# Optimization Methods for Civil Engineering Prof. Rajib Kumar Bhattacharjya Department of Civil Engineering Indian Institute of Technology, Guwahati

# Lecture - 36 Optimization Using Excel Solver

Hello student. Welcome back to the course on Optimization Methods for Civil Engineering. So, in today's class, so, we will learn how to solve a non-linear Optimization problem Using Excel Solver. So, we have already solved a linear problem using Excel Solver. And today we will see how we can solve a non-linear problem with constrain using Excel Solver. So, let us see.

So, we will consider few example problems and then I will show you how you can solve a partial differential equation using Excel Solver.

(Refer Slide Time: 01:15)



So, this is the 1st problem I will consider. This is a two variable problem. So, we have x1 and x2 and there are two constrain in this particular problem. So, the first constrain is a linear constrain and second one is non-linear constrain. So, the solution is 1, 1 and I should get the optimal function value is minus 1.1.

So, this problem we have already solved using R software. So, you can see that this is the constrain solution of this particular problem and I should also get this particular solution when you are when you are solving this problem using excel.

(Refer Slide Time: 02:03)



The 2nd problem is also a two variable problem. So, we have a non-linear objective function. So, we have a non-linear objective function. So, this is your objective function and we have two constrains here. The first one is linear and second one is non-linear constrain. So, here I should get this particular solution and somewhere here this is the constrain solution of this particular problem. So, we have also solved this problem using R. So, let us see whether we are getting the similar result in excel.

(Refer Slide Time: 02:44)



The 3rd problem is also a non-linear problem with one linear constrain. So, objective function is non-linear and if you are solving this then you should get this particular solution and somewhere here is the optimal solution of this particular problem. So, I will try to solve this problem.

(Refer Slide Time: 03:10)



And the 4th one is a little bit complicated problem to solve using classical optimization technique, but let us see whether we are getting the solution using Excel Solver. So, we have already solved this problem using genetic algorithm and we got the constrain optimal solution of this problem and the solution is 0 and 1.5 and objective function value is 8.4933 ok.

So, here this is the objective function and we have two constrains ok. So, this is first constrain this is second constrain and  $x_1$ ,  $x_2$  are positive and range is between 0 and 5. That means,  $x_1$  is between 0 and 5 and  $x_2$  is also between 0 and 5. Let us see how you can solve a partial differential equation using Excel Solver. So, I will show you, you can use the optimization technique for solving a partial differential equation.

## (Refer Slide Time: 04:20)

| Optimization using Excel Solver                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution of partial differential equation using Excel Solver                                                                                          |
| R.K./DD Tochariye/CE/IITG                                                                                                                             |
| T22 + 1 22                                                                                                                                            |
| The 2-D steady flow equation for homogeneous isotropic confined aquiter may be written as                                                             |
| $T\nabla^2 \varphi + N(x, y) = 0 \tag{1}$                                                                                                             |
| Where, T is the transmissivity of the aquifer (m <sup>2</sup> /day), $\overline{V}^2$ is the Laplace operator, $\varphi$ is the hydraulic head (m), N |
| is the pumping or recharge value (m³/day/m²).                                                                                                         |
| The finite difference approximation of the steady 2-D flow equation at cell $(i, j)$ may be expressed as                                              |
| $A\varphi_{i+1,j} + A\varphi_{i-1,j} + B\varphi_{i,j+1} + B\varphi_{i,j-1} - (2A+2B)\varphi_{i,j} + N(i,j) = 0 $ (2)                                  |
| Where, $A = (T/(\Delta x)^2)$ , $B = (T/(\Delta y)^2)$ , $\Delta x$ (m) is the grid size in x direction and $\Delta y$ (m) is the grid size in y      |
| direction.                                                                                                                                            |
| 4 October 2021                                                                                                                                        |

Here I would like to solve a partial differential equation using Excel Solver then this is related to the flow equation. So, this is nothing but the flow equation for homogeneous isotropic confined aquifer. So, if you have gone through groundwater hydrology, so, I think you have seen this particular equation. So, this is the flow equation for a case of homogeneous and isotropic confined aquifer ok.

So, this is the equation here. So, this equation is T del square phi by del x square plus T del square phi by del y square plus N. So, this is the source term and this is equal to 0. So, I would like to solve this equation using Excel Solver. Here T is the transmissivity of the aquifer the unit is meter square per day and del square is the Laplace operator, phi is the hydraulic head. So, that I would like to calculate and N is the pumping or recharge value. So, this is the source term and unit is meter cube per day meter square.

So, how I am solving this equation? So, I am solving this equation using finite difference approximation ok of this 2D flow equation and I am not showing how you can do the finite difference approximation, but if you are applying finite difference approximation. So, finally, you will get this equation ok you will get this equation and I would like to solve this equation and where A equal to T by del x square. So, this is the grid size and B equal to T by del y square. So, this is the grid size and del x and del y is the grid size in x direction and y direction.

(Refer Slide Time: 06:27)



So, how we will solve this equation? So, what I will do basically, so, let me go to the next slide and then I will come to this particular slide.

(Refer Slide Time: 06:40)



So, in this case the boundary values are known. Let me explain how we will solve this problem. So, let us consider a rectangular aquifer.

(Refer Slide Time: 06:49)



So, idea is that I would like to find out what is the value of phi at its grid point. So, entire aquifer, so, this is the aquifer and we have divided into some grids. And on the left side this is constant head boundary and we know what is the phi value here and right hand side this is also constant head boundary.

So, we also know the phi value here. And on this side, so, this is no flow boundary that means, the gradient is del h by del y is 0 and here also del h y del y is 0 ok. So, we know this thing now I would like to calculate the value at each grid centre ok. So that means whatever finite difference equation, so, this is the finite difference equation.

So, this has to satisfy at each grid point. So, if I write the finite difference equation suppose I am writing equation 1 here, equation 2 here and this is 3, 4, 5, 6, 7, 8, 9, 10 and this is my 100 equation. So, I will get total 100 equation and if I solve this 100 equation then I will get the

solution of this problem. So, if I can solve all these 100 equation then I will get the solution of this problem.

So, what I am doing here? I am formulating an optimization problem. So, and this actually so, this is the equation that has to be satisfied that has to be satisfied at each grid centre. Now for any arbitrary value, so, right hand side will not be equal to 0. So, I am considering this is e i j. So, e i j is the error. Now, I have formulate an optimization problem that means, I would like to minimize this error ok. So, here grid size is i equal to I equal to 1 to 10 and j equal to 1 to 10 ok and basically. So, I am getting e i j.

And I am just squaring it just to make it positive. So, because this error should be positive I would like to minimize this error. So, I am squaring it or you can also use the absolute value. So, either I can write e i j square or e i j ok absolute value. So, both are ok. So, I will use this one here and this is e i j and this should be equal to 0, but what I will do? I will make e i j less than equal to some absolute value ok.

So, may be this is 0.001 or 0.0001 something like that ok. So, it will not be 0, but it will be near to 0. So, I will solve this problem using Excel Solver. So, what I will do? I will use this particular I will use this particular equation. Now, let me go to the next slide. So, here this is the value given that T equal to 300 m square per day ok meter square per day.

So, I have used del x equal to 100, del y equal to 100 and the aquifer size is 1000 by 1000. So, this is 1000 meter and this is also 1000 meter and I have divided in grid and one grid size is 100 by 100 ok and I have used T equal to 300 meter square per day ok. Now, in this case in my case, so, del x equal to del y just to simplify the problem. So, you can also use different del x del y, but here I am considering del x equal to del y.

So, if you are doing that so that means, A equal to B and if I put A equal to B here, so, finally, what I am getting that this will be your A. This will be your A, this will be your A ok. So, then if I divide this particular equation by A, so, I am getting this equation that is phi i plus 1 j then phi i minus 1 j phi i, j plus 1 phi i, j minus 1 minus 4 i, j and this is N I, j.

And finally, so, if I put what is the value of A, so, A is T by del x square. So, what I am getting that what I am getting that N into del x square by T. So, this is nothing but the pumping value that is in meter cube per day basically in this case ok. So, this is the pumping value that is the source term you are telling that is the source term and finally, I am getting this equation ok. So, I am getting this equation. So, I will use this equation here. So, basically using this equation I would like to solve the problem ok.

So, I will also explain. So, I will directly go to excel and I will show you how you can treat this particular problem or how you can solve this particular problem using Excel Solver.



(Refer Slide Time: 12:28)

So, this is the excel. I should get finally, this is the solution of this particular problem. So, I will explain you and this is the surface plot I have done and there is some pumping here, here, here and here. So, with this pumping, so, you should get this is the value of h ok. So, I am

getting somewhere here. So, I will solve this problem using Excel Solver. So, now let us go to Excel Solver and see how I can solve all this problem using Excel Solver.



