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Module-03
Lecture-09
Levy's Solution for Different Loading and Boundary Conditions

Hello everybody, today I am on the lecture 2 of module 3 and if you recall my last class, that I
started the Levy's formulation for rectangular plate, which is by nature and provides an exact
solution of the plate differential equation. And in that connection, we have seen that Levy's
formulation can be done with the help of single series. And then, the convergence is repeat, but it
is applicable for certain condition that when the two opposite edges of the rectangular plates are

simply supported.

And other 2 opposite edges may have same condition or may have different conditions also. But,
thing is that when this condition is not met directly, then Levy's condition cannot be applied. So,
let us see how we can explore the Levy's formulation to solve other plate problems. That means
plate subjected to other type of loading. In the last class, I have discussed the problem which was

already solved by Navier's method, that four edges were simply supported.

So, in that case, we applied the Levy's condition, and we have found that the result obtained was
closely in agreement with the Navier's method.
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Outlines of lecture

# Highlighting the important steps of Levy’s method for the rectangular
plate

» Comparison of Levy's method with Navier's methed for rectangular plate

# Rectangular plate whose two opposite edges are simply supported and
other two opposite edges are clamped carrying distributed load

# Rectangular plate whose two opposite edges are simply supported and
other two opposite edges are clamped carrying partially covered
uniformly distributed load

# Rectangular plate whose two opposite edges are simply supported and
other two opposite edges are clamped carrying line load

» More examples of rectangular plate using Levy’s method

So, today's lecture that outlines will be highlighting the important steps of Levy's method for
rectangular plate, comparison of Levy's method with Navier's method for rectangular plate. Then
we will illustrate a problem of rectangular plate whose two opposite edges are simply supported,
and other 2 opposite edges are clamped, which the plate carries uniformly distributed load. Then
we will do this problem that 2 opposite edges are simply supported, and other 2 opposite edges

are clamped carrying partially covered uniformly distributed load.

In the first case, the edges are clamped on 2 opposite edges, and here also the edges are clamped.
But difference is that in the first case, the full plate was loaded; in the second case, the plate was
partially loaded. Then we will study the plate with two opposite edges simply supported, and
other 2 edges are clamped but carrying strip loading. So, that type of loading is sometimes
encountered in case of brick wall that is constructed over this slab directly, not transferring the

brick load on the beam.

So, in that case, the analysis of the plate for the line loading is important, and we will discuss this
strip loading on the rectangular plate. Then some more examples of rectangular plate, I will try to
show you and how it can be tackled in a different situation. So, Levy's method I have told that it
gives the exact solution, Navier's method also gives the exact solution.
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EXACT SOLUTION BY LEVY's METHOD

Levy's method provides an analytical solution of rectangular plate
problem for plalf having two opposite edges simply supported.

Say a rectangular plate axb Is simply supported at x=0 and x=a, we can
mrx

assume deflected series as w(x, y) = £’V () sin =

The function ¥, (y) is the solution of the following non homogeneous
ordinary differential equation

dYly) ., mied d¥ly) | mirt

ayt T + ' Fa(¥)=f () (1)

inwhich fy(y)=== [ g(x,y) sin ™= dx

But the difference is that Navier's method the requirement is that all the 4 edges of the
rectangular plate should be simply supported. But in case of Levy's method, some relaxation is
made. That means only these 2 opposite edges required to be simply supported, and other 2
edges may have any boundary conditions, may have same boundary conditions or may have
different boundary conditions or may have elastically supported edge or these supported by

torsional spring edge support.

So, many conditions may exist, but it can be tackled by Levy's method when two opposite edges
are simply supported. The most fundamental thing in Levy's method is that the deflection is
assumed as a sine series. That you are seeing that we have to assume the deflection surface as

single sine series, the summation extends from 1 to infinity. And the summation is done that the

deflected surface is taken as a function of y multiplied by a sine function, Sin%.

Here it is sin%because the x edges, the x = 0 and x = a, that means edges parallel to y-axis are

simply supported, so therefore sine function is taken. You can see that taking sine function it
renders the boundary condition to be satisfied x = 0 and x = a edges, there is curvature along x

direction is 0 and then your deflection is 0 at the edges x = 0, x = a. So, by taking these deflected



surface this function, we have proceeded to satisfy the differential equation of the plate which is

4th order partial differential equation.

And you know that differential equation in compacted form is viw = q(x, y)/D , where D is

3

the flexural rigidity of the plate, it is given by ” Eh

(1)

function in the differential equation Viw = q/D. We actually arrive at this ordinary differential

. Now, after substituting this deflected

. dYm 22 dY () ot , ,
equation, —=%— — 2———2"_ + TV (y)=f (y), where f (y) is a function of y.
dy a dy a m m m

How this function is produced? That can be understood by when I substitute this function to the

original differential equation, and then after multiplying both sides by sin m;x . And then using

the arithmetic condition of the sine function, we can arrive; this differential equation with
non-homogeneous term which becomes a function of y. Because the integration is actually

carried out with respect to x, here you can see it.

Then because of integration with respect to x, the result will not contain any x variable. So, it
will be purely a function of y. So, these differential equation you are seeing that it is the
differential equation with y. So, that differential equation has been solved with repeated roots that
are found for the characteristic equation for the homogeneous solution.

