
Optimization Methods for Civil Engineering
Dr. Rajib Kumar Bhattacharjya
Department of Civil Engineering

Indian Institute of Technology, Guwahati

Lecture - 30
Introduction to Differential Evolution

Welcome back students. So, today we will discuss another algorithm that is Differential

Evolution.

(Refer Slide Time: 00:39)

So, differential evolution is a stochastic population based optimization algorithm for solving

non-linear optimization problem. Just like genetic algorithm or particle swarm optimization

method, so differential evolution is also a population based algorithm. So, we generally used



for solving a non-linear optimization problem. So, this algorithm was introduced by Storn and

Price in 1996. 

So, let us consider an optimization problem, suppose if we consider a minimization problem

here; that is minimize f X and X is a vector and this is a D dimensional problem. So, I have

the variable x 1, x 2, x 3 up to x D. So, this is a D dimensional problem, number of variables

is D.

(Refer Slide Time: 01:34)

Now, let us see the algorithm. So, here just like genetic algorithm, so we have to initialize the

population ok; so in this step, we will initialize the population. So, before that, we have to

define the population size; that means the number of solution in the population, so that we

have to define, an upper bound and lower bound of its variable you have to define. So, in this

case, so I will discuss; so we have to initialize the population in this stage.



Now, after that we are creating or we are mutating the solution. So, this mutation is different

than what we have discussed in case of genetic algorithm. So, that mutation was different, but

here mutation process is different; but objective is same that I would like to create a new

solution. And then we are using recombination and this is also not similar to what we are

using or what we have used in case of genetic algorithm. 

So, with recombination, we are creating a new solution and after that we are applying

selection operator. So, selection operator is basically used to select the best one and then we

will check for termination criteria; if it is satisfied, then we will declare that this is the

solution, otherwise this process will continue. So, we will go to the next generation and this

process will continue unless and until you are reaching the termination criteria. So, this is the

algorithm, so you can see what are the steps. 

So, steps are initialized population, then you go for mutation, go for recombination; then you

go for selection, then check for termination criteria. If it is satisfied, then you will declare the

optimal solution and if it is no, in that case this process will continue. So, as I have said, this

is a population base algorithm. So, let us consider the number of solution in a population or

population size is N; then the population matrix can be shown as or can be written as like

this. 

So, x n g, so this is a vector and this vector can be defined is something like that. So, this is

the variable 1, this is variable 2, this is variable 3 and this is variable D. So, n is showing the

number of population, ok. So, population size is n. So, n is from 1 to N and g is the

generation. So, n this 1, 2, 3 up to; so we have D dimension. So, I can say that is a D

dimensional problem, small n is showing the population number; that means we have total N

population or N solution in the population and g is your generation.



(Refer Slide Time: 04:31)

Now, the first step is initialize population. So, I can create the initial solution using this

equation suppose x that n equal to 1 and i equal to 1; that means for the first solution and first

variable, the lower bound this is x n i L this is the lower bound. Then I am generating a

random number between 0 and 1 and then the upper bound of this particular variable and

lower bound of this particular variable. So, then I am creating the first solution; suppose I can

explain it here. So, this is x 1, 1 and this is x 1, 2; like that this is x 1, D, ok.

So, then this is x 2, 1; x 2, 2 and this is x 2, D, ok. So, similarly I can x n 1, this is x n 2 and

then x n D. So, n equal to 1, i equal to 1; means I am generating this particular value. Then

similarly n equal to 1, i equal to 2; I will generate this one. So, for 3 like that, so I will

generate all these values randomly. So, once I am generating for all n equal to N. So, in that



case I will be getting the total population. So, here as I said that, x i L is the lower bound,

lower bound of the variable x i and similarly x i u is the upper bound of the variable x i.

(Refer Slide Time: 06:32)

Now, the next step is the mutation. As I said the mutation here is different than what we have

used in genetic algorithm. So, let us see how we are doing the mutation here. In this case for a

given vector x n g, select three other vectors; so this is x r 1 g, x r 2 g and x r 3 g randomly.

So, what we are doing here from the population, so we are selecting three vectors, that is x r

1, g x r 2 g and x r 3. So, these three vectors are taken from the population randomly in order

to get a mutated vector for x n g. Then we are adding the weighted difference of two vectors

to the third vector. 

So, what we are doing? So, this is the new vector or we call it donor vector. So, donor vector

is created. So, one vector I am taking as a initial solution and then other two vectors are taken



to get the direction and we are multiplying with F. So, F is a number or you can say the

parameters of this algorithm. So, and this value is generally between 0 and 1 and some people

are also taking between 0 and 2. So, in this case we are considering between 0 and 1 and so, I

am getting the donor vector.