(Refer Slide Time: 13:01)

Now, let us consider the first problem. So, in the first problem we have in objective function. So, this is the objective function and objective function is x1 minus 2 whole square plus x2 minus 1 whole square and we have two constrain and these constrains are inequality constrain that means, less than equal to 2. So, what I will do? I will define the variable here ok. So, I will define the variable here.

So, this is the variable and we have two variable that is x1 and this is x2 ok. So, this is x2 and you consider some initial value let us start with 0. I would like to start with 0 here. So, this is these two are my variable ok. So, I am I am using these two variable ok and then let us write the objective function here. So, objective function is so, I am writing here.

So, let me write the objective function. So, this is objective ok function and objective function is I am writing f1 here. So, write the objective function. What is objective function? Objective function is x1. So, this is x1 minus 2 ok. So, this is square plus x2 minus 1 and this is squared ok. So, this is my objective function. So, I am defining objective function here. So, I am getting for x1 equal to 0, x2 equal to 0 objective function value is 5 ok.

Now, you write constrain. So, we have two constrain here that is g1. So, you write g1. What is g1? g1 equal to x1 plus x2 minus 2 ok. So, g1 value for x1 equal to 0 x2 equal to 0 this is minus 2 and you also write g2. So, g2 is x1 square x1 square minus x2 ok. So, it is 0. So, I am defining the objective function and constrain here ok.

So, I have defined my problem and this should be less than equal to 0. Is not it? Less than equal to 0 and this should be less than equal to 0. So, this is my constrain, ok. So, now, let us go to Excel Solver. So, just see whether Excel Solver is here. So, there is no Excel Solver here.

(Refer Slide Time: 16:18)



# (Refer Slide Time: 16:23)

| From From Foro Foro Cherr Existing<br>Web Care Sources* Connections Quey - Ca Accert Sources<br>Set Demail Data<br>Care Cherral Data<br>Care Cherral Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Construction         Construction< | LIS USES - 3 Hide Detail<br>impo linguoga Salontail<br>Outine 6 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| A         B         C         D         E         F         G           Vinable         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B </td <td>er depen 7 X<br/>and  make  make  We henders gene a spear to not sky with Each  water  and  make  We henders gene  and to be the sea section  and  and  and  and  and  and  and  an</td> <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> | er depen 7 X<br>and  make  make  We henders gene a spear to not sky with Each  water  and  make  We henders gene  and to be the sea section  and  and  and  and  and  and  and  an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c c c c c c c c c c c c c c c c c c c $          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |

(Refer Slide Time: 16:29)

| From From From Other<br>Web Text Sources*<br>Get External Duta | Existing<br>Connections Query + Collect | en Table<br>cent Sources<br>and am Connects | perfies 24 (1)2   <br>t Links 11 Sort Fab<br>lans Sort 3 | Tetappy<br>Tetto Rath Reno<br>Columns Fill Dupler<br>Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ve Data Consolidate Relationships Managates Validation * Data Mor<br>Data Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e What-II Forecast Group<br>del Analysis Sheet<br>Forecast | Dutine 5                     |                                           |
|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|-------------------------------------------|
|                                                                | fe D                                    |                                             | Excel Options                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ? X                                                        |                              |                                           |
| Variable                                                       | x1 0<br>x2 0                            |                                             | General<br>Formulas<br>Proofing<br>Sava                  | View and manage Microsoft Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ace Add ins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | Problem 1<br>Minimize f(x)   | $(x_1 - 2)^2 + (x_2 - 1)^2$               |
| Objective functio                                              | g1 -2 ci                                | 0                                           | Linguige<br>Advanced                                     | Name =<br>Active Application Add-ins<br>No Active Application Add-ins<br>Insertive Amelication Add-ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type A                                                     | Subject to                   | $x_1 + x_2 - 2 \le 0$ $x_1^2 - x_2 \le 0$ |
|                                                                | <u>82 alce</u>                          | U                                           | Customice Ribbon<br>Quick Access Teolbar                 | Analysis ToolPak<br>Analysis ToolPak - VBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C/Lufee16Library/Analysis/AN4LVS32.XLL<br>C/Lue16Library/Analysis/ATP/8AEDULAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excel Add-in<br>Excel Add-in                               | Range                        | $-5 \le x_1, x_2 \le 5$                   |
|                                                                |                                         |                                             | Add-ins<br>Tast Center                                   | Euro Currency Tools<br>Inquire<br>Microsoft Actions Pane 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1oft Office/Office/9.DOP/NetiveShim.dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM Add-in<br>XML Expansion Pack                           | $\boldsymbol{x}^* = (1,1)^T$ |                                           |
|                                                                |                                         |                                             |                                                          | Mourait New Yap to Loof<br>Mourait New Yap to Loof<br>Mourait New Yahat Ta Loof<br>Mourait New Yahat Ta Loof<br>New Yahat New Yahat Shi Ya<br>Di Courset Kanata Alai ne<br>Di Courset Kanata Ala | CL-Cond Advin Planuty Environments and CL-Cond Advin Planuty Environments and CL-Advin Planuty Environment CL-Advin Planuty SIG(10) SOLID | COMASSIN<br>COMASSIN<br>COMASSIN<br>Lind Adem              | f( <b>x</b> *) = -1.1        |                                           |
|                                                                |                                         |                                             | 1                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OK Cancel                                                  |                              |                                           |
|                                                                |                                         |                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                              |                                           |

## (Refer Slide Time: 16:30)



So, then what I will do? I have to install that one. So, you go to Option. Go to Add-ins ok. So, you go to excel, Add-ins and excel within excel, Add-in. So, you will get solver Add-in ok. So, you just check this particular box and click OK. So, it has been installed and you can see that on the right hand side the Excel Solver is there now. So, this is under data ok. So, under data this is the Excel Solver.

## (Refer Slide Time: 17:04)



So, let me go to the Excel Solver. So, already you know that one. So, what I will do? I will delete this portion ok. So, I will delete this, I will delete this portion. So, I will start from the beginning ok. So, here I have to be find the objective cell. So, objective cell is this and I would like to minimize the objective function.

So, I have selected minimization and if your problem is a maximization problem, so, you can select maximization or if it is a value of then you can also select this one. So, here I have to define the cell that means, my variable cell I have to define. So, here these two are my variable cell ok. So, D3 and D4; so, that is my variable cells.

(Refer Slide Time: 18:05)



Then you define the constrain. So, I have two constrain here these two cell basically and this should be less than equal to 0 ok.