(Refer Slide Time: 08:22)



General Solution of the equation
mn mn

"
w, is the particular solution that depends'on the nature of the loading function,
The four constants of integration Am, Bm, Crm and Dm are to be found imposing
boundary conditions at other two opposite edges

However, in eq.(2), number of constants can be reduced to two for symmetrical
of anti-symmetrical cases,

+ For symmetrical cases, A, and D, are retained

* For anti-symmetrical cases, the constants B, and C_, are kept.

And then we have found that the solution is given for the homogeneous part as this function.
That is Ym(y) = (Am + Bmy) cosh cosh %y + (Cm + Dmy) sinh sinh %y + w o or

particular solution. That integral is to be found considering the forcing function in the left-hand

side. If there is a no-load acting on the plate, then this function will be 0.

Now you can see the characteristic of the general solution of this equation number 1 here. You

can see here that Am, Bm, Cm, Dm are arbitrary constants that can be found by imposing the

boundary condition on other 2 opposite edges. That means y = 0 and y = b edges if the side of

the plate is axb. And then, this origin is taken at one of the corners on the left-hand side. So, w

is the particular solution that depends on the nature of loading.

But one interesting thing you can see here, that cosh cosh %y , it is @ symmetric function, and

sinh sinh %y is antisymmetric function. So, when the loading conditions and support

conditions are symmetrical with respect to x-axis passing through the centre of the plate, then

there is no need to retain any antisymmetric term on the deflection expression.



So, therefore, in that case, we can only retain the symmetric term, symmetric terms are say

cosh cosh %y. And product of 2 antisymmetric term again is a symmetric, so we can take

these 2 terms Am cosh cosh % + Dmy sinh sinh % + w, if the support condition and

loadings are symmetrical. And if there is a condition that anti symmetry exists in respect of
loading, that means in one side the loading is + g in another side loading is — gq it varies linearly

with 0 value at the centre, then it is anti symmetric loading.

And in case of antisymmetric loading, we can take only the antisymmetric term. The

antisymmetric term here you can note that y cosh cosh L;TL i1s antisymmetric. Why it is

. . . . . . m . .
antisymmetric? Because y is a anti-symmetric function and cosh cosh T“y is a even function

or symmetric function. So, product of antisymmetric and symmetric function is again anti

symmetric function.

So, therefore in that case, we will retain this term and sinh sinh m;y

is a antisymmetric term.
So, Cm sinh sinh %y , this term and this term along with this coefficient Bmy and Cm have to

be kept in case of antisymmetric loading. So, for symmetric cases, A,, and D,, are retain, for

anti-symmetrical cases the constant B, and C,, are kept.
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COMPARSION OF NAVIER AND LEVY's METHOD

# Levy's and Navier's method both are applicable for rectangular plate where
exact solutions of the plate equations can be obtained.

# Navier's method Is applicable for rectangular plate whose four edges are
simply supported, whereas Levy's methed is to be used when two opposite
edges are simply supported in a rectangular plate.

# Navier's method yields deflected surface in the form of double trigonometric
series whereas, Levy's method is based on single trigonometric series,

# Convergence required more number of terms in Navier's solution because of
double summation whereas in Levy's method convergence in relatively
faster.

So, if we compare the 2 methods that we have learned so far, one is Navier's method, and another
is Levy's method. Navier method is specifically applicable for a rectangular plate which has 4
edges simply supported. So, that is the condition that must be satisfied first; then we can use the
Navier's as method. So, both the Levy and in Navier's method are applicable for rectangular plate

that they have some general character.

And both of these methods actually use this trigonometric series, and both the methods yield the
exact solution of the plate equations. So, that is some general character we have noted in case of
Levy and Navier's method. But in Navier's method is applicable for rectangular plate whose 4
edges are simply supported, as I have repeatedly told this. Whereas Levy's method is to be used

when 2 opposite edges are simply supported, so this is the difference.

But it is not that Levy's method cannot be applied for Navier's condition. Levy's method can be
applied when 4 edges are simply supported. So, Levy's method is more general compared to
Navier's method. Navier's method yields deflected surface in the form of double trigonometric
series, but Levy's method is based on single trigonometric series. Because of double summation

Navier's method is slowly converging method.



Whereas Levy's method it uses single trigonometric series, therefore it is first converging but the
computation in Levy's method is slightly involved compared to maybe s method. So, these are
the major difference between the Navier's method and Levy's method for rectangular plate.
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RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED AND
OTHER TWO OPPOSITE EDGES CLAMPED, CARRYING UDL

!
Let us assume the deflection surface as VT L
(= [ ¥

Wizy) = ) Y )sin

=1

L]

Where the function ¥ y) due to symmetric nature of the problem

mmy may  dqeat
+ Dy sinh——+
i

Yu(y) = A, cosh : PR

Now, let us see a problem when the rectangular plate a cross b is the dimension, and your

ER®

12(1-v%)

loading intensity per unit area, and since it is symmetrical, so we pass the axis, x-axis passing

thickness is h so that flexural rigidity D is . The plate is loaded with this q, is the

through the centre of the edges, which is parallel to y-axis. So, the plate is symmetrical about the

x-axis that you can see here.

And these 2 opposite edges are simply supported x = 0, x = a, and other 2 opposite edges y =0
and y = b, are also I have the same conditions in the boundary and that conditions are clamped.
Because clamped conditions are very common in case of plate, because in case of steel plate we
weld the plate the component maybe the flange of a column or this wave of guarder. Then we
have the reinforced concrete slab where the edges are the slab is supported by beam which is

integrally built, that means monolithically cast.