So, what I am doing here? So, I am taking three vectors randomly that is r 1, r 2 and r 3; then

one vector I am taking as an initial solution and other two vectors are taken to get the

direction. And I am getting a another vector in that direction and this vector and the name of

this vector is v n g i plus 1. So, this is for the next generation and we call it donor vector. So,

as I said, so F is a parameter and it is generally between 0 and 1. 

And as I said that some people are considering this value of F between 0 and 2. So, by this I

am getting a new vector and I can say that with this mutation, so I am getting a new solution,

ok. So, new vector and the name of this vector is donor vector.



(Refer Slide Time: 08:52)

Now, the next step is recombination, so recombination, so this step. So, in this case what we

are doing. So, a trial vector u n g i plus 1, so that is for the next generation is developed from

the target vector. So, this is the target vector and the donor vector. So, donor vector I have

generated for this particular target vector. And so, using these two, so I am trying to get a new

vector and we call it trial vector. 

So, you just see now whatever new vector we are getting, so this vector is a combination; that

means some variable is from the target vector and some variable from the donor vector. So,

we can use this particular process. What is this process? That u n i g plus 1 equal to v n i g

plus 1; if a random number, so we are generating a random number and if that random

number is less than C p, again C p is the parameter of this algorithm.



So, we will define C p and if it is less than C p, then or i equal to I rand. So, I rand is also

generated randomly between 1 and D. So, between 1 and D if rand is less than C p or i equal

to I rand; so in that case what I what we are doing, so we are taking that particular variable

from the donor vector. Otherwise, if the rand is greater than C p and i is not equal to I rand.

So, in that case what we are doing, we are taking from the target vector. So, what is this? This

is a combination of the donor vector and target vector.

So, as I said that rand function will give you a random number between 0 and 1 and I rand is

an integer random number between 1 and D and C p is the recombination probability. So,

suppose if I take C p equal to 0.5; so that means 50 percent we are getting from the donor

vector and 50 percent we are getting from the target vector. So, I rand ensures that that u n i g

plus 1 is not equal to x n i g, ok. So, this will answer; because once i equal to I rand, so

certainly we are getting something from the donor vector.

So, anyway, so depending upon this probability; so you will get your some variable from the

donor vector and some variable from the target vector. This process will continue for n equal

to 1 to N and i equal to 1 to D. So, you are getting a new trial vector now and this vector is u

n i g plus 1. So, what we are doing here? So, we have initially create a donor vector that is v i

and after that using v i and the target vector; so using the donor vector and the target vector,

so we are creating a new trial vector and that is u n i C plus 1.



(Refer Slide Time: 12:01)

The next step is selection, ok, so this is the step. So, in this step what we are doing; the target

vector x n g, so this is the target vector, so for that we have actually created a trial vector, ok.

So, this target vector is compared with the trial vector and one with the lowest function value

is selected for the next generation. So, what we are doing here? We are now comparing the

target vector with the trial vector; if target vector is better than the trial vector, so we will

keep the target vector. 

But if the trial vector is better than the target vector, so we will take the trial vector or we will

replace the target vector by trial vector. So, this is the replacement we are doing. So, x n g

plus 1, so this is the for the next variable. So, this will be equal to this will be equal to the

trial vector; if the function value of the trial vector is less than function value of the target



vector. Or otherwise, we will keep the target vector and this process will continue for n equal

to 1 to N, ok.

So, we are selecting the better one and then we will check for the termination criteria; if it is

satisfied, anyway we will declare the optimal solution or if it is not satisfied, then this process

will continue. Again, we will go for mutation, then again we will go for recombination in

mutation; we will create a donor vector and using donor vector and the target vector, so we

will try to get the trial vector. And then trial vector and the target vector will be compared in

this step and the better one will be taken and then again we will check the termination criteria.

So, this process this iteration process will continue till we are not satisfying or till target

termination criteria is not satisfied, ok. And once it is satisfied, then you will declare the

optimal solution.

(Refer Slide Time: 14:07)



So, mutation, recombination and selection will continue until the termination criteria criterion

is not reached. So, this is all about the differential evaluation, so as you have seen. So, this is

a very simple algorithm, but again it is a very powerful. So, we can actually solve a very

complicated or you can say that. So, we can solve a non-linear problem using this algorithm.

Now, I will show you how you can solve a non-linear problem using differential evolution or

in R platform, ok. So, we will use the R library for solving the problem.

