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Levy's Solution for Different Loading and Boundary Conditions

Hello everybody, today I am on the lecture 2 of module 3 and if you recall my last class, that I

started the Levy's formulation for rectangular plate, which is by nature and provides an exact

solution of the plate differential equation. And in that connection, we have seen that Levy's

formulation can be done with the help of single series. And then, the convergence is repeat, but it

is applicable for certain condition that when the two opposite edges of the rectangular plates are

simply supported.

And other 2 opposite edges may have same condition or may have different conditions also. But,

thing is that when this condition is not met directly, then Levy's condition cannot be applied. So,

let us see how we can explore the Levy's formulation to solve other plate problems. That means

plate subjected to other type of loading. In the last class, I have discussed the problem which was

already solved by Navier's method, that four edges were simply supported.

So, in that case, we applied the Levy's condition, and we have found that the result obtained was

closely in agreement with the Navier's method.
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So, today's lecture that outlines will be highlighting the important steps of Levy's method for

rectangular plate, comparison of Levy's method with Navier's method for rectangular plate. Then

we will illustrate a problem of rectangular plate whose two opposite edges are simply supported,

and other 2 opposite edges are clamped, which the plate carries uniformly distributed load. Then

we will do this problem that 2 opposite edges are simply supported, and other 2 opposite edges

are clamped carrying partially covered uniformly distributed load.

In the first case, the edges are clamped on 2 opposite edges, and here also the edges are clamped.

But difference is that in the first case, the full plate was loaded; in the second case, the plate was

partially loaded. Then we will study the plate with two opposite edges simply supported, and

other 2 edges are clamped but carrying strip loading. So, that type of loading is sometimes

encountered in case of brick wall that is constructed over this slab directly, not transferring the

brick load on the beam.

So, in that case, the analysis of the plate for the line loading is important, and we will discuss this

strip loading on the rectangular plate. Then some more examples of rectangular plate, I will try to

show you and how it can be tackled in a different situation. So, Levy's method I have told that it

gives the exact solution, Navier's method also gives the exact solution.
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But the difference is that Navier's method the requirement is that all the 4 edges of the

rectangular plate should be simply supported. But in case of Levy's method, some relaxation is

made. That means only these 2 opposite edges required to be simply supported, and other 2

edges may have any boundary conditions, may have same boundary conditions or may have

different boundary conditions or may have elastically supported edge or these supported by

torsional spring edge support.

So, many conditions may exist, but it can be tackled by Levy's method when two opposite edges

are simply supported. The most fundamental thing in Levy's method is that the deflection is

assumed as a sine series. That you are seeing that we have to assume the deflection surface as

single sine series, the summation extends from 1 to infinity. And the summation is done that the

deflected surface is taken as a function of y multiplied by a sine function, .𝑠𝑖𝑛 𝑚π𝑥
𝑎

Here it is because the x edges, the x = 0 and x = a, that means edges parallel to y-axis are𝑠𝑖𝑛 𝑚π𝑥
𝑎

simply supported, so therefore sine function is taken. You can see that taking sine function it

renders the boundary condition to be satisfied x = 0 and x = a edges, there is curvature along x

direction is 0 and then your deflection is 0 at the edges x = 0, x = a. So, by taking these deflected



surface this function, we have proceeded to satisfy the differential equation of the plate which is

4th order partial differential equation.

And you know that differential equation in compacted form is , where D is∇4𝑤 = 𝑞(𝑥,  𝑦)/𝐷 

the flexural rigidity of the plate, it is given by . Now, after substituting this deflected𝐸ℎ3

12 1−ν2( )

function in the differential equation . We actually arrive at this ordinary differential∇4𝑤 = 𝑞/𝐷

equation, = , where is a function of y.
𝑑4𝑌

𝑚
𝑦( )

𝑑𝑦4 − 2 𝑚2π2

𝑎2

𝑑2𝑌
𝑚

𝑦( )

𝑑𝑦2 + 𝑚4π4

𝑎4 𝑌
𝑚

𝑦( ) 𝑓
𝑚

𝑦( ) 𝑓
𝑚

𝑦( )

How this function is produced? That can be understood by when I substitute this function to the

original differential equation, and then after multiplying both sides by . And then using𝑠𝑖𝑛 𝑚'π𝑥
𝑎

the arithmetic condition of the sine function, we can arrive; this differential equation with

non-homogeneous term which becomes a function of y. Because the integration is actually

carried out with respect to x, here you can see it.

Then because of integration with respect to x, the result will not contain any x variable. So, it

will be purely a function of y. So, these differential equation you are seeing that it is the

differential equation with y. So, that differential equation has been solved with repeated roots that

are found for the characteristic equation for the homogeneous solution.
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And then we have found that the solution is given for the homogeneous part as this function.

That is or𝑌
𝑚

𝑦( ) = 𝐴
𝑚

+ 𝐵
𝑚

𝑦( ) cosh 𝑐𝑜𝑠ℎ 𝑚π
𝑎 𝑦 + 𝐶

𝑚
+ 𝐷

𝑚
𝑦( ) sinh 𝑠𝑖𝑛ℎ 𝑚π

𝑎 𝑦  + 𝑤
𝑝

particular solution. That integral is to be found considering the forcing function in the left-hand

side. If there is a no-load acting on the plate, then this function will be 0.

Now you can see the characteristic of the general solution of this equation number 1 here. You

can see here that are arbitrary constants that can be found by imposing the𝐴
𝑚

,  𝐵
𝑚

,  𝐶
𝑚

,  𝐷
𝑚

boundary condition on other 2 opposite edges. That means y = 0 and y = b edges if the side of

the plate is . And then, this origin is taken at one of the corners on the left-hand side. So,𝑎×𝑏 𝑤
𝑝

is the particular solution that depends on the nature of loading.