# (Refer Slide Time: 18:23)

| 3.91             |                                 |                         |                  | _                                                  |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|------------------|---------------------------------|-------------------------|------------------|----------------------------------------------------|------------------------------|---------|----------------------------------------|--------------------------------|-----------|-----------------------------------------|----------------------------------|---------------------------|-------------------------------|----------------------------------|---------------------------|-----------------------------------|---------------------|----------------------------------|------------------------|------------|------------------------|----------------------|------------------|------------|----------------|-----------|------|---|
| 1                | forme Insert Pag                | pe Layout               | Formulas         | Data                                               | Review                       | View    | Q Tel m                                | e what you w                   | ant to do |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                | Sign      | in A | 8 |
| m From<br>es Web | From From Other<br>Text Sources | Existing<br>connections | New<br>Query - C | Show Que<br>From Table<br>Recent So<br>& Transform | ries [[<br>t Rah<br>arces Al | Connect | nnections<br>perties<br>t Links<br>ans | ± <u>ria</u><br><u>ri</u> Sort | Filter 1  | & Clear<br>& Reapply<br>& Advanced<br>s | Tot to F<br>Columns              | Tash Ro<br>Fill Dag       | nove I<br>ficates Wild        | uta Cer<br>ation -<br>Data Tools | esolidate R               | B<br>astorships<br>D              | Manage<br>ata Model | What-IT &<br>Analysis -<br>Foreg | erecast<br>Sheet<br>et | icoup Ungn | oup Subtota<br>Outline | * Show E<br>* Hide D | esi 2,<br>esi 2, | Salver     |                |           |      |   |
| A                | 1 1                             | c                       | D                | E                                                  | F                            | G       | н                                      |                                | 1.1       | ĸ                                       | L                                | м                         | N                             | 0                                | P                         | 0                                 | R                   | s                                | T                      | U          | V                      | w                    | x                | Y          | z              | AA        | 48   |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  | Variable                        | x1                      |                  | 0                                                  |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     | -                                |                        |            | Prot                   | olem 1               |                  |            |                |           |      |   |
|                  |                                 | ×2                      |                  | 0                                                  |                              |         |                                        |                                | Solv      | ver Parameters                          |                                  |                           |                               |                                  |                           |                                   |                     | ×                                |                        |            | Min                    | imize f              | f(x) =           | $(x_1 -$   | $2)^{2}+($     | $x_2 - 1$ | )2   |   |
|                  | Objective function              | f1                      | 1                | 5                                                  |                              |         |                                        |                                |           | Cut Objection                           |                                  |                           | Inte                          |                                  |                           |                                   | -                   |                                  |                        |            | Sub                    | ject to              |                  | <i>x</i> 1 | $+x_{2}$       | -2 ≤      | 0    |   |
|                  | Const                           | g1                      |                  | 2 <=                                               |                              |         |                                        |                                |           | M Official                              |                                  |                           | 10.99                         |                                  |                           |                                   |                     | E-                               |                        |            |                        |                      |                  |            | ×2_            | ~ ~       | 0    |   |
|                  |                                 | g2                      |                  | 0 ca                                               | 0                            |         |                                        |                                | 1         | HE OM                                   | ы (8                             | 9 Mg                      | Ogatue                        | ¢t:                              |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            | 1-             | A2 =      | 0    |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | By Changing Vi<br>SD\$3:5054            | wable Cells                      |                           |                               |                                  |                           |                                   | 1                   |                                  |                        |            | Ran                    | ge                   |                  | -5 <       | $x_{1}, x_{2}$ | ≤ 5       |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                | _         | Subject to the                          | Constrainte                      |                           |                               |                                  |                           |                                   |                     |                                  |                        |            | x* =                   | (1,1)                | т                |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | 5058:5059 <=                            | 0                                |                           |                               |                                  |                           | <u>į</u> s                        | 1                   |                                  |                        |            | f(r                    | )                    | 11               |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                | -         |                                         |                                  |                           |                               |                                  |                           | Char                              |                     |                                  |                        |            | )(1                    | ,-                   | 1.1              |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           | 0.44                              |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           | Rea                               | ~                   | -                                |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           | Enset                             | Al                  |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           | Losd/                             | ieve                |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                | _         | Maige Unco                              | nstrained Va                     | riables Nor               | n-Negative                    |                                  | _                         |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | Sglect a Solving<br>Method:             | Length 1                         | orden gar                 |                               |                                  |                           | 02                                | tions               |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                | -         | Solving Meth                            | a 12                             |                           |                               |                                  |                           |                                   |                     | H-                               |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | Select the GRI<br>Simplex engin         | 5 Nonlinear e<br>le for linear 5 | engine for<br>Johier Prob | Solver Probil<br>lens, and se | ens that are<br>lect the Evo     | smooth ni<br>lutionary er | nlinear. Select<br>gine for Solve | the LP              |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                | -         | problems that                           | are non-cmo                      | ooth.                     |                               |                                  |                           |                                   |                     | -                                |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | Male                                    |                                  |                           |                               |                                  | false                     | _                                 | 0.044               |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           | 1.14°                                   |                                  |                           |                               | _                                | and .                     |                                   | -1                  |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  |                                 |                         |                  |                                                    |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
|                  | Prob1 Prob2                     | Prob3                   | Prob4            | Prob5                                              |                              |         |                                        |                                |           |                                         |                                  |                           |                               |                                  |                           |                                   |                     |                                  |                        |            |                        |                      |                  |            |                |           |      |   |
| 0                | Territoria e                    |                         |                  |                                                    | o ⊭                          |         | -                                      | A                              |           | 4.4                                     | n 🖬                              | y D                       |                               | _                                |                           | _                                 |                     |                                  |                        |            |                        | _                    | _                | -          | 0.75           | 4 -       | 1.04 |   |

## (Refer Slide Time: 18:38)



So, now I have defined the optimization problem here and so, you can make unconstrain variable non negative. So, you can this and I will use mainly simplex sorry I will use the GRG non-linear method ok. So, that I will use you can change the option here, but I am not going to change right now here.

So, I will use the default value and just see whether I am getting the solution or not ok. So, let me run this particular or by I can execute this particular solver. So, using the solve button. So, let me solve this problem yeah. (Refer Slide Time: 19:08)



So, solver results solver found a solution. So, solver found a solution. All constrain and optimality conditions are satisfied ok. So, I can see the answer here. So, you go to answer and just see the answer.

(Refer Slide Time: 19:25)



So, this is the answer report and you can see actually. So, here I have used GRG non-linear, solution time is 0.032 second and there are some other data about this particular algorithm. And you can see the objective function value is 1 then x1 is equal to 1 and x2 equal to 1. So, it is almost one that is here it is 0.999 and here it is 1.000011 something like that and both the constrains are satisfied ok.

So, you can see that one. So, this is the solution of this particular problem. So, I can also see here. So, I am getting the solution now 11 and objective function value is also 1 and all constrains are satisfied ok. So, if you go through this particular problem here, so, just see. So, this is the first problem and the solution is the solution is 11 ok.

### (Refer Slide Time: 20:37)



So, solution is 1 and 1. So, here also I am getting 1 and 1 ok. So, this is the solution of this particular problem ok. So, I am getting this particular solution. So, I hope this is very simple. So, I can easily solve. So, without programming I can solve a non-linear problem here. So, you need not go for any programming. So, you need not download MATLAB or R programming here.

So, if you have a simple problem, So, that can be solved using Excel Solver ok. So, let me go to the next problem. In problem 2 we have two constrains and objective function is not non-linear ok. So, let me write it. So, I would like to copy this thing.

## (Refer Slide Time: 21:44)



So, this is we have two variables that is x1 and x2. So, I am putting x1 equal to 0 and x2 equal to 0 and here objective function is 3 star that is 3 star x1 square minus 2 star x2 ok 3 x1 square minus 2 x2 ok. Then you define the constrains. So, constrains are the first one is 2 star x1 plus x2 and minus 4. So, if I write minus 4 that means less than equal to 0 ok and second one is x1 square.

So, this is x1 square plus x2 square x2 square minus 19.4 ok. So, here it is less than equality type and here also this is less than equality type and this is less than equal to 0 and this is less than equal to 0 ok. I have defined the objective function and constrain here.

# (Refer Slide Time: 23:22)

| From | From From Other<br>Text Sources - Co | Eristing  | Man Co | Show Queries<br>From Table<br>Recent Source | s Alves | E Conse<br>Prope | ections<br>rties<br>nis | t (A) | Film B | Clear<br>Reapply<br>Advanced  | Text to<br>Columns           | Rash Ran<br>Fill Dupl              | inve Data<br>cates Validatio      | Consol                       | a Di<br>date Relation         | ships M<br>Dati            | anage<br>Model A | Mhat-I Fee<br>nalysis - Si | ncast Gr | oup Ungroup    | Subtotal | *] Show De<br>*] Hide Def | ul 2,5       | liver       |   |    |   |
|------|--------------------------------------|-----------|--------|---------------------------------------------|---------|------------------|-------------------------|-------|--------|-------------------------------|------------------------------|------------------------------------|-----------------------------------|------------------------------|-------------------------------|----------------------------|------------------|----------------------------|----------|----------------|----------|---------------------------|--------------|-------------|---|----|---|
|      |                                      | fe .      |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              | druc .      |   |    |   |
| A    | 1                                    | c         | D      | E                                           | F       | G                | н                       | 1     | J.     | К                             | ι                            | м                                  | N                                 | 0                            | р                             | Q                          | R                | s                          | T        | U              | v        | w                         | х            | Y           | z | AA | , |
|      | tratable                             | 4         |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          | Proble         | m 2      |                           |              |             |   |    |   |
|      | vanacie                              | 12        | 0      |                                             |         |                  |                         |       | Solve  | r Parameters                  |                              |                                    |                                   |                              |                               |                            | ×                |                            |          | Minin          | nize f   | (x) =                     | $3x_1^2 -$   | 2x2         |   |    |   |
|      | Objective function                   | ŕ1        |        |                                             |         |                  |                         |       |        | d Objection                   |                              |                                    | 1041                              |                              |                               |                            | -                |                            |          | Subjec         | t to     | 21.                       | + 7-         | < 4         |   |    |   |
|      | Const                                | g1        | -4     | ¢1                                          | 0       |                  |                         |       |        | e Or                          | line                         | @14-                               | 0.000                             |                              |                               |                            |                  |                            |          | Subjec         |          | -2                        | 2            | 10.4        |   |    |   |
|      |                                      | <u>g2</u> | -19.4  | Ci .                                        | 0       |                  |                         |       |        | V Changing V                  | llen<br>Farlable Cell        | e                                  | OThere or                         |                              |                               |                            |                  |                            |          |                |          | 1                         | T A2 3       | 17.4        |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         | _     | 1      | 053:5054                      | I                            |                                    |                                   |                              |                               |                            | 3                |                            |          | Kange          |          | -5                        | $\leq x_1$ , | $x_2 \le 5$ |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       | 1 5    | ighted to the                 | Constraints                  | 2                                  |                                   |                              |                               |                            |                  |                            |          | <i>x</i> * = ( | (-0.2    | ,4.4)1                    |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       | - '    |                               |                              |                                    |                                   |                              |                               | <u>A</u> dd                |                  |                            |          | $f(x^*)$       | = -8     | 8.68                      |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               | Color                      |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               | Same                       |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       | -      |                               |                              |                                    |                                   |                              |                               | Exset A                    | -                |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        | Maje Uno                      | orstrained                   | Variables Non                      | Negative                          |                              |                               | 1098/28                    | •                |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       | S      | glect a Solvin<br>Aethod:     | ng GRG                       | Nonlinear                          |                                   |                              | ¥                             | Ogtic                      | es               |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       | - 6    | Solving Meth                  | hod                          |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        | Select the GR<br>Simplex engl | RG Nonlinea<br>ine for linea | er engine for S<br>e Solver Proble | olver Problems<br>sms, and select | that are sm<br>the Evolution | oth nonlines<br>nary engine t | n, Select tr<br>Ior Solver | e LP             |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        | peoblems the                  | at are non-s                 | mooth.                             |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        | ∐elp                          |                              |                                    |                                   | 14                           | ve                            | 9                          | 214<br>2         | H                          |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        | -                             | -                            | -                                  | _                                 | _                            | _                             | _                          | _                | _                          |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           |        |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |
|      |                                      |           | F      |                                             |         |                  |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |
|      | Arower Report 1                      | Prob1     | Prob2  | Prob3 P                                     | 1004 2  | r085             |                         |       |        |                               |                              |                                    |                                   |                              |                               |                            |                  |                            |          |                |          |                           |              |             |   |    |   |