So, therefore fixed condition develops at the end. So, fixed conditions are common, and therefore

we cannot ignore this, and with the help of Levy's method, we can easily encounter this
condition. So, let us assume the deflection surface as Ym(y) sin sin % . Now earlier, we have
seen that solution is obtained in this form, but since in that case, the condition that I am now

discussing that 2 opposite edges are clamped, and 2 opposite edges are simply supported. So, in

that case symmetric condition is satisfied and therefore, we will take this term

Am cosh cosh i:L +D y sinh sinh L:L + w, and w, will be there because the plate is

loaded, so naturally, this particular solution will also exist.

So, now these solutions can be written in this form for Ym(y), that s

m:l'ry . You can see the term that I have written with the

A cosh cosh —% + D _ysinh sinh —=
m m a
red colour is a symmetric term specifying the homogeneous solution. But this term that is written
with a blue colour is a particular integral, because the loading is here constant. So, particular

solution is also assumed as a constant and after substituting in the differential equation, the

4q a4

. . . . 0
solution is obtained as this ———.
Dmt'm

So, this particular solution is due to the load acting on the plate. Now, our requirement is that the

boundary conditions have to be satisfied. Now on the boundary thatisy=0andy = i%. You
see now, the x-axis is passing through the edges parallel to y-axis, so, therefore, x =+ % or
X =——=,Xx =— 2 is this edge if the direction of positive direction of y-axis upward here, then

2

this edge specified as y = -b by 2 and this is the edge specified with y =+ %.

So, at both the edges, say y =— %., the boundary condition is same. So, now we will apply the

boundary condition at the 2 opposite edges.
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Boundary conditions at y=+b/2 or -b/2 requires use of derivatives upte third order of the
homaogeneous solution of Ym(y)

The derivatives of symmetric 'lf,,,ll.l'lh

dvy, mn mry mn ni
= A,,,:mh Y4 U,,Ilz.mh—]+—yn L
f]'y a a a
d’y, min? 1T mT Wy m My may
—J." = — e COSh— }I ﬂml - COsh —— l-—(crnh—yi'—)ru'nh—})]
dy? a? ( i i a i1
d*Y, m'n? mmy mint ¢ mn miy m mny
e o G B yoosh =

Now, boundary condition at edge y =+ % or — % requires use of derivative; let us now

physically understand the boundary condition of these 2 edges. Now, due to fixity, the slope will

dY

be 0 along the y-axis. So, this g—': = 0, and % = 0 that means d—;’ = 0. And because of

clamped condition, the w is also 0; that is, y is also 0. So, at y =+ % and — % boundary

condition requires the function itself, and it is derivative up to third order maximum.

Because when we relate shear, that third-order derivative is required. So, in these 3 equations, |
have given you the derivative of the function because derivative can be easily computed from the

function this function Ym(y). First derivative you can see, because this is the constant term, so

derivative of this term with respect to y is 0. But when I differentiate this term with respect to y,

it will be Am , % will come out as constant.

And cosh will be converted to sinh sinh %y. Now, here you are getting product of 2

functions of y, one is y, and another is sinh sinh %y . Because the product of 2 terms when it

is differentiated, it will give you say y. First, if I differentiate with respect to y for the second



term, then %y. coshizfL then I differentiate the first term, then differentiation of y with

respecttoy is 1.

So, then sinhL:;L. So, therefore this condition you can see here that I have written, after
differentiating the Ym(y). Then differentiating this quantity again, this sinh%, this % will

2 2
—— then Am. And sinh will be converted to cosh due to
a

come out, so it will be square term

differentiation, so coshL:L.

Then the terms inside the; second bracket that I will differentiate, now sinh if I differentiate then

%cosh%. Then this term if I differentiate, this is the constant term, so I have taken it. And
then this term y. COShL:L is differentiated term by term. First-term is differentiated with respect

toy, soitis 1, then cosh%.

Then secondly, it is differentiated with respect to cos hyperbolic with respect to y this function,

mmy
a

that cosh

is differentiated with respect to y. And therefore, % is coming out here, and then

. . . . . mTt . . . . . .
y remains as it is, and cosh is transform to smh—aL. So, this is the second derivative, it is

required to impose the bending moment condition at the edges.

For simply supported edges, this is required, and also, for the spring supported edges, we

required bending moment to be 0, so this derivative is important. Then if I differentiate further

3 3
up to the 3rd order, then here you can see that I differentiated this, so ——, this term is coming.
a

And then % already has come out inside the cosh function, and then cosh is transformed to

. . m
sinh, y. sinh—=>.



+D,,, now inside this, you are getting so many terms, so you differentiate term by term. So, after

differentiating and arranging some common terms, you will get this with sinh% coefficient

are this, and with y Cosh%y coefficients are these. So, one important thing you can note here

that when we take the odd derivative, you can see the odd terms are appearing.

mmy
a

So, sinh%is odd term; here also you can see y cosh is also odd term. So, then when we

are differentiating with respect to second derivative, that is, the even derivatives, so you can see
. mm . .
the even terms are appearing. So, coshTy, then here you can see this is even term, and here

this is also even, and this is odd, and this is also odd. So, product of 2 odd functions is again even

function.