But one interesting thing you can see here, that , it is a symmetric function, andcosh 𝑐𝑜𝑠ℎ 𝑚π
𝑎 𝑦 

is antisymmetric function. So, when the loading conditions and supportsinh 𝑠𝑖𝑛ℎ 𝑚π
𝑎 𝑦 

conditions are symmetrical with respect to x-axis passing through the centre of the plate, then

there is no need to retain any antisymmetric term on the deflection expression.



So, therefore, in that case, we can only retain the symmetric term, symmetric terms are say

. And product of 2 antisymmetric term again is a symmetric, so we can takecosh 𝑐𝑜𝑠ℎ 𝑚π
𝑎 𝑦 

these 2 terms , if the support condition and𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  + 𝑤
𝑝

loadings are symmetrical. And if there is a condition that anti symmetry exists in respect of

loading, that means in one side the loading is in another side loading is it varies linearly+ 𝑞 − 𝑞 

with 0 value at the centre, then it is anti symmetric loading.

And in case of antisymmetric loading, we can take only the antisymmetric term. The

antisymmetric term here you can note that is antisymmetric. Why it is𝑦 cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  

antisymmetric? Because y is a anti-symmetric function and is a even functioncosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  

or symmetric function. So, product of antisymmetric and symmetric function is again anti

symmetric function.

So, therefore in that case, we will retain this term and is a antisymmetric term.sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎  

So, , this term and this term along with this coefficient have to𝐶
𝑚

sinh 𝑠𝑖𝑛ℎ 𝑚π
𝑎 𝑦 𝐵

𝑚
𝑦 𝑎𝑛𝑑 𝐶

𝑚

be kept in case of antisymmetric loading. So, for symmetric cases, Am and Dm are retain, for

anti-symmetrical cases the constant Bm and Cm are kept.
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So, if we compare the 2 methods that we have learned so far, one is Navier's method, and another

is Levy's method. Navier method is specifically applicable for a rectangular plate which has 4

edges simply supported. So, that is the condition that must be satisfied first; then we can use the

Navier's as method. So, both the Levy and in Navier's method are applicable for rectangular plate

that they have some general character.

And both of these methods actually use this trigonometric series, and both the methods yield the

exact solution of the plate equations. So, that is some general character we have noted in case of

Levy and Navier's method. But in Navier's method is applicable for rectangular plate whose 4

edges are simply supported, as I have repeatedly told this. Whereas Levy's method is to be used

when 2 opposite edges are simply supported, so this is the difference.

But it is not that Levy's method cannot be applied for Navier's condition. Levy's method can be

applied when 4 edges are simply supported. So, Levy's method is more general compared to

Navier's method. Navier's method yields deflected surface in the form of double trigonometric

series, but Levy's method is based on single trigonometric series. Because of double summation

Navier's method is slowly converging method.



Whereas Levy's method it uses single trigonometric series, therefore it is first converging but the

computation in Levy's method is slightly involved compared to maybe s method. So, these are

the major difference between the Navier's method and Levy's method for rectangular plate.

(Refer Slide Time: 14:05)

Now, let us see a problem when the rectangular plate a cross b is the dimension, and your

thickness is h so that flexural rigidity D is . The plate is loaded with this is the𝐸ℎ3

12 1−ν2( ) 𝑞
0
 

loading intensity per unit area, and since it is symmetrical, so we pass the axis, x-axis passing

through the centre of the edges, which is parallel to y-axis. So, the plate is symmetrical about the

x-axis that you can see here.

And these 2 opposite edges are simply supported x = 0, x = a, and other 2 opposite edges y = 0

and y = b, are also I have the same conditions in the boundary and that conditions are clamped.

Because clamped conditions are very common in case of plate, because in case of steel plate we

weld the plate the component maybe the flange of a column or this wave of guarder. Then we

have the reinforced concrete slab where the edges are the slab is supported by beam which is

integrally built, that means monolithically cast.



So, therefore fixed condition develops at the end. So, fixed conditions are common, and therefore

we cannot ignore this, and with the help of Levy's method, we can easily encounter this

condition. So, let us assume the deflection surface as . Now earlier, we have𝑌
𝑚

(𝑦) sin 𝑠𝑖𝑛 𝑚π𝑥
𝑎  

seen that solution is obtained in this form, but since in that case, the condition that I am now

discussing that 2 opposite edges are clamped, and 2 opposite edges are simply supported. So, in

that case symmetric condition is satisfied and therefore, we will take this term

and wp will be there because the plate is𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  + 𝑤
𝑝

loaded, so naturally, this particular solution will also exist.

So, now these solutions can be written in this form for , that is𝑌
𝑚

(𝑦)

. You can see the term that I have written with the𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  

red colour is a symmetric term specifying the homogeneous solution. But this term that is written

with a blue colour is a particular integral, because the loading is here constant. So, particular

solution is also assumed as a constant and after substituting in the differential equation, the

solution is obtained as this .
4𝑞

0
𝑎4

𝐷π5𝑚5

So, this particular solution is due to the load acting on the plate. Now, our requirement is that the

boundary conditions have to be satisfied. Now on the boundary that is y = 0 and . You𝑦 = ± 𝑏
2

see now, the x-axis is passing through the edges parallel to y-axis, so, therefore, or𝑥 =+ 𝑏
2

, is this edge if the direction of positive direction of y-axis upward here, then𝑥 =− 𝑏
2 𝑥 =− 𝑏

2

this edge specified as y = -b by 2 and this is the edge specified with .𝑦 =+ 𝑏
2

So, at both the edges, say ., the boundary condition is same. So, now we will apply the𝑦 =− 𝑏
2

boundary condition at the 2 opposite edges.
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Now, boundary condition at edge or requires use of derivative; let us now𝑦 =+ 𝑏
2 − 𝑏

2

physically understand the boundary condition of these 2 edges. Now, due to fixity, the slope will

be 0 along the y-axis. So, this , and that means . And because of∂𝑤
∂𝑦 = 0 ∂𝑤

∂𝑦 = 0
𝑑𝑌

𝑚

𝑑𝑦 = 0

clamped condition, the w is also 0; that is, y is also 0. So, at and boundary𝑦 =+ 𝑏
2 − 𝑏

2

condition requires the function itself, and it is derivative up to third order maximum.