## (Refer Slide Time: 23:49)



So, now I can solve this problem using solver. So, let us go to Data, use Solve button. So, here you define that this is your objective function cell now. So, this is the cell, this is minimization type and here this is the variable cells and so, this is the constrain. The constrain should be less than equal to 0. So, I have defined it. Now, let us solve this problem. So, if it is ok and if you have define everything correctly, so, you should get the solution.

# (Refer Slide Time: 24:08)

| -iom<br>Web | From From Other I<br>Text Sources* Co | Existing | New Co   | Show Querie<br>From Table<br>Recent Souri                                                                                                                                                                                                                                                                               | s Ca    | Cen   | ections<br>officis<br>Inici | i ing<br>Sert | Fiter B           | Clear<br>Rzapply<br>Advanced | Text to<br>Columns           | Flash Rer<br>Fill Dup         | Nove Da      | ten ·                      | ca ()<br>Idate Rolat | bonchips   | Manage<br>ata Model | What-I Fe | inecast G<br>Sheet | oup Ungro    | nap Subtra | Show I<br>Hide O | tai 2,1      | Solver      |   |    |   |
|-------------|---------------------------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------------------------|---------------|-------------------|------------------------------|------------------------------|-------------------------------|--------------|----------------------------|----------------------|------------|---------------------|-----------|--------------------|--------------|------------|------------------|--------------|-------------|---|----|---|
|             | et boenal Duta                        | fe .     | Get &    | harstorm                                                                                                                                                                                                                                                                                                                |         |       | 16                          |               | Sort & Filter     |                              |                              |                               |              | Duta Tools                 |                      |            |                     | Forece    |                    |              | Outline    |                  | 5 At         | alice       |   |    |   |
| A           | 1                                     | c        | D        | E                                                                                                                                                                                                                                                                                                                       | F       | G     | н                           | 1             | J.                | K                            | L                            | м                             | N            | 0                          | р                    | Q          | R                   | s         | T                  | U            | v          | W                | X            | Y           | z | AA | , |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
| 1           | /ariable                              | x1       | -0.2     |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    | Prob         | lem 2      |                  |              |             |   |    |   |
|             |                                       | x2       | 4.4      |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    | Mini         | imize      | f(x) =           | $3x_1^2$ -   | - 2x2       |   |    |   |
| 1           | Objective function                    | f1       | -8.68    |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | -                 | -                            | -                            | -                             | _            | -                          |                      | _          |                     |           |                    | 0.1.         |            | 2                |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | Solver Re         | alti                         |                              |                               |              |                            |                      |            | ×                   |           |                    | Subj         | ect to     | 25               | $x_1 + x_2$  | ≤ 4         |   |    |   |
| 1           | Const                                 | g1       | 3 /5.00  | <s 2<="" td=""><td>0</td><td></td><td></td><td></td><td>Solver</td><td>ound a solu</td><td>tion. All Co</td><td>nstraints en</td><td>d optimality</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x1</td><td><math>+x_{2}^{2}</math></td><td>≤ 19.4</td><td></td><td></td><td></td></s> | 0       |       |                             |               | Solver            | ound a solu                  | tion. All Co                 | nstraints en                  | d optimality |                            |                      |            |                     |           |                    |              |            | x1               | $+x_{2}^{2}$ | ≤ 19.4      |   |    |   |
|             |                                       | 84       | -2.46.40 |                                                                                                                                                                                                                                                                                                                         |         | 1     |                             |               | condition         | ons are sab                  | sfied.                       |                               |              | egorts<br>Arswer           |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             | _             | ⊕ 50              | ip Solver Solu               | 50P                          |                               |              | Sensitivity<br>Limits      |                      |            |                     |           |                    | Rang         | ge         | -:               | $5 \leq x_1$ | $x_2 \le 5$ |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             | -             | 0.5*              | core Original                | Values                       |                               |              |                            |                      |            |                     |           |                    | <i>x</i> * = | (-0.       | 2,4.4)7          |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    | 66.00        | -          | 0.00             |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | □ RgA             | rn to Solve                  | Parameters                   | Dialog                        | [            | Oytline Re                 | ports                |            |                     |           |                    | )(1          | )=-        | 0.00             |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              | - 1                           |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | 2                 |                              | Çancel                       |                               |              |                            | _                    | Save Scen  | aria                |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | Eshard I          | word a solic                 | for Aller                    | atriciate and                 | entender (   | antine e                   | and the second       |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | And               |                              | unit He cos                  |                               | owneed o     |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | When t<br>is used | this mean                    | ine is used,<br>s Solver has | Solver has fo<br>found a glob | al optimal s | a local opti-<br>colution. | nal solutio          | on. When 5 | mplex UP            |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               | -                 | -                            | -                            |                               | -            |                            |                      | -          | -                   |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              | 15                         |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          |          |                                                                                                                                                                                                                                                                                                                         |         |       |                             |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |
|             |                                       |          | a        | auto I a                                                                                                                                                                                                                                                                                                                | ube I e | to br | 0                           |               |                   |                              |                              |                               |              |                            |                      |            |                     |           |                    |              |            |                  |              |             |   |    |   |

(Refer Slide Time: 24:13)

| tin (* \$ + = tect)4-freel<br>Hone kaan Agelayna Formula <u>Dati</u> Review Vow Q*Telmen-hetyouwertisdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | en – o<br>Sprin Al Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Instruction         Image: | Image         Image <td< th=""></td<> |
| 💌 i 🛛 X - 🗸 - fa Manurali Luol 160 Arriver Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · Zwarmovert Reaf Zwart pear Real Reat Reat @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

So, let us let us solve it. You just see I can see the report also and so, this is report to the objective function. Objective function value is minus 8.67 and the solutions are that x1 equal to minus 0.1999 so that means, 0.2 and this is 4.399 and on all constrains are satisfied.

So, you can see that one that I am getting the solution that is x1 equal to minus 0.2 and x 3 x2 equal to 4.4. So, this is the solution you can see on the right hand side, the solution is minus 0.2 and 4.4. So, I am also getting the same solution and constrains are satisfied ok. So, it is quite easy to solve a non-linear problem using Excel Solver. Let us go to the next problem. The third problem we have one objective function and one constrain. So, let us solve it. So, before that I would like to copy this portion.

### (Refer Slide Time: 25:42)



So, I would like to copy this portion. Here I would like to start from 0 0 and objective function is x1. So, this is your x1 minus 3 whole square plus x2 minus 3 whole square ok. Sorry. So, this is x1 this x1 minus 3 whole square plus x2 minus 3 whole square ok and we have only one constrain that is 2 star x1 plus x2 minus 2 ok.

So, this is the constrain and ok. So, this is this is the constrain and this is less than equal to less than equal to 0. So, I have defined the problem here. So, let me go to solver. So, here I can define ok. So, I can define. So, I can define the objective function cells.

(Refer Slide Time: 27:35)



So, this is objective function cell this is the objective function cell. Then changing cells are these then we have one constrain and that is these and this is less than equal to 0 ok. So, let me; so, now, I have defined this particular problem and if I solve it I should get the solution.

(Refer Slide Time: 27:57)



So, let me solve it. Yeah. I am getting the solution. The solution is you can see the report solution is 0.2 and 1.6. So, I am getting and this is 9.8 ok. So, you go to answer and just see. So, this is 9.8. So, this is x will plus 9.8 ok. So, I am getting the solution.