So, with even derivatives, the even terms are associated. Then when again we will go further

higher derivative, say third derivative, then you can see that interestingly all the even terms

mmy
a

appear. So, this sinh is odd term appears, when we do the 3rd derivative, the sinh% is

odd term. Then here you can see again sinh is odd term. And here y is your odd term, but cosh

is even term, so product of odd and even is again odd term.

So, this interestingly, it is noted that with odd number of derivatives, odd terms are appearing,

with even number of derivatives, even terms are appearing. Now apply boundary condition at

y= + % or — % . So, I have chosen to apply the boundary condition at + %. So, Ym at

o]

= 0, now what is Ym? If you see Ym = 0 was this function that is a solution of this

differential equation, complete solution.
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b b
Apply Boundary condition at y=+ 3 or -3

Yu(b/2) =10
mith b mmh  4q,a
Am L'u.shz—aﬁ D”‘E"”“"W"’ﬁ = (1)
d, mmT omry mn miy mry
F’:r =An— sinh = + Dy [)' (—) wshT- + sinh T] s 0
=
r!‘di‘,,. =0 aty=h?
Y
= b Ne75:50

So, if I apply the deflection boundary condition at y = %, you will get that instead of y, I have

ML Similarly, on the other case with the Dm in terms of y was y Sinh%.

substituted %, 50 =
a

Now, instead of y, [ am putting %, so it will be Dm%sinh sinh ";—Zb this particular integral due

to loading. So, that is the boundary condition at y = b/2, at one of the edges.

Then the clamped condition, that is, the slope, has to be 0 so, that I am now doing on the first
derivative of the function. So, first derivative if this and that have tobe O at y = b/2.
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mr . mih mmb mab  mrh
Ap =—sinh=——+ Dy {——cosh——+ sinh—
a 1

20 2 2a 20

2)

Equation (1) and (2) ean be solved to find A,and D,

By Cramer's rule

I} 4
A= 7 ' U,: I
; mmh b mnh
Where cosh— - 5inh—
i 2a 2 2a
mn  mab mh mnh  omn
—ginth— —cosh—— + sinh—
a 2 2a 2a

Now, if you substitute y = b/2, you will get A m this m pi a sine hyperbolic m pi b by 2a + D m
m pi b by 2a cos hyperbolic m pi b by 2a + sine hyperbolic m pi b by 2a = 0. So, we have got this
equation, this is number 1 equation and this is number 2 equations after applying the boundary
conditions. After applying the boundary condition the 2 equations that we have got contains 2

unknown quantities one is Am and another is Dm.

So, 2 equations are solved simultaneously, the easiest and systematic method is Cramer's rule for
such few numbers of variables. The linear equations with few variables you can use up to 3

variables, you can use the Cramer's rule easily. So, using the Cramer's rule, we can write the

A
1

solution for the 2 equations 1 and 2 that are obtained using the boundary condition. So, Am =7

AZ
and D = —.
m A

Now, the denominator A is the determinant form by the coefficient of this Am and Dm of the 2
equations that are obtained applying the boundary condition. So, first coefficient for forming the

determinant A, the coefficient of Am in the first equation, is cosh cosh ";—Zb. So, therefore

cosh cosh n;—zb that is the first term in the first row, first-term first-row first column that is that

term.



Then this term, if you see %Sinh sinh ";—T;b , so this will appear here. Similarly, systematically

this will appear in this term, and this whatever inside this second bracket it will go in the position
2 by 2, that is, this second-row second column. So, these delta has to be evaluated, these delta
evaluated, and this has to be non zero otherwise, solution will not be bounded.

(Refer Slide Time: 29:03)
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So, after evaluating this A, we can find this quantity as A. Then one interesting thing you can see

mmb mmb

2a 2a

that these 2 functions can be combined. Because you know that the relation =1,

so, therefore we have combined this two function, this term and this term and this is the term,
and other term is as this, so this is the delta. Now A | can be obtained very easily after expanding
4

. . L. 4q.a .. .
the determinant. If I expand the determinant then it is 3 and this is. So, this can be
m™Tm

multiplied and this will be 0.
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4+ —cosh—
2a 2a e 2a

4qe0* [ mmb mab  mmh
- = sr —_—
DrSm3

mih mrm mmh

4 S - ——
__Mgoa nh =gt 7 Cosh g
m -
D m n}?nbﬂ:mhm"b mm:‘rh
a
muh 4qqa*
cosh e -
- 20 D
" lmr mub
—sinh— 0
2a
dgoa* mn  mab

= —— g —
LT Detmt 2a

A
So, A L is easily found out as this quantity, so Am will be Tl. So, this term is there and you can

see that this is the A, this determinant formed by the coefficient of the 2 equations coefficient of

the variable Am and Dm in 2 equation form after applying the boundary conditions. So, after
finding Am, you can find the Dm another constant by finding the A 5

(Refer Slide Time: 30:32)
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Therefore, D, = Dt
wim®

Henee we can completely find the dc_ilu:liun as,

mr.ry -hh,c: ] mix

wix,y) = Z [»Im,., t'm‘h + Dy sinh
mal 3 2a

.UJ? m® i

Fixed end bending moment can be obtained by

dw dw
M, =-D F'HJW

So, when we find the A 5 by Cramer's rule, you can see that the coefficient or the elements have to

be replaced by the non homogeneous term like that.
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At fixed edge, y=b/2 or -b/2. Substitute y=b/2 to get the bending moment M, or M, per unit
length as the case may be .