Because when we relate shear, that third-order derivative is required. So, in these 3 equations, I

have given you the derivative of the function because derivative can be easily computed from the

function this function . First derivative you can see, because this is the constant term, so𝑌
𝑚

𝑦( )

derivative of this term with respect to y is 0. But when I differentiate this term with respect to y,

it will be will come out as constant.𝐴
𝑚

 , 𝑚π
𝑎

And will be converted to . Now, here you are getting product of 2𝑐𝑜𝑠ℎ sinh 𝑠𝑖𝑛ℎ 𝑚π
𝑎 𝑦 

functions of y, one is y, and another is . Because the product of 2 terms when itsinh 𝑠𝑖𝑛ℎ 𝑚π
𝑎 𝑦 

is differentiated, it will give you say y. First, if I differentiate with respect to y for the second



term, then then I differentiate the first term, then differentiation of y with𝑚π
𝑎 𝑦. 𝑐𝑜𝑠ℎ 𝑚π𝑦

𝑎

respect to y is 1.

So, then . So, therefore this condition you can see here that I have written, after𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎

differentiating the . Then differentiating this quantity again, this , this will𝑌
𝑚

(𝑦) 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎

𝑚π
𝑎

come out, so it will be square term then . And will be converted to due to𝑚2π2

𝑎2 𝐴
𝑚

𝑠𝑖𝑛ℎ 𝑐𝑜𝑠ℎ

differentiation, so .𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

Then the terms inside the; second bracket that I will differentiate, now if I differentiate then𝑠𝑖𝑛ℎ

. Then this term if I differentiate, this is the constant term, so I have taken it. And𝑚π
𝑎 𝑐𝑜𝑠ℎ 𝑚π𝑦

𝑎

then this term is differentiated term by term. First-term is differentiated with respect𝑦. 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

to y, so it is 1, then .𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

Then secondly, it is differentiated with respect to cos hyperbolic with respect to y this function,

that is differentiated with respect to y. And therefore, is coming out here, and then𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

𝑚π
𝑎

y remains as it is, and is transform to . So, this is the second derivative, it is𝑐𝑜𝑠ℎ 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎

required to impose the bending moment condition at the edges.

For simply supported edges, this is required, and also, for the spring supported edges, we

required bending moment to be 0, so this derivative is important. Then if I differentiate further

up to the 3rd order, then here you can see that I differentiated this, so , this term is coming.𝑚3π3

𝑎3

And then already has come out inside the function, and then is transformed to𝑚π
𝑎  𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ

, .𝑠𝑖𝑛ℎ 𝑦. 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎



+Dm, now inside this, you are getting so many terms, so you differentiate term by term. So, after

differentiating and arranging some common terms, you will get this with coefficient𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎

are this, and with y coefficients are these. So, one important thing you can note here𝑦 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

that when we take the odd derivative, you can see the odd terms are appearing.

So, is odd term; here also you can see is also odd term. So, then when we𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎 𝑦 𝑐𝑜𝑠ℎ 𝑚π𝑦

𝑎

are differentiating with respect to second derivative, that is, the even derivatives, so you can see

the even terms are appearing. So, , then here you can see this is even term, and here𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎

this is also even, and this is odd, and this is also odd. So, product of 2 odd functions is again even

function.

So, with even derivatives, the even terms are associated. Then when again we will go further

higher derivative, say third derivative, then you can see that interestingly all the even terms

appear. So, this is odd term appears, when we do the 3rd derivative, the is𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎

odd term. Then here you can see again is odd term. And here y is your odd term, but𝑠𝑖𝑛ℎ 𝑐𝑜𝑠ℎ

is even term, so product of odd and even is again odd term.

So, this interestingly, it is noted that with odd number of derivatives, odd terms are appearing,

with even number of derivatives, even terms are appearing. Now apply boundary condition at

. So, I have chosen to apply the boundary condition at . So, at𝑦 =  + 𝑏
2   𝑜𝑟 − 𝑏

2  + 𝑏
2 𝑌

𝑚

, now what is ? If you see was this function that is a solution of this𝑏
2 = 0 𝑌

𝑚
𝑌

𝑚
= 0

differential equation, complete solution.
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So, if I apply the deflection boundary condition at , you will get that instead of y, I have𝑦 = 𝑏
2

substituted , so . Similarly, on the other case with the in terms of y was .𝑏
2

𝑚π𝑏
2𝑎 𝐷

𝑚
𝑦 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎

Now, instead of y, I am putting , so it will be this particular integral due𝑏
2 𝐷