(Refer Slide Time: 14:54)

Let us now open the R studio. So, this is the R studio, maybe I would like to clear the

environment. Now, let us select an working directory.



(Refer Slide Time: 15:04)



(Refer Slide Time: 15:14)

(Refer Slide Time: 15:20)



So, I will be working here, so I will be using de optim package here. So, let us install that one.

So, I have already installed here, but I would like to show you how you can install. So, you

can go to install and you can write here. So, D Eoptim, so this is DEoptim, so you can install.



(Refer Slide Time: 15:30)

So, now this package will be installed here; this has been installed or otherwise you can also

install from here. So, I can write install, install packages DEoptim. So, I can also install from

here using the command line, ok, so it has been installed.

(Refer Slide Time: 15:59)



 (Refer Slide Time: 16:05)



(Refer Slide Time: 16:10)



Now, let us open a new file R script. So, I would like to save this file first, so save, so this is

my DEexample, example 1.



(Refer Slide Time: 16:27)

So, here first I have to include the library. So, I can write library, this is DEoptim, so I have

included the library and then I have to write the function.

(Refer Slide Time: 16:45)



In this case I will be using this function first; that is f of x 1, x 2, which is equal to x 1 square

plus x 2 minus 11 whole square plus x 1 plus x 2 square minus 7 whole square. So, if I take

the range of x 1, x 2 between 0 and 5; x 1 star equal to 3 and x 2 star equal to 2. So, I should

get this particular solution. So, let us see if I apply d, whether I will get the solution or not.

So, now, in R I will write the function. So, give the name of the function, suppose I am

writing f 1. So, this is the function I can write, ok. 

So, this is a function of; first I would like to plot this function. So, for plotting that one, so I

am writing x 1 and x 2. So, this is x 1 square plus x 2 minus 11 whole square plus x 1 plus x

2 square minus 7 whole square. So, this is the function I am writing here. So, what I will do? I

will let me execute this line. So, I will include the library and then I am executing this

particular function, I am executing this particular function.

So, you can see this function should be somewhere here. So, now, I have to define x 1 and x

2. So, x 1 equal to x 2, so both are between 0 and 5. So, I will use the sequence function here.



So, this is s e q function to generate x 1 and x 2 value between 0 and 5 and by the difference

is 0.1, ok.

(Refer Slide Time: 19:30)

So, let me execute this particular line. So, you can see what is x 1; so x 1 is between 0 and 5

and the interval is 0.1, similarly I am getting x 2 also. Now, what I will do? I will create the

function value at its grid point, ok. So, for that I will use the outer function. Now, I am

calculating the z value and that is I am calculating the function value at its grid point. So, I

will use the outer function, so z equal to outer. So, this is the outer function and this is x 1, x

2 and then I have to write the f 1, ok. So, you can see. So, if I execute this particular line. I

will get the function value, sorry this is z.



(Refer Slide Time: 20:28)

(Refer Slide Time: 20:34)



So, I will get the function value at each grid point, ok. So, now, I can plot it. So, I can plot

either surface plot or contour plot. So, if I want to plot surface, so in that case I can use p e r s

p function, ok.



(Refer Slide Time: 20:51)

So, this is p e r s p, so this is the function. And so, what I have to pass here? So, this is x 1,

this is x 2 and z. So, you can see that if I execute this. So, I will get the surface plot. So, I will

get the surface plot of this function or I can plot the contour also c o n t o u r contour and this

is x 1, x 2, z. So, you can see if I execute this, I will get the contour plot.

(Refer Slide Time: 21:38)



So, I am getting the contour plot here. Now, I am I can increase the number of control, that is

n level. So, n level suppose if I put 100, so it will increase the number of contour lines.



(Refer Slide Time: 21:54)

So, you just see the solution is somewhere here that, x 1 equal to 3 and x 2 equal to 2; maybe

I can also increase it up to 200, ok.



(Refer Slide Time: 22:06)

So, somewhere here, solution is somewhere here.



(Refer Slide Time: 22:11)

So, I think 100 is sufficient, so let me plot this one yeah. 

(Refer Slide Time: 22:18)





So, I can change the color also. So, color I can change; suppose if I put red or blue I can put,

any color I can put, yeah I will get the red contour lines ok or you can also put blue. 

(Refer Slide Time: 22:44)

So, you are getting blue lines, ok. So, this is just to plot the function. So, I would like to get or

once we are applying D E. So, I should get this solution that is your 3 and 2. 

