2 2 2 2
1 1

K K K K
I I Q Q xI x Q xI x Q

t t t t
+ − + = + − − − −

   
 

( ) ( )1 1 2 2 1 1 2 2

2 2 2 2
1 1

K K K K
I xI I xI Q x Q x Q Q

t t t t
+ + − − + − = − +
   

  

Here I have written in blue and red. Blue is representing the flow characteristics and other red 

notations are representing the channel properties. So, I1, I2, Q1, Q2, in this, I1, I2, Q1 are known to 

us. Q2 is unknown. That is why we have kept the unknown value on the right-hand side and all 

the known values at the left-hand side. We can simplify this equation again, combining all the 

terms related to I1, I2, Q1, and Q2. The equation takes the form like this 

( ) ( )
1 2 1 2

2 1 2 12 2 K x t K x tt Kx t Kx
I I Q Q

t t t t

− − − +    +  −   
+ + =      

          
 

But we need to find out the expression for Q2, so we will write Q2 in terms of I2, I1 and Q1 as 

( ) ( )

( )

( )
2 2 1 1

2 1   2  2  

2 1 +  2 1 +  2 1    

K x tt Kx t Kx
Q I I Q

K x t K x t K x t

     − − −  +
= + +          −  −  − +     

 

The value of I2, I1 and Q1 are known to us. I2 and I1 from the inflow hydrograph we know that is 

inflow hydrograph time is divided into different time intervals at the beginning and end of the 



t  i.e., 1 and 2. I1, I2 are known to us and Q1 from the initial conditions we know already. So, by 

making use of this equation with proper assumptions related to t , K and x, we can get the value 

corresponding to Q2. Once Q2 is calculated that will be acting as the value corresponding to the 

beginning of the next time step which is known to us. So, this way the calculations will be 

continued. 
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Now, let us look into the routing equation for Muskingum method. The previous equation is put 

in the simplified form like this Q2 is a function of I2, I1, Q1. Q2 is written as  

2 1 2 2 1 3 1Q C I C I C Q= + +  

In this equation  

( )
1

2  

2 1 +  

t Kx
C

K x t

 −
=

− 
 

( )
2

2  

2 1 +  

t Kx
C

K x t

 +
=

− 
 

( )

( )
3

2 1   

2 1    

K x t
C

K x t

− −
=

− + 
 



You can observe these coefficients C1, C2, C3 carefully. In all these cases, we have arranged the 

terms in such a way that denominator is same. Denominator is ( )2 1 +K x t−  . If you take the 

sum of C1, C2, and C3, it will be coming out to be 1, that is denominator is ( )2 1 +K x t−  , you 

add the numerators, 2  + 2  t Kx t Kx −  + . So, 2Kx gets cancelled, ( )2 2 1 -t K x t + −  . It will be 

coming out to be ( )2 1 +K x t−  . Both numerator and denominator same, that will be equal to 1. 

So, the summation of these coefficients in the Muskingum equation  1 2 3 1C C C+ + =   
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Now, we need to look at the values to be chosen for these t , K, x etc. So, the value of t  

should be taken small then only we can assume the flow properties within that time interval to be 

linear. So, the t  value is taken in such a way that it is between K and 2Kx, i.e., 

2K t Kx    

You look at the equation C1 is equal to  

( )
1

2  

2 1 +  

t Kx
C

K x t

 −
=

− 
 



So, this t  is taken in such a way that 2t Kx −  should be a positive value. We should try to 

make it positive. Now, let us move on to the different steps involved in the Muskingum flow 

routing. 
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This is our routing equation, which gives the unknown value Q2, i.e., 

2 1 2 2 1 3 1Q C I C I C Q= + +  

Knowing the values of K and x suitable value of t  is selected. We have seen based on K and x, 

t  can be chosen appropriately. It should be small. At the same time, it should not be less than 

2Kx. So, that way t is selected. After that we can compute C1, C2, and C3. C1, C2, and C3 are in 

terms of K, x and t . So, once the values of K and x are known, we can assume the value 

corresponding to t . By knowing these three values, we can calculate the coefficients of this 

Muskingum equation. Once C1, C2, C3 are calculated using the initial values of Q1 and the known 

inflow hydrograph I1 and I2 for the first-time interval Q2 can be calculated. You will look at the 

above equation, we have already computed in the first step the values corresponding to C1, C2, 

C3. We know I2 and I1 from the inflow hydrograph. Q1 is known to us based on the initial 

conditions. At time t is equal to 0 what is the value corresponding to Q that is known to us that is 

the initial condition. So, I2, I1, Q1 are known to us and by making use of calculated coefficients 

C1, C2, C3 we can calculate the value corresponding to Q2 that is the outflow value at the end of 



the time step which we have considered t and this is the value which should be considered as 

the known value at the beginning of the next time step. So, Q2 will be the Q value at the 

beginning of the next time interval. So, first what we are doing, the discharge value Q at the end 

of the time step which is unknown is calculated from the known inflow value and the initial 

condition. Once that is determined, we are getting the Q2 value that is the discharge value at the 

end of that particular time step considered.  