𝑚
𝑏
2 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑏

2𝑎  

to loading. So, that is the boundary condition at , at one of the edges.𝑦 = 𝑏/2

Then the clamped condition, that is, the slope, has to be 0 so, that I am now doing on the first

derivative of the function. So, first derivative if this and that have to be 0 at .𝑦 = 𝑏/2
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Now, if you substitute , you will get A m this m pi a sine hyperbolic m pi b by 2a + D m𝑦 = 𝑏/2

m pi b by 2a cos hyperbolic m pi b by 2a + sine hyperbolic m pi b by 2a = 0. So, we have got this

equation, this is number 1 equation and this is number 2 equations after applying the boundary

conditions. After applying the boundary condition the 2 equations that we have got contains 2

unknown quantities one is and another is .𝐴
𝑚

𝐷
𝑚

So, 2 equations are solved simultaneously, the easiest and systematic method is Cramer's rule for

such few numbers of variables. The linear equations with few variables you can use up to 3

variables, you can use the Cramer's rule easily. So, using the Cramer's rule, we can write the

solution for the 2 equations 1 and 2 that are obtained using the boundary condition. So, 𝐴
𝑚

=
∆

1

∆

and .𝐷
𝑚

=
∆

2

∆

Now, the denominator is the determinant form by the coefficient of this and of the 2∆ 𝐴
𝑚

𝐷
𝑚

equations that are obtained applying the boundary condition. So, first coefficient for forming the

determinant , the coefficient of in the first equation, is . So, therefore∆ 𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑏
2𝑎  

that is the first term in the first row, first-term first-row first column that is thatcosh 𝑐𝑜𝑠ℎ 𝑚π𝑏
2𝑎  

term.



Then this term, if you see , so this will appear here. Similarly, systematically𝑏
2 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑏

2𝑎  

this will appear in this term, and this whatever inside this second bracket it will go in the position

2 by 2, that is, this second-row second column. So, these delta has to be evaluated, these delta

evaluated, and this has to be non zero otherwise, solution will not be bounded.

(Refer Slide Time: 29:03)

So, after evaluating this , we can find this quantity as . Then one interesting thing you can see∆ ∆

that these 2 functions can be combined. Because you know that the relation ,𝑚π𝑏
2𝑎  − 𝑚π𝑏

2𝑎  = 1

so, therefore we have combined this two function, this term and this term and this is the term,

and other term is as this, so this is the delta. Now can be obtained very easily after expanding∆
1

the determinant. If I expand the determinant then it is and this is. So, this can be
4𝑞

𝑜
𝑎4

𝐷π5𝑚5

multiplied and this will be 0.
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So, is easily found out as this quantity, so will be . So, this term is there and you can∆
1

𝐴
𝑚

∆
1

∆

see that this is the , this determinant formed by the coefficient of the 2 equations coefficient of∆

the variable and in 2 equation form after applying the boundary conditions. So, after𝐴
𝑚

𝐷
𝑚

finding , you can find the another constant by finding the .𝐴
𝑚

𝐷
𝑚

∆
2

(Refer Slide Time: 30:32)

So, when we find the by Cramer's rule, you can see that the coefficient or the elements have to∆
2

be replaced by the non homogeneous term like that.



(Refer Slide Time: 30:47)

So, is here, we are finding this , coefficient using the . So, in place where the∆
2

𝐷
𝑚

𝐷
𝑚

∆
2

𝐷
𝑚

 

appears that is the second place the non homogeneous term in the first equation is . I−
4𝑞

𝑜
𝑎4

𝐷π5𝑚5

mean the terms in the right hand side is put here, and in the second equation it is found from the

slope condition, that means the forcing function which was constant does not appear in the slope

equation. So, therefore this term is 0 here and it is appearing in the second column second row.
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So, this is , and after expanding this you can see this goes to 0, and this is coming as this, this∆
2

will be minus, but again minus, minus will be plus. So, this quantity is written as this. So, after

finding and , is found. So, once you find and , you can easily find out the∆
1

∆
2

𝐷
𝑚

𝐴
𝑚

𝐷
𝑚

deflected Series as

, so, this𝑤 𝑥, 𝑦( ) =
𝑚=1

∞

∑ 𝐴
𝑚𝑛

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
2𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

2𝑎  +
4𝑞

𝑜
𝑎2

𝐷π5𝑚5

⎰
⎱

⎱
⎰ sin 𝑠𝑖𝑛 𝑚π𝑥

𝑎  

is the complete deflection series.

So, when you find the deflected series, then you can go for finding the bending moment. The

bending moment that are most important is the fixed end moment which will be more than the

(()) (32:29) moment. So, here the negative moment that occurs in the fixed end can be found out

that in the x-direction as well as in the y-direction by using this quantity the

, mu is the Poisson ratio.𝑀
𝑥

=− 𝐷 ∂2𝑤

∂𝑥2 + ν ∂2𝑤

∂𝑦2{ }
So, is found out; similarly, can be found out, but in the expression of you can𝑀

𝑥
𝑀

𝑦
𝑀

𝑥

substitute all the quantities and then you can find the value of and . So, at the fixed edge𝑀
𝑥

𝑀
𝑦

, we get the bending moment and per unit length as the case may be.𝑦 = 𝑏
2 𝑜𝑟 − 𝑏

2 𝑀
𝑥

𝑀
𝑦
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Now, let us discuss another problem of plate which has all the edges simply supported and it is

loaded by UDL not up to the full extent of the plate, but up to the middle area. So, it covers only

length of the plate, so plate length is a, and the width is b. Now again, you can note here that𝑎
2

the plate is symmetrical about your x-axis. So, therefore I write this equation with the symmetric

terms again.