(Refer Slide Time: 28:22)



So, you can see the objective function value is 9.8 and these are the variable value that  $x_1$  equal to 0.2 and  $x_2$  equal to 1.6 ok. So, I am getting the solution. This is your problem 3.

### (Refer Slide Time: 28:51)



So, let me solve the 4th problem. The 4th problem is a complicated problem. So, I have already defined the problem here. So, here I have defined the problem. So, we have two variables. So, variables are x1 and x2. So, this is the objective function value I have defined and this is the constrain ok. These are constrain and constrains are your less than equality type that means, this is less than equal to 0 and this is also less than equal to 0 ok less than equal to 0.

Now, let me solve this problem. So, this is a complicated problem to solve using Excel Solver. So, here every time you may not get the solution. The solution of this problem is so, I have defined here. So, just see that you should get 0 and 1.5 ok. So, 0 and 1.5 you should get. So, let us see whether you are getting. So, 0 and 1.5 is the solution, but let me start with 0 and 0. So, whether I am getting the solution or not.

So, you go to data you go to solver and the problem I have already defined this problem. So, this is my objective function cell. So, this is objective function cell and these are the variable cells ok. The changing variable cell is these two.



(Refer Slide Time: 31:07)

So, these two are the changing variable cell and then we have constrain here. So, let me add let me add the constrains. So, there are two constrains. So, these two are constrain and this should be less than equal to 0 ok. Now, let us solve this problem using solver. Just see whether I am getting the solution or not. So, I am putting 0 0.

## (Refer Slide Time: 31:30)



So, no, I am not getting the solution. As I said this is a complicated solution and it may be difficult or it is difficult to solve this problem using Excel Solver ok. So, I am not getting the solution. Then what I will do if I am not getting the solution since the initial point? Suppose I am putting 1 1 now, so, in that case whether I am getting the solution, no, 1 1 also I am not getting the solution ok.

So, then you put 2 2. Are you getting the solution? No, you are also not getting the solution with 2. Then 2 1, you just see whether you are getting a solution with 2 1? Yeah.

## (Refer Slide Time: 32:20)



I am getting a solution. This is 1.5 and 0. So, this is also a solution, but this is not optimal solution maybe this is a another local optimal solution. So, you are getting this is 1.5 and 0, but excel solution is 0 and 1.5, but you are getting 1.5 and 0.

### (Refer Slide Time: 32:54)



So, then what I will do? I will put this is 3 and this is 1 and then you solve it and just see whether I am getting. Yes. This time I am getting the solution and the solution is 0 and 1.5. So, this particular problem is difficult to solve using the classical optimization technique. So, I have solved this problem using genetic algorithm and every time I am getting the global optimal solution of this problem. But when you are solving this problem using classical method.

So, as you have seen so, it is sensitive to the initial solution. So, in some time you are not getting any solution you are in the infeasible region. Sometime you are getting solution, but that may be a local optimal solution, but once you are changing your initial solution to 3 2 or then basically we are getting the solution ok, let me.

# (Refer Slide Time: 33:45)

| - 9-с<br>— на |                                                                     | Formular     | Der                                             | loin                           |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             |                        |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   | c<br>in Qs |
|---------------|---------------------------------------------------------------------|--------------|-------------------------------------------------|--------------------------------|-----------|---------------------------------------------|--------|--------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------|-----------------------------|----------------------------------|-----------------------------|------------------------|---------------------|---------------------------|---------------------------|---------------------|---------------------------------|----------------------------|----------------------------------|------------------|--------|---|------------|
| From<br>Web   | From From Other<br>Text Searces*<br>Get External Data<br>* 1 X V fe | New<br>Quey- | Show Qu<br>From Tab<br>Becent So<br>& Bransform | eries   <br>/le Re<br>parces / | Lo Conned | onnections<br>operfiles<br>It Links<br>Sens | 21 See | Fitter Sort & Fitter           | Clear<br>S Reapply<br>& Advanced<br>r        | Text to<br>Column                         | Rath R                         | ntove<br>picates Val        | Data Ce<br>dation -<br>Data Tool | esolidate Ra                | B<br>ationships<br>I   | Manage<br>Data Mode | What-I<br>Analysis<br>For | Forecast<br>Sheet<br>sast | Group Dry           | incop Solito                    | 1 Stor<br>1 Hide<br>1 Hide | Detail 2,<br>Detail              | Solver<br>natice | _      |   |            |
| A             | 8                                                                   | c            | D                                               | E                              | ş         | G                                           | н      | 1                              | J                                            | ĸ                                         | L                              | м                           | N                                | 0                           | P                      | Q                   | R                         | s                         | T                   | U                               | ν                          | W                                | х                | Y      | z | AA         |
|               | Variable                                                            | 11           | 1                                               |                                |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             |                        | М                   | linimize                  | f(x)                      | $= e^{x_1}$         | $(4x_1^2 +$                     | 2x22                       | 4 <i>x</i> <sub>1</sub> <i>x</i> | 2 + 2x           | 2 + 1) |   |            |
|               |                                                                     | 12           | 3                                               |                                |           |                                             |        | Solver Param                   | eters                                        | _                                         | -                              | -                           |                                  |                             | _                      | x                   |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               | Objective function                                                  | f            | 111.45                                          | 1                              |           |                                             |        |                                |                                              |                                           | -                              |                             |                                  |                             |                        |                     | ubject t                  | o 1.5                     | $+ x_1 x_2$         | $x_{1} - x_{1}$                 | $-x_2 \le$                 | 0                                |                  |        |   |            |
|               | Const                                                               | g1<br>g2     | 0.5                                             | ca<br>ca                       | 0         |                                             |        | set obje                       | O Man                                        | ® Ma                                      | 90<br>O 16                     | SRI<br>NUR CE:              | 0                                |                             |                        |                     |                           |                           | -x <sub>1</sub> , x | $x_2 \ge 1$<br>$x_2 \ge 0$      | 0                          |                                  |                  |        |   |            |
|               |                                                                     | 0-           |                                                 |                                |           |                                             |        | By Chang                       | ping Visriable                               | Cells                                     |                                |                             |                                  |                             |                        |                     | Use the                   | range                     | e of 0 ≤            | x <sub>1</sub> , x <sub>2</sub> | ≤ 5                        |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Sydject 1                      | a the Constr                                 | airt:                                     |                                |                             |                                  |                             |                        |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | SOSRISD                        | \$10 <= 0                                    |                                           |                                |                             |                                  |                             | £60                    |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             | jaange<br>Gelete       |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             | eset All               |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Due                            | The sector during                            |                                           | Han Danel                      |                             |                                  |                             | ad/Save                |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Sglect a 1<br>Method           | ioving [                                     | SRG Nonline                               | 97<br>97                       | *1                          |                                  | ¥                           | Ogtions                |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Solving                        | Method                                       |                                           |                                |                             |                                  |                             |                        |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Select t<br>Simplex<br>problem | he GRG Noni<br>engine for I<br>to that are n | inear engin<br>inear Solver<br>on-smooth. | e for Solver P<br>Problems, an | oblens that<br>diselect the | t are smooth<br>Evolutionary     | nonlineat.1<br>engine for 1 | elect the LP<br>Joiner |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        | Hel                            | 0                                            |                                           |                                |                             | Solve                            |                             | Ciose                  |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        |                                |                                              | _                                         | _                              | -                           | D                                |                             |                        | _                   |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               |                                                                     |              |                                                 |                                |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             |                        |                     |                           |                           |                     |                                 |                            |                                  |                  |        |   |            |
|               | Answer Report 1 Prob1                                               | Acove        | Report 2                                        | Prob2                          | Answer    | Report 3                                    | Prob3  | Prob4                          | Probő                                        |                                           |                                |                             |                                  |                             |                        | 4]                  |                           |                           |                     |                                 |                            |                                  |                  |        |   | _          |
|               |                                                                     |              |                                                 |                                |           |                                             |        |                                |                                              |                                           |                                |                             |                                  |                             |                        |                     |                           |                           |                     |                                 |                            |                                  | Ħ                |        |   | +          |

### (Refer Slide Time: 34:01)



So, once you are taking 1 and 3 as the initial solution then you are getting the solution. So, let me try with 1 and 3 again. So, this is 1 and 3 again and if you are solving, so, in that case you are getting the solution and that is 0 and 1.5 and objective function value is 8.5.

So, therefore, for if when you are applying the classical method to solve a non convex problem, so where you have more than one optimal solution. So, in that case what you will do? You change your initial solution ok. So, change your initial solution that is your x naught and try whether you are getting different solution or not ok.

So, once you are taking an initial solution which is in the global optimal region, so, you may get the global optimal solution of the problem. But if you are applying the non classical technique, so, like genetic algorithm or PSO or other methods, So, there is a high probability that you will get the global optimal solution of the problem. So, this particular problem I have

solved in the last class using genetic algorithm and I got the global optimal solution of the problem in a single run ok.