So, A 5 is here, we are finding this Dm, coefficient Dm using the A . So, in place where the Dm
4q a*

appears that is the second place the non homogeneous term in the first equation is — 5 — 1
m™m

mean the terms in the right hand side is put here, and in the second equation it is found from the
slope condition, that means the forcing function which was constant does not appear in the slope
equation. So, therefore this term is 0 here and it is appearing in the second column second row.

(Refer Slide Time: 31:36)

= = ——{sinh—+ —cosh—
- Dn°m 2a y 2a

dqpat [ mmb  mmh mih
sm 2 2

. mmh - muab mmh
dgon’ | Stk + - cosh g

Ap = =—5—
Da*ms | mnh mmwh ., mnh
5t rﬂshw.w nth i
o mih 4qpa°
4= o !W Drim3
y =
mm mnh
—sinh— 0
2a

dg,0* mr b
= — sinh—
LT Dt q 2a




So, this is AZ, and after expanding this you can see this goes to 0, and this is coming as this, this

will be minus, but again minus, minus will be plus. So, this quantity is written as this. So, after

finding A1 and Az’ Dm is found. So, once you find Am and Dm, you can easily find out the

deflected Series as

4q a2

wx,y)= ¥ {Amn cosh cosh =%+ D_y sinh sinh T }sin sin ==, so, this

[o¢]

m=1 Dnm

is the complete deflection series.

So, when you find the deflected series, then you can go for finding the bending moment. The
bending moment that are most important is the fixed end moment which will be more than the
(0) (32:29) moment. So, here the negative moment that occurs in the fixed end can be found out

that in the x-direction as well as in the y-direction by using this quantity the

2 2

i i . . .

M =— D{~— + v-—-{, mu is the Poisson ratio.
x ox ay

So, Mx is found out; similarly, My can be found out, but in the expression of Mx you can

substitute all the quantities and then you can find the value of Mx and My. So, at the fixed edge

b

y =-or — %, we get the bending moment Mx and M , per unit length as the case may be.
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Ex.2 Determine the deflection of a partially loaded plate, shown below by
Levy's method.

—

L L AT

Now, let us discuss another problem of plate which has all the edges simply supported and it is

loaded by UDL not up to the full extent of the plate, but up to the middle area. So, it covers only
% length of the plate, so plate length is a, and the width is b. Now again, you can note here that

the plate is symmetrical about your x-axis. So, therefore I write this equation with the symmetric
terms again.

(Refer Slide Time: 33:54)

e mix
wix,y) = Z , le:}')-\'il!T

mmy mmy
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w, is particular solution of

d*Y o min Ay

mirt
dy* at dy?

T b = )

_I_

So, symmetric terms are taken, and w is the particular integral.
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mnx 20, (1 mn)

fm(¥) = %J;‘ i .ﬂ'raT:lx ==(1=cns—=

2q,
=—— for m=135.......
Dmm f
4q, .
=— for m=2610,.......
Ditir f .
=10 for m=4812,......

a
2

Now here, the w, is obtained as the aLD f q, sin sin %dx. But the limit of integral you can
0

see because of the presence of the load up to the middle portion of the plate, the upper limit of

the integral is changed to % So, putting this limit and evaluating the integral we get this, this

2q . . .
fm(y) =2 (1 — cos cos%). And you can see this, these integral gives you very

interesting results.

o

Dmmn

Means when m = the odd integers 1, 3, 5 then these value will be . And when the values are

0

Dmm ’

2, 6, 10, then you will get and when the m is 4, 8, 12, you will get the value of the integral

as 0.
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For the above cases W, can be obtained as,

mnt 2q, mn
( - cos 2)

—_— w“ = —

at Dmu

24,0t mn
o Wy = Dment (l - msT)

Therefore,

&

& . hmrr)'_l_ﬁ inf JHJ’E}'+ 2q,a* ( rrarr) _mmx
w(x,y) Erl_l Ay, cos P ¥ Sinh PR cos 3 sin -

3 M3ACAE 1

So, for the above cases, w is obtained as since again this fm(y) that is this function is again a

constant. So, we can assume that particular solution is also constant. So, substituting the

particular integral as constant in this differential equation, you can see this term has no

4 4
m

. . . . . T . .
significance, this term has also no significance, only here —— some constant which is the
a

particular integral w equal to this term that we have evaluated.

. o . : o 4 .
So, after carrying out this integral, we can find a particular integral in this term, Zqoa will come

here. And here it will be Dm51'[5 will be there, and this term inside the first bracket will exist

(1 — Cos cos % ) Depending on the different values of m this will be evaluated.

So, after finding the complete solution
(e} 4
2q a
w(x,y) = {A cosh cosh —=% + B ysinhsinh =% + —%— (1 — COS cos % )} X sin sin —=
m=1 L ™ a m a Dm'n a

. So, this is the expression for the deflected series. Once you get the deflected series, you can go
for finding this your bending moment and shear force, etcetera whatever you like.
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Since wixy)=Oaty=+bi2
Yo =0

] (f;ﬂ}’m
And M, =0aty=1h?2 L =
dy
Imposing above two boundary condition, the two linear equations are found which can be

solved to find unknown contents A_ and B

k Me3ECR T
Now, let us come to another problem because the boundaries are taken as simply supported
condition. So, 2 conditions have to be imposed one is your deflection condition, and another is
curvature condition in this problem and since we have derived the second derivative of the

function already in few occasions.