Now, for D E I have already included the library, so that is DEoptim and I have to use the

function DEoptim. So, let us see what is this particular function. So, we can go to help, that is

D E; let us go to help and we will use DEoptim, ok.



(Refer Slide Time: 23:34)

So, you can see, so this is the D E optim function. So, what are the arguments? So, I have to

put this function and then lower bound, upper bound and there are some control parameters,

ok. So, control parameters means, that is the parameter of the algorithm you can suppose

number of iteration, then c value, f value, so that you can define here, ok. So, you can see this

one.

(Refer Slide Time: 24:01)



So, this is the function, ok, so this is the function, but I will type it here. So, I will use the

function is DEoptim, ok. So, DEoptim and I have to use this function; but before that in that

case, I cannot define x 1 and x 2 something like that, so I have to define x as a vector. So,

what I will do; so I will create a function that f n. So, in this case I have to define as a vector,

ok. So, now, I will do this is x 1 square plus x 2 minus 11, this is whole square plus this is x 1

plus x 2 square minus 7 whole square, ok.

So, I am defining it as a vector, x as a vector, ok, so I hope this is fine yeah. So, now, I have

executed this one, so now, this function I have to use. So, this is f n; then I have to use the

lower and upper bound, so lower equal to c. So, now, it is between lower is 0 and 0. So,

between 0 and 5, so x 1 is between 0 and 5; x 2 is between 0 and 5. So, lower is 0, 0 and

upper is 5, 5, so I think it is fine. So, other parameters, so I will use the default value. So, let

me store this result somewhere. So, r e s, so I am storing this result.



And if I execute this particular line, so this will optimize this function f n between lower

bound and upper bound and the result will be stored in r e s, ok. So, let us execute. So, if it is

if there is no issue, then I think we should get the solution, ok. So, we have executed up to

200 iteration and I can see whether I am getting the solution or not. So, let us see summary of

r e s.

(Refer Slide Time: 26:35)

So, what I am getting here summary, I am getting the solution that is 3 2 ok, exact solution I

am getting and function value is 0 and iteration is 200. So, that means this is the default

value, it that number of iteration that number of generation is 200. And how many function

evaluation; that is 402 times function evaluation.



(Refer Slide Time: 27:06)

So, I am getting the exact solution. So, I can also see the plot, so if I plot r e s, so just see

what I am getting, ok. So, I think there is some problem with this.



(Refer Slide Time: 27:40)

Let me see if I plot r e s, what I will get. 

(Refer Slide Time: 27:48)



So, you can see that, this is the plot I am getting between iteration and value. And you can see

this is for parameter, this is for first variable and this is for second variable. So, I am getting

the solution; suppose this solution is first value is x equal to 3, x 1 equal to 3 and x 2 equal to

2. So, this is you can see that after few iteration, the solution is near 3 and 2. So, it is giving

the best solution at different iteration. So, I got this solution of this particular problem. So, let

us see another example problem. So, I will open another file, so this is a new R script and let

me save this one.



(Refer Slide Time: 28:47)

So, this is now example 2. 

(Refer Slide Time: 28:54)



So, this time also I have to include the library. So, library this is DEoptim, DEoptim, ok. So,

this is the library; this time I will use a different function and the function is, so let me write

the function first and this is f 2. So, just to plot this one; so I am writing x 1, x 2 and the

function is 10 plus x 1 square minus 5 star x 1 star x 2 plus 9 star x 2 square plus x 2. So, the

function is 10 plus x 1 square minus 5 x 1 x 2 plus 9 x 2 square plus x 2. So, let me run this

particular line.

So, now, I will generate the x 1 value and x 2 value. So, using sequence function and that is

between minus 5 and 5 by 0, 1 let me see. So, I can see what is x 1 yeah and x 1 you can see,

this is from minus 5 to plus 5 and similarly x 2 is also between minus 5 to plus 5. Now, I will

use the outer function to calculate the z values. So, outer this is x 1, x 2 and the function is f

2. So, I should get the z values, sorry z values.

(Refer Slide Time: 31:23)



So, now I can plot the contour; contour this is x 1, x 2 and z, let me execute this one. So, this

is the contour and in this case the solution is minus 0.455 and. So, x 1 equal to minus 0.455

and x 2 equal to minus 0.182. So, I should get this solution; that is minus 0.455 and I should

get minus 0.182.