So, every run I am getting the global optimal solution of the problem. Now, let me go to the partial differential equation. So, I said that I would like to solve this partial differential equation using Excel Solver. So, I will show you how you can solve this problem using Excel Solver.

(Refer Slide Time: 35:52)



So, here already I have solved this problem, but let me try again ok. So, let me start it from the beginning.

(Refer Slide Time: 36:08)



So, let me make it square ok and this also I make it square ok.

### (Refer Slide Time: 36:37)



So, here let me define my aquifer. So, aquifer size is 10 by 10 that means, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. So, this is the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. So, this is my aquifer. So, I am putting a color here. So, a different color may be this particular color and I would also like to put that way. So, as you know that left side is your constant head. So, this value is given and this value is 100 ok. So, this value is 100.

So, I am putting this value here and right side value is also known and this is the also constant head ok. So, this is also given. Now, you consider some initial solution here ok. So, let me consider 99 as the initial solution. So, I am considering 99 as the initial solution. So, as you know when you are applying the classical method. So, you should start your iteration with an initial solution.

So, in this case I would like to find out what is the value at its grid point. So, initial solution is your 99. So, as you have seen so, we have total 100 grid point that means, in this particular problem we have 100 variables ok. So, we have 100 variables that is x1 to x100. So, I would like to show you that how you can solve a problem with 100 variables.

Suppose in the earlier problem we have solve. So, we have only two variables. So, but excel is also capable of solving a problem having your means having 50 or 100 variable. So, in this particular version of excel, so, this is the free version. So, there is only one restriction is that if your problem has more than 100 variable, so, you will not be able to this Excel Solver ok.

So, your number of variables should be less than 100, but in this particular problem we have exactly 100 variables. So, I can solve this problem using Excel Solver. So, I have considered the initial solution as 99 and I also need to define the boundary condition here. So, here boundary condition is that no flow boundary and that means, the value will be same gradient value the gradient value is 0. So, therefore, this cell value will be equal to this cell ok, so that means, this is equal ok.

So, similarly here also this will be equal ok. So, this will be equal. So, I can I can do that. So, I have defined here.

(Refer Slide Time: 39:33)



#### (Refer Slide Time: 39:39)



So, let me define. So, this is the boundary condition. So, this is constant head ok. So, so I will rotate this x ok. So, this is the constant head here and here also this is the constant head ok. So, this is also constant head. This is also constant head and here this is no flow boundary no flow boundary ok. And this side also we have no flow boundary ok. So, this is the boundary values. I am putting a different color.

So, this is and this is also and this is also ok. So, now, I have defined my problem here. So, I have defined the constant head. So, these values are known. So, these are the boundary values. So, left hand and right hand side and here it is no flow boundary that means gradient is 0. So, I have copied, I have actually make this particular cell equal to this cell.

Now, let me define. So, this is the phi values I have. Let me define let me define the pumping value ok that source term here. So, suppose I have a source here and this is around 5000 ok.

This is the source and for others, so, this will be equal to 0. So, you can put it or otherwise you need not put it also ok. So, this is fine so, this is fine. So, if you are not putting then also it will consider 0, so, these are all 0s. So, these are all 0. So, I have only one pumping here.

Now, what I will do? I will write the equation. So, which equation I will write? I will write this particular equation ok. So, this particular equation I will write ok. So, I will write this particular equation. So, let me write the equation here. The equation is this is this plus this plus this minus 4 star i, j plus this divided by T.

(Refer Slide Time: 43:41)



#### (Refer Slide Time: 44:00)



So, here I am putting. So, these pumping values are 0. So, I am putting all 0 and somewhere here it is minus 5000 ok. So, now let me write this equation. So, I am just copying this equation. So, I am getting this. So, before that I have to put the absolute sign here ABS ok. So, if I put ABS absolute value, so, either you can put absolute or you can put square also ok and here I will make sum ok.

So, total error I am getting 26.67 and I would like to minimize this error in order to get the value of phi. So, let me use the Excel Solver. So, you go to Data then you use Solver. So, here the objective function is the error of function that is 027. So, 027 and these are changing cells. So, I have total 100 changing cells ok. So, all 100 I have considered and then I have constrain.

## (Refer Slide Time: 45:37)



So, how many constrain I have? I have 100 constrain ok. So, these are all constrain and this should be less than initially you consider 0.01 ok. So, now, I have defined the problem. So, this is the problem I have defined and just see whether I am getting the solution or not. So, let me solve this problem. If it is fine then I should get the solution. So, what it will do? It will try to minimize the error.

# (Refer Slide Time: 46:12)

| is Web Text | n From | Other<br>Cther<br>Cts- Co | Existing                             | Ne Que                       |                              | Show From T                  | Querie<br>Table<br>1 Sourc | 8 R   | La fresh |       | perfies<br>Links | 91 (<br>11 - | iort | Filter | To Reap    | ply<br>nced | Text to<br>Column | E A A   | Remove<br>Duplicati | Di Di                | Con                  | +CI<br>solidate | E E E   | ahips<br>C | Manage<br>Iata Mod | W<br>d An | ?  | orecas<br>Sheet | 400<br>Got | p Ungr | oup Subto | 9 9 500<br>9 Hid<br>4 Hid | w Detail<br>e Oetail | 2. Salve |     |    |    |   |
|-------------|--------|---------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-------|----------|-------|------------------|--------------|------|--------|------------|-------------|-------------------|---------|---------------------|----------------------|----------------------|-----------------|---------|------------|--------------------|-----------|----|-----------------|------------|--------|-----------|---------------------------|----------------------|----------|-----|----|----|---|
|             |        |                           | 6 -                                  | IM/F                         | IR:N7                        | d and                        |                            |       |          |       |                  |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      | Anopez   |     |    |    |   |
| A B         | c      | DE                        | F                                    | G                            | н                            | 1                            | 3                          | x     | L        | M     | N                | 0            | 9    | Q      | R          | S 1         | τυ                | v       | w                   | x                    | v   2                |                 | AB      | AC         | AD                 | Æ         | 15 | AG              | AH         | A      | AJ        | AK                        | A                    | H        | u i | IN | AD | W |
|             |        | 99.00                     | 55.05                                | 17.25                        | 96.62                        | 56.28                        | 56.25                      | 96.5  | 97.0     | 7 97) | 7 96.3           |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 100 99.00                 | 98.08                                | 17.25                        | 96.62                        | 96.28                        | 96.28                      | 96.50 | 97.0     | 7 97, | 7 98.3           | 99           |      |        | 0          | 0           | 0                 | 0       | 0                   | 0                    | 0                    | 0               | 0       |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 100 98.90                 | 97.98                                | 17.07                        | 96.34                        | 55.94                        | 96.03                      | 96.   | 96.9     | 6 97) | 2 58.            | 99           |      |        | 0          | 0           | 0                 | 0       | 0                   | 0                    | 0                    | 0               | 0       |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | _      | 100 98.9                  | 97.8                                 | 6.72                         | 95.75                        | 55.14                        | <b>95.4</b> 3              | 96.0  | 56.7     | 8 97. | 2 98.2           | 99           | -    | Solver | Results    |             |                   |         | -                   | _                    |                      |                 |         |            | -                  | x         |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | ead    | 100 98.83                 | 97.6                                 | 6.27                         | 94.81                        | 93.45                        | 54.48                      | 95.   | 96.5     | 7 97, | 4 98.2           | 99           | ea   | 100    | . from a   |             | -                 |         |                     | -                    |                      |                 |         |            |                    | 1         |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | H      | 100 98.1                  | 97.5                                 | 15.97                        | 93.76                        | 89.38                        | 93.44                      | 95.3  | 96.4     | 9 97, | 1 98.2           | 99           | H    | cond   | itions an  | e satisfi   | ied.              |         |                     | Re                   | ports                |                 |         |            |                    | - [       |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | star   | 100 58.88                 | 97.65                                | 16.35                        | 94.9                         | 93.56                        | 94.58                      | 95.R  | 96.6     | 4 97, | 8 98.2           | 99           | star | ۲      | Seep Solv  | er Solutio  |                   |         |                     |                      | iersitivit<br>Jinits |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | io i   | 100 98.90                 | 97.91                                | 16.88                        | 95.95                        | 55.35                        | 95.63                      | 96.2  | 96.9     | 2 97. | 2 98.3           | 99           | no   | 0      | Bestore O  | riginal Va  | lues              |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             | Ŭ      | 100 99.00                 | 98.16                                | 17.33                        | 96.66                        | 96.28                        | 96.34                      | 96.6  | 97.1     | 9 97. | 7 58.3           | 99           | Ŭ    |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 100 99.1                  | 98.35                                | 17.64                        | 97.09                        | 96.79                        | 96.77                      | 96.9  | 97.3     | 8 97. | 8 98.4           | 99           |      |        | Derin 12   | 13          |                   | strang  |                     | -                    | Ogoine               | eports          |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 100 99.3                  | 98.44                                | 17.79                        | 97.3                         | 97.02                        | 96.98                      | 97.1  | 97,4     | 9 97. | 4 98.4           | 99           |      |        | Q٤         | ]           | ⊊ancel            |         |                     |                      |                      |                 | ţ0      | ive Scer   | eria               | 1         |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 99.3                      | 58.44                                | 17.79                        | 97.3                         | 97.02                        | 96.98                      | 97.1  | 97,4     | 9 97: | 4 58.4           |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        |                           |                                      | N                            | o Fl                         | ow                           | Bou                        | nda   | Ŋ        |       |                  |              |      | Solvi  | er Kourke  |             | IL AFC            | eco and | ane ops             | manky co             |                      | re saco         |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        |                           |                                      |                              |                              |                              |                            |       |          |       |                  |              |      | is us  | ed, this i | neans S     | alver has         | found a | giobal o            | acieass<br>ptimel si | lution.              | 01941 50        | Loon, I | multiple 2 | impier u           | 1         |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.00                      | 0.01                                 | 0.03                         | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.1 | 1 0.0            |              |      |        | _          | _           | _                 | _       | _                   | _                    | _                    | _               | _       | _          | _                  |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01                                 | 0.01                         | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.1 | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01                                 | 0.01                         | 0.01                         | 0.01                         | 0.01                       | 0.0   | 0.0      | 1 0.  | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.00                      | 0.01                                 | 0.01                         | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.1 | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        |                           |                                      |                              | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.1 | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01                                 | 0.01                         |                              |                              |                            |       | 0        | 1 01  | 1 00             |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01                                 | 0.01                         | 0.01                         | 0.01                         | 0.03                       | 0.0   | 1.610    |       | 4 677            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01                                 | 0.01                         | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.  | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0                       | 0.01<br>0.01<br>0.02<br>0.01         | 0.01<br>0.01<br>0.02<br>0.03 | 0.01                         | 0.01                         | 0.03                       | 0.0   | 0.0      | 1 0.  | 1 0.0            |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |
|             |        | 0.0<br>0.0<br>0.0<br>0.0  | 0.01<br>0.01<br>0.02<br>0.01<br>0.01 | 0.01<br>0.01<br>0.02<br>0.01 | 0.01<br>0.01<br>0.01<br>0.01 | 0.01<br>0.01<br>0.01<br>0.01 | 0.03                       | 0.0   | 0.0      |       | 1 0.0<br>1 0.0   |              |      |        |            |             |                   |         |                     |                      |                      |                 |         |            |                    |           |    |                 |            |        |           |                           |                      |          |     |    |    |   |