So, that result can be applied that the second derivative expression can be applied here to impose
the boundary conditions on the other two edges, which are simply supported for this problem.

And you will be able to find this constant Am and D_, and then all other quantities that is

bending moment, shear force can be evaluated.
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A strip loading g, per unit length is applied at the centre of the plate along the entire
width as shown below. Find the equation for deflection of the plate.

L
W

-

v 0
e/ Length

S e

q(x,y) = go6(x - a/2) l

2 . mmx
Therefore, ﬂr.{?)=w£m,ﬁ{r a/2) sin - ilx

Plate dimension a * b

= —fn— mm135, 0

Now, let us consider another problem of plate which has a loading a g o per unit length, but in the

sense that it is not distributed over the area; it is only a line load that you can call it strip loading.
And these loading acts along the y-direction and you can see that this loading is situated at this a
by 2, and it is continuous along the y axis. So, that means I can represent this loading with the

help of Dirac delta function.

Because this is a line loading and this line loading is only meaningful when this x is only equal

to %, in other points, there is no line loading. So, I can express this loading as g OS(x — %). So,
after substituting this loading function into this f m(y) that is required to find out the
non-homogeneous term of differential equation. We get that this function and by virtue of this
property of the direct delta function, we can now easily write that %, where q, is a constant and

in sin
sin sin —— .
So, this result is again meaningful when m = 1, 3, 5, etcetera. For odd integers, this value will be

not be in existence because this is again symmetrical plate problem.
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miy miy
Yn(¥) = Am L'"“"T 1 i}an'-"'!”jfT tW,

w, is the particular integral ar,Emrliuular solution of the equation,

So, | can

d'¥, mirddi, mint
dy* £ at  dy? o = fn)
mtnt 29, mm
€ =—sin—
at aD 2
2q,a*  mm
= —p i
now write this

function as

Ym(y) = Am cosh cosh L;[L + Dmy sinh sinh i:L + wo,w is the particular integral or

particular solution of the equation. Now, again here you can see the fm(y) 1S a constant term

which varies with the m. So, therefore, I have assumed this particular integral is also constant, so

let w, be C. So, after substituting this particular integral in this differential equation, we readily

get what is the value of C. So, value of particular integral that is C is evaluated here.
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After applying Boundary condition as,

Yy =0

ta_,
dy

it y=+ bi2

& y=+bi2

Then solve two lincar simultaneous equations to find A and B, to find wix,y). Once
w(x,v) is found, other quantities can be obtained.




And after substituting this, we can get the full solution for Ym and then series. And applying

boundary condition, suppose I have taken here the fixed end, two ends are fixed. If I take the 2

ends are fixed, then I apply the boundary condition of the fixed end. Boundary condition of the

a, b b
o = Oaty =+ —-or— —

fixed end is say Y = 0 and then Y =Oaty=+%or—%and
m m

any edge you can take because the same condition exist in both the edges.

So, when you substitute these 2 conditions, as usual, we obtained in the earlier cases, then we get

2 simultaneous equation linear equations with unknown variable Am and Dm. So, it can be solved

easily by any method. So, I have illustrated this systematic method known as a Cramer's rule that
you can use by expanding the determinant that I have shown. And then, you can obtain the

constant A and D completely.
m m

So, when you obtain the Am and Dm, your problem is known that means deflection series is

completely known. And then, after obtaining the deflection, you can explore other quantities.
That means if you want this further, say bending moment, shear force, you can derive it from the
deflected quantities.
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Exercise Problems

Q1. A square plate whose dimension is axa, has two opposite edges simply
supported and other two opposite edges clamped. The plate carries load that
varies sinusoldally as

momy
qlx,y) = Gosin—sin—-

Find the deflected surface of the plate.

Q2. A plate of dimension axa has its three edges, ¥=0, y=0 and x=a simply
supported but y=0 edge is clamped. Formulate an exact solution to find out
deflected surface of the plate when uniformly distributed load is acting over the
entire area.




So, now I want to show you how some other problem can be taken with the help of this Levy's
method. So, first problem is let us take a square plate which dimension is aXa and has 2 opposite

edges simply supported and other 2 opposite edges clamped. The plate carries load that varies

sinusoidally as q(x,y) = q 0 sin sin “Tf sin sin ﬂTi] . So; our question is that deflected surface

has to be found out.

Second question we will see, a plate of dimension aXa; this has itis 3 edges x =0,y =0, and x =
a are simply supported. But y = 0 edge is clamped, and other edge y = b edge is also clamped.
So, let us formulate an exact solution using the Levy's method to find out the deflected surface of
the plate when there is uniformly distributed load acting on the entire area. So, let us solve this
problem and show you how this problem can be tackle using the method that we have learned in
Levy's condition.
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So, first problem is this, problem 1, we have a rectangular plate, but 2 sides are equal; for
simplicity, we have taken 2 sides are equal. And 2 opposite edges are simply supported, but other
2 opposite edges are clamped. So, again this problem is a symmetric problem, so I can now take
the x-axis here and y-axis, say this. The plate is loaded sinusoidally, that means if I see the

variation along x-axis the variation is sinusoidal, the amplitude is q 0.