(Refer Slide Time: 32:14)

So, let me check that one, so whether I am getting this solution or not. So, for applying DE;

so what I have to write, I have to define the function. So, in terms x we have to define as a

vector. So, let me write this function. And so, I would like to copy this here, ok. So, now, this

is x 1 ok, this is x 1, this is x 2 and this is also x 2, ok. So, this is x 1 square minus 5 x 1 into

x 2 plus 9 x 2 square plus x 2, ok, I hope this is fine. So, let me execute this one yeah. So,

now, I will use the DEoptim. So, this is DEoptim. So, here what you have to do, you have to

define the function.

So, now function name is f. So, I will define lower, so lower is c, that is minus 5 and minus 5;

then upper is c, this is 5, 5, ok. So, I am not changing the other parameters of the algorithms.

So, I am using the default value only. So, now, if I execute this one, so I should get the



solution; but I would like to store the solution in result, ok. So, let me check if I; if it is

correct, then I should get the solution.

(Refer Slide Time: 34:26)

So, let me see the summary of the solution, summary of res, ok. So, I am getting the solution

as minus 0.45455 and minus 0.18182. So, as I said the x value solution is minus 0.455; yeah I

am also getting the same thing minus 0.45, it is 5 and then minus 182. So, this is I am getting

0.18182, ok. So, I am getting the solution. So, here also the generation is 200 generation and

number of function evaluation is 402. So, I am getting this solution. So, if I want I can also

see the plot, so let us see. So, if I if I plot it, if I plot res, so just see.

(Refer Slide Time: 35:34)



So, this is the plot, you can see the solution of first one is minus 0.455. So, somewhere here

minus 4.55; the solution is minus 0.55 for x 1 and x 2 is minus 0.18, 0.182, ok. So, this is the

iteration versus the solution of x 1 and x 2. So, I can see and overall I am getting the solution

of this particular problem.



(Refer Slide Time: 36:12)

So, here I have not changed the parameters of the algorithm, but if you want you can also

change the parameters. So, you can go to help and then this is DEoptim. So, if I want I can

change the parameter, ok. So, under control, ok, so within control I can change the parameter.

And so, you can see that one. So, there is some example problem also how can, how you can

change the parameters. So, I can write that NP.



(Refer Slide Time: 36:44)



So, what is NP? You can you can see actually, under the control parameter it should be

defined. 

(Refer Slide Time: 36:56)

So, number of your parameter vectors, that is the member. So, that is your NP, ok, so number

of your parameters.

(Refer Slide Time: 37:06)





So, NP, so we have we can define NP that is your population, then F and CR, ok. So, I can

define using within the control, ok. 

(Refer Slide Time: 37:18)

So, maybe I can copy this part. So, I can write it here.

(Refer Slide Time: 37:30)



So, now what I am doing here. So, NP that the population size I am putting 80 now, iteration

by default it is 200 iteration, so I am going up to 100 iteration. So, F value as I said that some

people are taking between 0 and 1, some people are taking between 0 and 2. But here suppose

if it is defined 1.2 and CR value, so 0.7, ok. So, you can also define other CR value, but we

are considering 0.7 here. So, let us see, let us execute this one, ok, so now it is going up to

400 and the population size is 80, ok. And F value is 1.2 and CR value is 0.7.



(Refer Slide Time: 38:24)

And let us see the summary. So, we you are getting the solution that is 0.455 and this is

0.18182. So, now, in this case this is generation is 400 and function evaluation is 802. So,

number of functional value is more; you can see whether in 100 iteration I am getting or if I

change the population size to 40, so what will happen.



(Refer Slide Time: 38:45)

Let me execute this line, let me execute this one; then also I am getting the solution. So, let us

see, reduce this one to 20, ok.



(Refer Slide Time: 39:01)

So, let me execute this one; yeah I am getting the solution with 20 population also. So 

(Refer Slide Time: 39:11)



, let us see if I population size is 1 10; then what will happen? Then also I am getting the

solution. So, as you have seen the differential evaluation, so in case of genetic algorithm; so

we need little bit more population or population size is more, but in this case you can see that

this for this particular problem, even population size of 10 is also sufficient to get the exact

solution of this problem.

So, you have to try with this or you have to change this parameters. So, one is the population

size, then iteration, then F value. So, as I said that F value is between 0 and between 0 and 1

or between 0 and 2 basically. So, you can take around 1 or 1.5 or something you can take and

CR value you can take around 0.5, 2.7 something like that. So, you can try with this

parameter.

So, if you are not getting the solution of this problem, solution of your problem; so you can

try with different parameters and you can see whether you are getting any improved solution



or not. So, with this let us stop here. So, today we have discussed differential evaluation and

also we have solved some problem using R program, ok.

Thank you.