## (Refer Slide Time: 46:32)



So, you can see it is running and solver found a solution all constrains and optimality conditions are satisfied. So, you can see the answer, but before that let me refine or let me increase the precision. So, what I am doing? I am just increasing the precision to 0 0 1. So, let me solve it again. So, now, you just see I can seen the report yeah.

(Refer Slide Time: 46:51)



# (Refer Slide Time: 46:56)

| B                   | S ⊈ S Ledtk-6xel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m – m ×        |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| R                   | ne inset Pagelayout Formulae Bata Raview View Q Talmenhalyou weets do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signin A Share |
| From                | B         B         Description         B         Torm for<br>the formation         B         Torm for<br>the formation         B         Torm for<br>the formation         B         Description         B         Description         Descripion         Description         De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~              |
| 41                  | X / 6 Minmeth Fund 160 Annuar Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 44                  | C D E F G H I J K L M N O P Q K S I U V W X Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 44 1.        |
| 100                 | Sk.JS2067 Sk.JS2724LC000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 102                 | 67 TOM BOOTSBAY 77.1.277423 77.1.2014000 CURITIN<br>68 202000 CURITIN CONTRACT |                |
| 103                 | STATUS TITUTE CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 114                 | 47/04/04/07 47/17/04/24 Cartin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 105                 | 95.70309421 95.87756949 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 106                 | 96.77/09239 96.85718378 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 107                 | 96.99428038 97.07115536 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 108                 | 97.38370743 97.44356373 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 109                 | 97.87729801 97.93833406 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 110                 | 98.43055743 98.44734332 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 111                 | io Flow Boundary 99.20386531 99.22510856 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 112                 | 98.4440537 98.49618939 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 113                 | 97.78992566 97.86407809 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 114                 | 97.29680885 97.38352857 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 115                 | 97.01683922 97.0902214 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 115                 | 96.9756146 97.06496833 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 117                 | 97.14891218 97.228999015 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 113                 | 97.46682897 97.55197374 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 119                 | 97.91786729 97.9418584 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 120                 | 98.45947891 98.4596722 Contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 121<br>122<br>123 C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 124                 | Name Cell Value Formula Status Slack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 125                 | io Flow Boundary 0.001 \$8538~0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 126                 | 0.000 \$F\$18~0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 127                 | 0.001 \$6538~60.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 128                 | 0.001 SH580-0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 129                 | 0.001 \$518+0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 130                 | 0.001 SiSI8-m0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 131                 | 6.001 \$438-04.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 132                 | 0.001 9.533+0.001 Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 133                 | 0.001 5V5114=0.001. Binding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 134                 | 0.001 X5116-0.001 anding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 152                 | 0 min sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 195                 | 6.00 (5)15-0001 (9)16-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| 137                 | EAU 2002710000L Brang U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|                     | Answer Report 1 Prob1 Answer Report 2 Prob2 Answer Report 3 Prob3 Prob3 Prob3 Steets Answer Report 4 Steets 🛞 : «                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| Read                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - + 1025       |
|                     | 0 tit 🕐 🚔 🚔 🛁 👘 🕅 🗴 🕀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 🖂 046 🖬      |

So, I am getting a report here and you just see these are the value ok. So, these are the; so, original value was 99 and finally, I am getting these. So, these values; so, all 100 variables are here.