Then if I see the variation along y-axis again, it is sinusoidal. So, in the 2 direction load is

sinusoidal. That means if I write the load function that can be written as g(x, y) is equal to say

. . . . . X . . T o, . . .
intensity is g sin sin == sin sin Ty because it is a square plate, so the dimension of the plate

is axa. Now because of symmetrical problem, take the term in the deflection series Yn, deflected

mmx

series 1is this, summation of this

And Ym(y) you know because of symmetry that only symmetrical terms have to be taken. So,

the differential equation that we need to solve that I illustrated and the solution is

m

::y + PI. Now, particular integral has to be

mmy
a

Ym(y) = Am cosh cosh —— + Dmy sinh sinh

found in that case because it is not a uniformly distributed load, so the result is known to us.

The particular integral has to be found from this function that is given as %, D is the flexural

rigidity of the plate and the integration 0 to a, q(x, y).sin sin %dx . Now, here the q(x, y) is

this function, q(x, y) is given here as the distributed load in the form of the sinusoidal function.

So, 2/aD amplitude of the loading is q, I have taken it as a constant and taken outside the

integral sign.

So, inside the integral, we have this function; now, this integral can be easily carried out because

this is a function of x, so only the integration with respect to x is meaningful, so sin sin HTS' will

appear as a constant. So, now if | integrate this sin sin % , sin sin % that is 0, only it is
meaningful non zero when m = 1. So, taking m = 1, that integration can be carried out twice aD

and you will get this integration as 0 to a , and then sin sin HTS] will appear as it is as a function.



q
So, ultimately that you are getting fm(y) is equal to this twice a—; into this will be % and

q,
sin sin =% . So, this result will be this a will get cancelled, —sm sin =% . So, this is our

function fm(y). So, now we can go forward to calculate this particular integral.
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So, particular integral is now calculated; we take the differential equation, differential equation

was this for m = 1. Now instead of fm(y), now we have got this particular integral. So, that

a,
value is substitute here in the earlier case we got —Sln sin =% . So, solution for y is because it
is symmetrical again. So, Am cosh cosh % , 1t 1s not necessary to take any integer value of this

not to expand it because it is meaningful only when m = 1.

So, therefore A o I am writing A ) directly, then D " sinh because this is to product of 2 odd

functions plus particular integral, this is y. Now because this is a forcing function, again is a

sinusoidal function. So, let us assume particular integral as also sum constant C | Sinsin Ty .

Now, you can see that after substituting this value here, you will get that this particular integral

will appear as a very simple term that I will give you this term to you.



(14
qa

. . . . . TC . . . . .
So, w is now appearing is ——sin sin Ty Because C1 is now this quantity, how this C1 18
Dm

found that assume particular integral as this C . into this and substitute this in the differential

equation and then equate the coefficient of like terms, so you will get C L 38 this value. So, total

4
4 . . my

7 ol Sin —— , SO
Dt a

. . . T . . T
solution is; now, we can write A1 cosh cosh Ty + Dly sinh sinh Ty +

this is the complete solution of'y.

Now, let us impose the boundary condition to determine the constant A1 and D1' That can be

imposed by giving the 2 conditions that y = % that deflection is 0, and slope is 0.
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So, since the plate was clamped along 2 other edges, this is clamped condition, this is also

a

clamped. And this % and this 1s also —-, and this is simply supported and this length is also T am

taking as a, because it is a square plate. So, imposing the boundary condition at y = %,y =0,

that gives you that 4 1cosh. If you substitute this y = %, then cosh cosh % will come.



So, let us assume or assume take it o = % So, just to simplify the calculation, I have taken

this, so this is coming. So, after substituting this y = %, first term in this deflection equation is

a

. . T
> and sinh sinh — .s0Q

this. Then second term will come as D % because y is there, so

1 1

equal to this non-homogeneous term if you see here that sin sin T[Tf' was there.

. . . 9,2 .
Instead of y, you put %, so sin sin % = 1, so therefore this term will be — - SO that is one
T

gy _

&y 0. So,

equation. Second equation, we will get at y = %, Y' that is the first derivative

using the first derivative equation, we get here say Al%sinh sinh a derivative that will do is a

product of 2 functions earlier the variable associated with D..

So, you get 2 terms, sinh sinh a e cosh cosh a = 0, because the derivative of constant
that requires there will be 0. So, this is your first equation, and this is your second equation after

A
application of boundary condition. So, A1 and B | can be solved A1 is equal to say Tl and D1 will

A
be TZ; A is a determinant that is formed by the coefficient of A1 and D x

So, let us see coefficient of A1 is cosh cosh o, and coefficient of D1 18 %Sinh sinh a . Then

coefficient of here A1 in the second equation %sinh sinh o, and coefficient of D1 in the second
equation will be sinh sinh a A ,so this is the A.
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Similarly, you can find Al as this let us write down the A o Al will be — 2a4
T

. Here it will be 0,
then here, in this case, it will be %Sinhsinh s, and in that case, it will be

sinh sinh « L + a . cosh cosh a . Mind that a = % So, A1 is this; you can easily evaluate this,

. . q.a
the determinant will be o
T

(sinh sinh o +a )

So, this is A1’ and AZ can be similarly found out, Az will  be
qa4 TC . . .

cosh cosh o - D"4 sinh—-sinh a L 0[. So, after expanding you will get this term as
T

a A A
. . 1 2
= sinh sinh a - So, we have got A1 and Az’ now we can get A1 as —— and D1 as ——.