(Refer Slide Time: 33:54)

So, symmetric terms are taken, and is the particular integral.𝑤
𝑝
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Now here, the is obtained as the . But the limit of integral you can𝑤
𝑝

2
𝑎𝐷

0

𝑎
2

∫ 𝑞
𝑜

sin 𝑠𝑖𝑛 𝑚π𝑥
𝑎 𝑑𝑥 

see because of the presence of the load up to the middle portion of the plate, the upper limit of

the integral is changed to . So, putting this limit and evaluating the integral we get this, this𝑎
2

. And you can see this, these integral gives you very𝑓
𝑚

(𝑦) =
2𝑞

𝑜

𝐷𝑚π 1 − cos 𝑐𝑜𝑠 𝑚π
2  ( )

interesting results.

Means when m = the odd integers 1, 3, 5 then these value will be . And when the values are
2𝑞

𝑜

𝐷𝑚π  

2, 6, 10, then you will get , and when the m is 4, 8, 12, you will get the value of the integral
4𝑞

𝑜

𝐷𝑚π

as 0.
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So, for the above cases, is obtained as since again this that is this function is again a𝑤
𝑝

𝑓
𝑚

(𝑦)

constant. So, we can assume that particular solution is also constant. So, substituting the

particular integral as constant in this differential equation, you can see this term has no

significance, this term has also no significance, only here some constant which is the𝑚4π4

𝑎4

particular integral equal to this term that we have evaluated.𝑤
𝑝

So, after carrying out this integral, we can find a particular integral in this term, will come2𝑞
𝑜
𝑎4

here. And here it will be will be there, and this term inside the first bracket will exist𝐷𝑚5π5

. Depending on the different values of m this will be evaluated.1 − cos 𝑐𝑜𝑠 𝑚π
2  ( )

So, after finding the complete solution

𝑤(𝑥, 𝑦) =
𝑚=1

∞

∑ 𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐵

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  +
2𝑞

𝑜
𝑎4

𝐷𝑚5π5 1 − cos 𝑐𝑜𝑠 𝑚π
2  ( )⎰

⎱
⎱
⎰ × sin 𝑠𝑖𝑛 𝑚π𝑥

𝑎  

. So, this is the expression for the deflected series. Once you get the deflected series, you can go

for finding this your bending moment and shear force, etcetera whatever you like.

(Refer Slide Time: 36:55)



Now, let us come to another problem because the boundaries are taken as simply supported

condition. So, 2 conditions have to be imposed one is your deflection condition, and another is

curvature condition in this problem and since we have derived the second derivative of the

function already in few occasions.

So, that result can be applied that the second derivative expression can be applied here to impose

the boundary conditions on the other two edges, which are simply supported for this problem.

And you will be able to find this constant and , and then all other quantities that is𝐴
𝑚

𝐷
𝑚

bending moment, shear force can be evaluated.
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Now, let us consider another problem of plate which has a loading a per unit length, but in the𝑞
0

sense that it is not distributed over the area; it is only a line load that you can call it strip loading.

And these loading acts along the y-direction and you can see that this loading is situated at this a

by 2, and it is continuous along the y axis. So, that means I can represent this loading with the

help of Dirac delta function.

Because this is a line loading and this line loading is only meaningful when this x is only equal

to , in other points, there is no line loading. So, I can express this loading as . So,𝑎
2 𝑞

0
δ(𝑥 − 𝑎

2 )

after substituting this loading function into this that is required to find out the𝑓
𝑚

(𝑦)

non-homogeneous term of differential equation. We get that this function and by virtue of this

property of the direct delta function, we can now easily write that , where is a constant and
2𝑞

𝑜

𝑎𝐷 𝑞
0

.sin 𝑠𝑖𝑛 𝑚π
2  

So, this result is again meaningful when m = 1, 3, 5, etcetera. For odd integers, this value will be

not be in existence because this is again symmetrical plate problem.
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So, I can now write this function as

, is the particular integral or𝑌
𝑚

(𝑦) = 𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  + 𝑤
𝑝  

𝑤
𝑝  

particular solution of the equation. Now, again here you can see the is a constant term𝑓
𝑚

𝑦( )

which varies with the m. So, therefore, I have assumed this particular integral is also constant, so

let wp be C. So, after substituting this particular integral in this differential equation, we readily

get what is the value of C. So, value of particular integral that is C is evaluated here.
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And after substituting this, we can get the full solution for and then series. And applying𝑌
𝑚

boundary condition, suppose I have taken here the fixed end, two ends are fixed. If I take the 2

ends are fixed, then I apply the boundary condition of the fixed end. Boundary condition of the

fixed end is say and then at or and at or𝑌
𝑚

= 0 𝑌
𝑚

= 0 𝑦 =+ 𝑏
2 − 𝑏

2

𝑑𝑌
𝑚

𝑑𝑦 = 0 𝑦 =+ 𝑏
2 − 𝑏

2

any edge you can take because the same condition exist in both the edges.

So, when you substitute these 2 conditions, as usual, we obtained in the earlier cases, then we get

2 simultaneous equation linear equations with unknown variable and . So, it can be solved𝐴
𝑚

𝐷
𝑚

easily by any method. So, I have illustrated this systematic method known as a Cramer's rule that

you can use by expanding the determinant that I have shown. And then, you can obtain the

constant and completely.𝐴
𝑚

𝐷
𝑚

So, when you obtain the and , your problem is known that means deflection series is𝐴
𝑚

𝐷
𝑚

completely known. And then, after obtaining the deflection, you can explore other quantities.

That means if you want this further, say bending moment, shear force, you can derive it from the

deflected quantities.
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So, now I want to show you how some other problem can be taken with the help of this Levy's

method. So, first problem is let us take a square plate which dimension is and has 2 opposite𝑎×𝑎

edges simply supported and other 2 opposite edges clamped. The plate carries load that varies

sinusoidally as . So; our question is that deflected surface𝑞 𝑥, 𝑦( ) = 𝑞
0

sin 𝑠𝑖𝑛 π𝑥
𝑎  sin 𝑠𝑖𝑛 π𝑦

𝑎  

has to be found out.