# (Refer Slide Time: 47:06)

| ₿              |             |                                                                 |                                                                    |                 |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
|----------------|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------|------------------------------------|------------------------------------------|-----------------------------|------------------------|-------------------------|--------------------|----------------------|-------------------------------------------|--------------|----------------|---------------------------------|-----------|-------|-------|-----------|
| File           |             |                                                                 | Formalia Data Review                                               |                 |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       | n A Share |
| From<br>Access | From<br>Web | From From Other<br>Fet Sources* Connection<br>Get Doctruit Data | New Queries<br>New Queries<br>Query- Queries All-<br>Get & hundram | Connections     | 한 문화 문화<br>같는 Sert Falls<br>Sort & | Cess<br>To Roopply<br>Advanced<br>Filter | lextis Rath<br>Calumes Fill | Remove<br>Duplicates W | Data Coer<br>Addition * | elidate Relationel | Aasage<br>Data Model | What-II Feee<br>Analysis * She<br>Forecaz | ant Group Un | group Subtotal | ∃ Show Detail<br>"] Hide Detail | 2. Solver |       |       | ~         |
| A1             |             | • : × ✓ fe                                                      | Nicrosoft Excel 16.0 Answer Report                                 |                 |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       | ~         |
| 14             |             | 6                                                               | 0 1                                                                | 6               |                                    | 1.1.1                                    | <b>x</b>   1                | M                      | N I                     | 0                  | 0                    | 0 0                                       | 1.4          | 1 0 1          | N                               | l v       |       | 2     | M 1 17    |
| 122            | 11140       |                                                                 | 0.001 \$46181-0.00                                                 | I Rinding       | 1                                  |                                          |                             | m                      |                         | 0                  | 4                    | _ n _ o                                   |              | 0              | v                               |           |       |       | -         |
| 134            | SN518       |                                                                 | 0.001 SNS18:-0.00                                                  | 1 Binding       | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 135            | 91232       | No Flow Boundary                                                | 0.001 \$55190.00                                                   | Binding         | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 136            | \$\$\$19    |                                                                 | 0.001 \$F\$190.00                                                  | 8 Binding       | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 137            | \$6\$19     |                                                                 | 0.001 \$5\$19-0.00                                                 | 1 Binding       | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 138            | \$8\$19     |                                                                 | 0.001 \$H\$190.00                                                  | 1 Sinding       | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 139            | \$1\$19     |                                                                 | 0.001 \$(\$190.003                                                 | Binding         | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 140            | \$1519      |                                                                 | 0.001 \$1519:-0.001                                                | Binding         | 0                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 141            | \$8\$19     |                                                                 | 0.001 \$K\$19:-0.00                                                | 1 Binding       | 0                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 142            | \$1,\$19    |                                                                 | 0.001 \$1\$19~-0.000                                               | 8inding         | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 143            | SM\$19      |                                                                 | 0.001 \$M\$190.00                                                  | 11 Binding      | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 144            | SN\$19      |                                                                 | 0.001 \$N\$19:-0.00                                                | 1 Binding       | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 145            | 58520       | No Flow Boundary                                                | 0.001 \$55200.00                                                   | 8inding         | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 145            | 54220       |                                                                 | 0.001 \$9\$200.00                                                  | sinding         | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 147            | 200220      |                                                                 | 0.001 96520-0.00                                                   | 1 singing       | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 145            | SH520       |                                                                 | 0.001 \$4520-4000                                                  | 1 shoing _      |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 147            | 1444        |                                                                 | 0.001 3/320-0.001                                                  | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 120            | 21220       |                                                                 | 0.001 33320-0.003                                                  | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 101            | 01000       |                                                                 | 0.001 \$1320-0.00                                                  | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 152            | 044030      |                                                                 | 0.001 01000-0.00                                                   | I Biodian       |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 154            | CN COO      |                                                                 | 0.001 5450- 0.00                                                   | 1 Binding       | <u></u>                            |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 155            | 15732       | No Flow Boundary                                                | 0.003 \$\$\$234.0.00                                               | Rinding         | 5                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       | -         |
| 156            | \$\$\$21    |                                                                 | 0.001 \$\$\$21<-0.00                                               | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 157            | \$6521      |                                                                 | 0.001 565210.00                                                    | 1 Binding       |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 158            | \$8521      |                                                                 | 0.001 \$45210.00                                                   | 1 Sinding       |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 159            | \$1521      |                                                                 | 0.001 \$1\$210.003                                                 | Sinding         | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 160            | \$1521      |                                                                 | 0.001 \$/\$21<-0.001                                               | Binding         | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 161            | \$8\$21     |                                                                 | 0.001 \$K\$21<-0.00                                                | 1 Binding       | 2                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       | -         |
| 162            | \$1,\$22    |                                                                 | 0.001 \$1521~0.000                                                 | 8 Inding        | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 163            | \$M\$21     |                                                                 | 0.001 \$M\$21<-0.00                                                | 11 Binding      | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 164            | SN\$21      |                                                                 | 0.001 \$N\$21<-0.00                                                | 1 Binding _     | 0                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 165            | \$8\$22     | No Flow Boundary                                                | 0.001 \$8\$22~-0.00.                                               | Binding         | )                                  |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 166            | SF\$22      |                                                                 | 0.001 \$F\$22~-0.00.                                               | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 167            | \$6\$22     |                                                                 | 0.001 \$5\$22~-0.00                                                | 1 Binding       |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 168            | 58522       |                                                                 | 0.001 \$8522-0.00                                                  | I sinding _     |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 103            | 2522        |                                                                 | 0.001 3/522-0.001                                                  |                 |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
| 171            | 24222       |                                                                 | 0.001 \$7\$22<-0.001                                               | Binding         |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 |           |       |       |           |
|                | 1           | Answer Report 1 Prob                                            | 1 Answer Report 2 Prob2                                            | Answer Report 3 | Prob3 Prob                         | Probo St                                 | eets Answe                  | r Report 4             | Sheets                  | (+)                |                      |                                           |              |                |                                 |           |       |       |           |
| Ready          |             |                                                                 |                                                                    |                 |                                    |                                          |                             |                        |                         |                    |                      |                                           |              |                |                                 | 8         | 10 11 |       | + 102%    |
|                | P           | Type here to search                                             | 0 #                                                                | 0 🖩             | 🔒 💼                                | i 🔥                                      | 0 👔                         | ×I                     |                         |                    |                      |                                           |              |                |                                 |           | ~ ⊜ d | J (≕) | 016 🕎     |

## (Refer Slide Time: 47:12)

| E by d+t to be the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| File Home Insus: Pagelayout Formular Data. Review Vern Q™litres/ndu/you/wettida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Sign in A Share |
| Image: Construction         Image: Cons         Image: Constrution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iolver<br>elso: | ~               |
| At the State of th |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Y             | 2 24 1.         |
| In Store Constant and Store and a constant of the store o |                 |                 |
| The start start spectrum mining of the start spectrum starting of the start spectrum start spect |                 |                 |
| Na Sakara Bula Sakara Bula ang Pangara Bula Ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |
| The paper source source source of the source |                 |                 |
| The provide an international sector and the provide and the pr |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |
| The state of the s |                 |                 |
| Second and Second and Added a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |
| Charles and Charles and Charles a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |
| an ACA ann ACA-ann haire a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |
| ar ann acream liaire a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |
| all MCA AND MCACHAR Balance B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |
| Secon com Secondam males 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |
| 25 No. I dow Househow 0.001 9 Stortum I indice 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 |
| an ann a seann ann a seann an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |
| an score ann score an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |
| and and a second mode o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |
| 20 SOs onn SOsconn noing n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |
| na siste autor signe-cam meder a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 |
| a gaine massion and gain and a second marks ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |
| 272 SS% ann SS%-cam malag n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |
| 211 Sative auto Sative-trant medag a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |
| 214 SteSh and SteShernan Indag 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 |
| 218 SS77 Notline/Bourdary 0.000 SS77-0.000 Bunding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |
| 258 StS77 6.000 StS76-0.000 minding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |
| <u>stri strikov na stola zvetna na nadveg n</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |
| 910 9157 0.00 9257 0.00 tedag 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |
| see serv annamm serve-ann andre a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |
| 2010 StS7/ 0.000 StS7/embilit Beding 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |
| 957 6.00 3657/~0.00 indag 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |
| 907 ann 307-eann taolog 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                 |
| 721 54597 0.00 54597/c0.00 linking 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |
| 3457 0.001 SEC7/04.001 Hinderg 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 |
| 22<br>28<br>27<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |
| ( ) Answer Record 1 Prohl Answer Record 2 Proh2 Answer Record 1 Proh1 Proh1 Proh1 Proh1 Proh1 Answer Record 4 Sheets (P) : (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |
| Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H M E           | + + 125         |
| 11 - P. Non-Amerika search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ @ 4I          | A 🗐 DAG 👼       |

And all 100 constrain you just see I have total 100 variables and 100 constrains. So, these constrains are there and all of them have satisfied. So, you just see constrain value is less than 0.001. So, I am getting the solution. So, now, this is the solution and as I have said this is a flow problem and there is a pumping cell. There is a pumping cell here and if I plot it so, I should get the cone of depression ok. So, cone of depression I should get.

So, I think you have already gone through well hydraulics sector of water resources ok. So, they are actually if we are pumping water from the confine aquifer, so, when you are pumping water from a confine aquifer a cone of depression will occur. So, I can see that cone of depression here. So, let me plot it. So, I can plot this surface.

## (Refer Slide Time: 48:11)



So, let me go to this one and here I can plot it ok. So, this is the plot you can see. So, this is the plot you can see either this is the plot ok. So, you can see that this is the plot. And here from here actually I have extracted 5000 meter cube per day and you can see basically that a cone of depression has occurred. So that means, I am getting or I got the solution ok. So that means, I got the solution of this particular problem.

So, you can also see suppose if I put another wheel somewhere here suppose this is minus 2000 ok. So, pumping is minus 2000 and now error is 6.76.

# (Refer Slide Time: 49:04)



## (Refer Slide Time: 49:08)



So, I can also minimize this error. Just go to Data and Solver then I will solve it again ok. So, let me solve it again. So, you can see that I am getting I should get another cone of depression here. So, this is the cone of depression. Maybe you can increase these things. So, minus 5000 and just see just solve it you should get yeah.

# (Refer Slide Time: 49:31)



So, you just see you are getting two cone of depression. So that means, I am getting the solution and this problem I have solved using Excel Solver ok.

(Refer Slide Time: 49:55)



(Refer Slide Time: 50:02)



### (Refer Slide Time: 50:02)



So, you can also change the plot. Suppose I would like to I would like to plot a contour I would like to plot the contour that also you can do. So, Insert, suppose I can see that one ok, I can also see the contours ok. So, here you can see. So, there are two cone of depression. So, there are two cone of depression and because we have two pumping well in this case.

So, the problem I have considered. So, this is a problem having 100 variables. So, just to show basically that excel is also capable of solving a problem having more variables. So, in this case I have solved a problem with 100 variable. So, you can easily solve this problem, but as I said if the number of variable is more than 100 then you will not be able to use that on.

So, it can handle up to 100 and number of constrain also it can handle up to 100. So, you can see that in this particular problem we have 100 variables and also we have 100 constrains.

Then let us stop here. So, I hope you will be able to solve an optimization problem using Excel Solver.

Suppose if you are not comfortable with your MATLAB or if you are not comfortable with R programming then you can solve some problem. So, you will not be able to solve all the problem, but some problem you will be able to solve using Excel Solver ok. So, you do not need any programming skill. So, you just define your problem and you will be able to solve using the Excel Solver available in MS Excel.

Thank you.