Now, we can move on to the next time step. As far as the next time step is considered at the 

beginning of that time step, we know the inflow values and also the Q value which is calculated 

from the previous step. Based on that, we can calculate the Q value corresponding to the ending 

of that time step. So, this process will be continued until we reach at the end of the inflow 

hydrograph. So, continue the procedure till the end of the inflow hydrograph, so that we can get 

the Q values corresponding to each and every time step and we can plot the outflow hydrograph. 

So, the care should be taken while taking the value corresponding to t , because within this t  

time interval, we are assuming the flow characteristics to be linear. It may not be always correct. 

If the time interval is very large, the undulations which is created on the water surface due to the 

passage of the flood wave will be very high. So, that time the assumption which is made related 

to linear characteristics or linear variation of inflow and outflow characteristics will not be valid. 

So, we have to be very careful while considering the discretized time value. Now, coming to the 

coefficients K and x, how to get those values, let us move on to that. 
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Estimation of Muskingum parameters K and x, so this K and x can be calculated based on the 

known inflow and outflow values. For certain reaches we will be having inflow and outflow 

details. Based on the inflow and outflow hydrographs, we can compute the values corresponding 

to K and x. K and x represents the channel characteristics. Using the inflow and outflow 

hydrographs we can calculate this K and x. What we will be doing? We will be making use of 

graphical or trial and error method for the determination of K and x. So, for determining K and x 

we are going to make use of this graphical technique or sometimes we can go for trial and error 

technique also which will also give accurate results. Assume a trial value of x. We know already 

the range of x. It varies from 0 to 0.5 and we have found that for natural streams it varies 

between 0 and 0.3. So, within this range, we can assume a trial value corresponding to x. So, 

based on the trial value for x, what we will do, we will plot the curve S versus  (1 x)QxI + − . 

When we plot this, it produces a graph in the form of a loop similar to that of the loop which we 

have discussed in the previous lecture related to variable storage function. This is repeated for 

different values of x. The value of x is selected in such a way that the loop which is produced is 

closer to a straight line that is the loop closest to a single line is taken to be the correct value for 

the reach. When we consider x value varying between 0 and 0.5, we will get a loop 

corresponding to this graph. So, that graph will be plotted again and again for different x values. 

When the loop comes back to the straight line or very close to a straight line, that value 

corresponding to x will be considered as the suitable value of x for the particular channel. So, 



once x is decided the slope of that particular line will be giving us the value corresponding to K, 

that is once the x value is obtained, we can get the K value by taking the slope of that particular 

line. The slope of the straight line fitted through the loop gives the value of K. 

For different values of x, we will be having different loops and as the x value changes, depending 

on the shape of the loop, we will be knowing how this x has to be adjusted and this will be 

continuing until we will get approximately straight line rather than a loop or the loop can be 

approximated by means of a straight line. So, the slope of this straight line will be giving us the 

value corresponding to K. So, this is the method which is followed for the determination of K 

and x.  Once K and x are determined for the channel, we can go ahead with the steps which are 

explained in the previous slides to determine the outflow hydrograph. So, this is the method of 

Muskingum flow routing. This technique is commonly used for carrying out the hydrologic 

routing of the channels. But hydrologic routing is a lumped flow routing which gives the 

variation with respect to time only. Spatial variation is not considered. So, for accurate results we 

have to go for hydraulic routing for the cases in which we need to have the spatiotemporal 

variation as the flood wave traverses, we need to go for hydraulic routing. This method of 

hydrologic routing can be utilized for carrying out the studies related to flood control, flood 

forecasting in a particular river reach, by knowing the upstream flow hydrograph we can find out 

the downstream flow details by making use of the routing techniques. So, this is very commonly 

used in the case of flood forecasting, flood control measure has to be taken for a particular river. 

In such cases, we need to have the streamflow details at the outlet or the downstream point where 

the control measures have to be taken.  So, for those purposes, we can make use of these 

techniques of flood routing. But for getting the accurate results or by incorporating the 

spatiotemporal variation, as the flood wave travels from the upstream to downstream, we have to 

go for making use of hydraulic routing techniques, which incorporates the continuity and 

momentum equations. 

 

 

 

 

 



(Refer Slide Time: 45:30) 

 

Corresponding to this topic of Muskingum routing, you can go through these references. Now, 

we need to solve some of the numerical examples related channel routing. By that our Module 5 

on hydrologic analysis will be completed. So, here I am winding up today's lecture. In the next 

lecture we will solve some of the numerical examples. Thank you. 