Second question we will see, a plate of dimension ; this has it is 3 edges x = 0, y = 0, and x =𝑎×𝑎

a are simply supported. But y = 0 edge is clamped, and other edge y = b edge is also clamped.

So, let us formulate an exact solution using the Levy's method to find out the deflected surface of

the plate when there is uniformly distributed load acting on the entire area. So, let us solve this

problem and show you how this problem can be tackle using the method that we have learned in

Levy's condition.
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So, first problem is this, problem 1, we have a rectangular plate, but 2 sides are equal; for

simplicity, we have taken 2 sides are equal. And 2 opposite edges are simply supported, but other

2 opposite edges are clamped. So, again this problem is a symmetric problem, so I can now take

the x-axis here and y-axis, say this. The plate is loaded sinusoidally, that means if I see the

variation along x-axis the variation is sinusoidal, the amplitude is q 0.



Then if I see the variation along y-axis again, it is sinusoidal. So, in the 2 direction load is

sinusoidal. That means if I write the load function that can be written as is equal to say𝑞(𝑥, 𝑦)

intensity is because it is a square plate, so the dimension of the plate𝑞
0

sin 𝑠𝑖𝑛 π𝑥
𝑎  sin 𝑠𝑖𝑛 π𝑦

𝑎  

is . Now because of symmetrical problem, take the term in the deflection series , deflected𝑎×𝑎 𝑌
𝑛

series is this, summation of this .𝑚π𝑥
𝑎  

And you know because of symmetry that only symmetrical terms have to be taken. So,𝑌
𝑚

(𝑦)

the differential equation that we need to solve that I illustrated and the solution is

. Now, particular integral has to be𝑌
𝑚

𝑦( ) = 𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  + 𝐷

𝑚
𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦

𝑎  + 𝑃𝐼

found in that case because it is not a uniformly distributed load, so the result is known to us.

The particular integral has to be found from this function that is given as , D is the flexural2
𝑎𝐷

rigidity of the plate and the integration 0 to a, . Now, here the is𝑞 𝑥,  𝑦( ). sin 𝑠𝑖𝑛 𝑚π𝑥
𝑎 𝑑𝑥 𝑞(𝑥,  𝑦)

this function, is given here as the distributed load in the form of the sinusoidal function.𝑞(𝑥,  𝑦)

So, amplitude of the loading is , I have taken it as a constant and taken outside the2/𝑎𝐷 𝑞
0

integral sign.

So, inside the integral, we have this function; now, this integral can be easily carried out because

this is a function of x, so only the integration with respect to x is meaningful, so willsin 𝑠𝑖𝑛 π𝑦
𝑎  

appear as a constant. So, now if I integrate this , that is 0, only it issin 𝑠𝑖𝑛 𝑚π𝑥
𝑎  sin 𝑠𝑖𝑛 𝑚π𝑥

𝑎  

meaningful non zero when m = 1. So, taking m = 1, that integration can be carried out twice aD

and you will get this integration as 0 to a , and then will appear as it is as a function.sin 𝑠𝑖𝑛 π𝑦
𝑎  



So, ultimately that you are getting is equal to this twice into this will be and𝑓
𝑚

(𝑦)
𝑞

0

𝑎𝐷
𝑎
2

. So, this result will be this a will get cancelled, . So, this is oursin 𝑠𝑖𝑛 π𝑦
𝑎  

𝑞
0

𝐷 sin 𝑠𝑖𝑛 π𝑦
𝑎  

function . So, now we can go forward to calculate this particular integral.𝑓
𝑚

(𝑦)
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So, particular integral is now calculated; we take the differential equation, differential equation

was this for m = 1. Now instead of , now we have got this particular integral. So, that𝑓
𝑚

(𝑦)

value is substitute here in the earlier case we got . So, solution for y is because it
𝑞

0

𝐷 sin 𝑠𝑖𝑛 π𝑦
𝑎  

is symmetrical again. So, , it is not necessary to take any integer value of this𝐴
𝑚

cosh 𝑐𝑜𝑠ℎ 𝑚π
𝑎  

not to expand it because it is meaningful only when m = 1.

So, therefore , I am writing directly, then because this is to product of 2 odd𝐴
1

𝐴
1

𝐷
1
𝑦 𝑠𝑖𝑛ℎ

functions plus particular integral, this is y. Now because this is a forcing function, again is a

sinusoidal function. So, let us assume particular integral as also sum constant .𝐶
1

sin 𝑠𝑖𝑛 π𝑦
𝑎  

Now, you can see that after substituting this value here, you will get that this particular integral

will appear as a very simple term that I will give you this term to you.



So, is now appearing is . Because is now this quantity, how this is𝑤
𝑝

𝑞
𝑜
𝑎4

𝐷π4 sin 𝑠𝑖𝑛 π𝑦
𝑎  𝐶

1
𝐶

1

found that assume particular integral as this into this and substitute this in the differential𝐶
1

equation and then equate the coefficient of like terms, so you will get as this value. So, total𝐶
1

solution is; now, we can write , so𝐴
1

cosh 𝑐𝑜𝑠ℎ π𝑦
𝑎  + 𝐷

1
𝑦 sinh 𝑠𝑖𝑛ℎ π𝑦

𝑎  +
𝑞

𝑜
𝑎4

𝐷π4 sin 𝑠𝑖𝑛 π𝑦
𝑎  

this is the complete solution of y.