Once these A L and D L is known, then deflection series is simply calculated as, because only m =
1 is important here and other term it does not exist. So, we will write this
(A1 cosh cosh “73' + D1 y sinh sinh % ) sin sin % . So, this is the deflected series, and

substitute A L from here and substitute D1 from here. So, complete deflection is known, maximum



a

candy = % So, this is one problem that

deflection will be at the centre of the plate when x =

I wanted to discuss, and that is solved with the help of Levy's method.
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Second problem; let us consider a general problem which has completely unsymmetrical
condition. So, unsymmetrical condition the problem 2. We have this rectangular plate, let the
length is a and the width is b, and it has 2 opposite edges simply supported that must be there;
otherwise, you cannot apply Levy's method. In addition, the boundary condition and other 2

edges at y = 0 edge again simply supported and here, we have taken fixed edge.

So, now you can see this is simply supported, this is simply supported, this is simply supported,
and this is clamped. Because of the purely unsymmetrical nature, we cannot take any advantage
of symmetry. That means omitting 2 constants and taking and retaining 2 constant that business
cannot be done here. So, what we do here? We take the axis as it is, this is x-axis and y-axis, and

we have to kept the full term of the deflected series.

That is Ym(y) was composed of (Am + Bmy) cosh cosh %y + (Cm + Dmy) sinh sinh %y

. So, these 4 constants we have to take, there is no other way because the boundary condition is

purely unsymmetrical. Now we have to apply the boundary condition one by one. So, at y = 0,



deflection is 0; of course, this particular integral will come, so particular integral value will be

same for uniformly distributed load that we have found out earlier.

4
. . . .- . . .. Yqa .
And this particular integral I am writing here for uniformly distributed load, it is > . So, this
m™m

particular integral has to be written here. So, at y = 0, actually, Ym(O) is 0, so substituting the

value of this y = 0 because cosh cosh0 = 1 and sinhsinh 0 = 0. So, therefore we get here

4q a4

this Am and here you will get this term will vanish equal to — Dfos.
m™m

So, one constant is known by application of this. And second constant, other constant we have to
find out applying the boundary condition. So, applying the boundary condition on bending
moment that at y = 0, second derivative of y is also 0. So, that condition gives you the equation

that will be slightly larger equation, but it can be computed very easily, there is no doubt. So,

2 2 2 2
mTm mm mtm . . mm mtm . . mit m T mt
—A cosh—% + B (—smh sinh =% + “sinh sinh ——% + y-——5—cosh cosh —= )
a m a m\ a a a a a a

2 2
So, this is expansion of B then on this C you will get C ———sinh sinh =2 . And on D
m m m g a m

again, you will get the terms

2 2
mm mt mTm . . mt mm mt LR
(Tcosh cosh Ty + y sinh sinh Ty + ——cosh cosh Ty ) So, this is the second

2
a
derivative, and it is 0 at y = 0. So, substituting these values you can easily see that this function

exists.

But here you see sine hyperbolic 0 is 0 and this is again y into something is 0, y is 0, so this is

going to be 0. Then here, this is going to be 0, and here you will find that with D m this is 1 and

2 2
this is going to be 0, and this is 1. So, ultimately you will get — Am L Dm = 0. Now
a

a

since Am is calculated earlier, we can now get the Dm.



3

2q.a
After getting D and D of course I am writing this value of D , D will be —;—. So, value of
m m m m Dm

2a3

. . q .
D is this ——. So, 2 constant A and D are known, other 2 constant will be found out
m Dnm m m

applying the boundary condition at these edges, that is clamped edges.
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At clamped edges, there is y = b; apply this equation andz—; ,of course, at b= 0. By using these
2 equations, you will be able to get these 2 constants Am and Bm. So, using these 2 constants,
other 2 constants say Bm and Cm can be found. So, these 2 conditions will give you 2 equations
again with Bm and Cm, because Am and Dm are already evaluated. So, now you get the 4

constants of integration that is resulted due to unsymmetrical condition of boundary.

So, therefore the solution is now known completely with this series. So, complete series is now

known because Am, Bm, C - Dm are calculated. So, in this way we can handle any unsymmetrical

condition, only the computational effort may; definitely will increase because of 4 constants
involved. So, what I want to tell you that in conclusion the Levy's method is applied for
rectangular plate when 2 opposite edges are simply supported, and other 2 edges may have any

boundary condition.



It yields the exact solution of the plate problem that is first thing what we learn from the Levy's
method. But if we compare the other exact method, that is Navier method, that is restricted only
to the simply supported boundary conditions along all edges. So, Levy's method is more general,
and because of the use of only the single sine series, the calculative effort is less that is

computational effort is less only the derivation part is slightly longer.

Because in the intermediate step, you have to solve one differential equation, ordinary
differential equation, which will yield you the unknown function y but with 4 constants of
integration that have to be found by using the conditions at the boundary on the other edges. So,
2 methods that we have learned now, Navier's method and Levy's method, can be successfully

applied to the plate problem for specific boundary condition, and it yields the analytic solution.

In most of the cases, the loading is uniformly distributed load, and we have seen that for
uniformly distributed load, the exact solution is very much; the solution obtained by Levy's
method is in well agreement with the Navier's method. So, with this, I conclude, then we will see
what are the other applications of Levy's method? So, we will investigate whether Levy's method

can be used indirectly to solve the conditions not met in the Levy's boundary condition.

That is suppose the plate with all edges are fixed, can we use? The question is can we use the

Levy's method for such plate? We will discuss this in the next class, thank you very much.