Now, let us impose the boundary condition to determine the constant and . That can be𝐴
1

𝐷
1

imposed by giving the 2 conditions that that deflection is 0, and slope is 0.𝑦 = 𝑎
2
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So, since the plate was clamped along 2 other edges, this is clamped condition, this is also

clamped. And this and this is also , and this is simply supported and this length is also I am𝑎
2

𝑎
2

taking as a, because it is a square plate. So, imposing the boundary condition at y = , ,𝑎
2 𝑦 = 0

that gives you that . If you substitute this , then will come.𝐴
1
𝑐𝑜𝑠ℎ 𝑦 = 𝑎

2 cosh 𝑐𝑜𝑠ℎ π
2  



So, let us assume or assume take it . So, just to simplify the calculation, I have takenα
1
 = π

2

this, so this is coming. So, after substituting this , first term in this deflection equation is𝑦 = 𝑎
2

this. Then second term will come as because y is there, so and , so𝐷
1
. 𝑎

2
𝑎
2 sinh 𝑠𝑖𝑛ℎ π

2   α
1

equal to this non-homogeneous term if you see here that was there.sin 𝑠𝑖𝑛 π𝑦
𝑎  

Instead of y, you put , so , so therefore this term will be , so that is one𝑎
2 sin 𝑠𝑖𝑛 π

2 = 1 −
𝑞

𝑜
𝑎4

𝐷π4

equation. Second equation, we will get at , that is the first derivative . So,𝑦 = 𝑎
2 𝑌' 𝑑𝑌

𝑑𝑦 =  0

using the first derivative equation, we get here say derivative that will do is a𝐴
1

π
𝑎 sinh 𝑠𝑖𝑛ℎ α

1
 

product of 2 functions earlier the variable associated with .𝐷
1

So, you get 2 terms, because the derivative of constantsinh 𝑠𝑖𝑛ℎ α
1

+ α
1

cosh 𝑐𝑜𝑠ℎ α
1

= 0,   

that requires there will be 0. So, this is your first equation, and this is your second equation after

application of boundary condition. So, and can be solved is equal to say and will𝐴
1

𝐵
1

𝐴
1

∆
1

∆ 𝐷
1

be ; is a determinant that is formed by the coefficient of and .
∆

2

∆ ∆ 𝐴
1

𝐷
1

So, let us see coefficient of is and coefficient of is . Then𝐴
1

cosh 𝑐𝑜𝑠ℎ α
1
 𝐷

1
𝑎
2 sinh 𝑠𝑖𝑛ℎ α

1
 

coefficient of here in the second equation and coefficient of in the second𝐴
1

π
𝑎 sinh 𝑠𝑖𝑛ℎ α

1
  𝐷

1
 

equation will be , , so this is the .sinh 𝑠𝑖𝑛ℎ α
1
 α

1
 ∆
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Similarly, you can find as this let us write down the , will be . Here it will be 0,∆
1

∆
1

∆
1

−
𝑞

𝑜
𝑎4

𝐷π4

then here, in this case, it will be , and in that case, it will beπ
𝑎 sinh 𝑠𝑖𝑛ℎ α

1
 

. Mind that . So, is this; you can easily evaluate this,sinh 𝑠𝑖𝑛ℎ α
1

+ α
1

cosh 𝑐𝑜𝑠ℎ α
1
  α

1
= π

2  ∆
1

the determinant will be
𝑞

𝑜
𝑎4

𝐷π4 sinh 𝑠𝑖𝑛ℎ α
1
 + α

1
 ( ).

So, this is , and can be similarly found out, will be ∆
1

∆
2

∆
2

. So, after expanding you will get this term ascosh 𝑐𝑜𝑠ℎ α
1
  −

𝑞
𝑜
𝑎4

𝐷π4  sinh π
𝑎 𝑠𝑖𝑛ℎ α

1
  0 

|
|
|

|
|
|

. So, we have got and , now we can get as and as .
𝑞

𝑜
𝑎3

𝐷π3 sinh 𝑠𝑖𝑛ℎ α
1
 ∆

1
∆

2
𝐴

1

∆
1

∆ 𝐷
1

∆
2

∆

Once these and is known, then deflection series is simply calculated as, because only m =𝐴
1

𝐷
1

1 is important here and other term it does not exist. So, we will write this

. So, this is the deflected series, and 𝐴
1

cosh 𝑐𝑜𝑠ℎ π𝑦
𝑎  + 𝐷

1
 𝑦 sinh 𝑠𝑖𝑛ℎ π𝑦

𝑎  ( ) sin 𝑠𝑖𝑛 π𝑥
𝑎  

substitute from here and substitute from here. So, complete deflection is known, maximum𝐴
1

𝐷
1



deflection will be at the centre of the plate when and . So, this is one problem that𝑥 = 𝑎
2 𝑦 = 𝑎

2

I wanted to discuss, and that is solved with the help of Levy's method.
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Second problem; let us consider a general problem which has completely unsymmetrical

condition. So, unsymmetrical condition the problem 2. We have this rectangular plate, let the

length is a and the width is b, and it has 2 opposite edges simply supported that must be there;

otherwise, you cannot apply Levy's method. In addition, the boundary condition and other 2

edges at y = 0 edge again simply supported and here, we have taken fixed edge.

So, now you can see this is simply supported, this is simply supported, this is simply supported,

and this is clamped. Because of the purely unsymmetrical nature, we cannot take any advantage

of symmetry. That means omitting 2 constants and taking and retaining 2 constant that business

cannot be done here. So, what we do here? We take the axis as it is, this is x-axis and y-axis, and

we have to kept the full term of the deflected series.

That is was composed of𝑌
𝑚

(𝑦) 𝐴
𝑚

+ 𝐵
𝑚

𝑦( ) cosh 𝑐𝑜𝑠ℎ 𝑚π
𝑎 𝑦 + 𝐶

𝑚
+ 𝐷

𝑚
𝑦( ) sinh 𝑠𝑖𝑛ℎ 𝑚π

𝑎 𝑦  

. So, these 4 constants we have to take, there is no other way because the boundary condition is

purely unsymmetrical. Now we have to apply the boundary condition one by one. So, at y = 0,



deflection is 0; of course, this particular integral will come, so particular integral value will be

same for uniformly distributed load that we have found out earlier.

And this particular integral I am writing here for uniformly distributed load, it is . So, this
4𝑞

0
𝑎4

𝐷π5𝑚5

particular integral has to be written here. So, at y = 0, actually, , so substituting the𝑌
𝑚

(0) 𝑖𝑠 0

value of this y = 0 because and . So, therefore we get herecosh 𝑐𝑜𝑠ℎ 0 = 1 sinh 𝑠𝑖𝑛ℎ 0 = 0

this and here you will get this term will vanish equal to .𝐴
𝑚

−
4𝑞

0
𝑎4

𝐷π5𝑚5

So, one constant is known by application of this. And second constant, other constant we have to

find out applying the boundary condition. So, applying the boundary condition on bending

moment that at y = 0, second derivative of y is also 0. So, that condition gives you the equation

that will be slightly larger equation, but it can be computed very easily, there is no doubt. So,

𝑚2π2

𝑎2 𝐴
𝑚

𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎 + 𝐵

𝑚
𝑚π

𝑎 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎  + 𝑚π

𝑎 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎  + 𝑦 𝑚2π2

𝑎2 cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  ( )

.

So, this is expansion of then on this you will get . And on𝐵
𝑚

𝐶
𝑚

𝐶
𝑚

𝑚2π2

𝑎2 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎  𝐷

𝑚

again, you will get the terms

. So, this is the second𝑚π
𝑎 cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦

𝑎  + 𝑚2π2

𝑎2 𝑦 sinh 𝑠𝑖𝑛ℎ 𝑚π𝑦
𝑎  + 𝑚π

𝑎 cosh 𝑐𝑜𝑠ℎ 𝑚π𝑦
𝑎  ( )

derivative, and it is 0 at y = 0. So, substituting these values you can easily see that this function

exists.

But here you see sine hyperbolic 0 is 0 and this is again y into something is 0, y is 0, so this is

going to be 0. Then here, this is going to be 0, and here you will find that with D m this is 1 and

this is going to be 0, and this is 1. So, ultimately you will get . Now𝑚2π2

𝑎2 𝐴
𝑚

+ 2𝑚π
𝑎  𝐷

𝑚
= 0

since is calculated earlier, we can now get the .𝐴
𝑚

𝐷
𝑚



After getting and of course I am writing this value of , will be . So, value of𝐷
𝑚

𝐷
𝑚

𝐷
𝑚

𝐷
𝑚

2𝑞
0
𝑎3

𝐷π4𝑚4

is this . So, 2 constant and are known, other 2 constant will be found out𝐷
𝑚

2𝑞
0
𝑎3

𝐷π4𝑚4 𝐴
𝑚

𝐷
𝑚

applying the boundary condition at these edges, that is clamped edges.

(Refer Slide Time: 1:06:31)

At clamped edges, there is y = b; apply this equation and ,of course, at b = 0. By using these𝑑𝑌
𝑑𝑦

2 equations, you will be able to get these 2 constants and . So, using these 2 constants,𝐴
𝑚

𝐵
𝑚

other 2 constants say and can be found. So, these 2 conditions will give you 2 equations𝐵
𝑚

 𝐶
𝑚

again with and , because and are already evaluated. So, now you get the 4𝐵
𝑚

𝐶
𝑚

𝐴
𝑚

𝐷
𝑚

constants of integration that is resulted due to unsymmetrical condition of boundary.

So, therefore the solution is now known completely with this series. So, complete series is now

known because , , , are calculated. So, in this way we can handle any unsymmetrical𝐴
𝑚

𝐵
𝑚

𝐶
𝑚

𝐷
𝑚

condition, only the computational effort may; definitely will increase because of 4 constants

involved. So, what I want to tell you that in conclusion the Levy's method is applied for

rectangular plate when 2 opposite edges are simply supported, and other 2 edges may have any

boundary condition.



It yields the exact solution of the plate problem that is first thing what we learn from the Levy's

method. But if we compare the other exact method, that is Navier method, that is restricted only

to the simply supported boundary conditions along all edges. So, Levy's method is more general,

and because of the use of only the single sine series, the calculative effort is less that is

computational effort is less only the derivation part is slightly longer.

Because in the intermediate step, you have to solve one differential equation, ordinary

differential equation, which will yield you the unknown function y but with 4 constants of

integration that have to be found by using the conditions at the boundary on the other edges. So,

2 methods that we have learned now, Navier's method and Levy's method, can be successfully

applied to the plate problem for specific boundary condition, and it yields the analytic solution.

In most of the cases, the loading is uniformly distributed load, and we have seen that for

uniformly distributed load, the exact solution is very much; the solution obtained by Levy's

method is in well agreement with the Navier's method. So, with this, I conclude, then we will see

what are the other applications of Levy's method? So, we will investigate whether Levy's method

can be used indirectly to solve the conditions not met in the Levy's boundary condition.

That is suppose the plate with all edges are fixed, can we use? The question is can we use the

Levy's method for such plate? We will discuss this in the next class, thank you very much.


