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Module-03
Lecture-08
General Formulation for Rectangular Plate with Two Opposite Edges Simply Supported

Hello everybody, welcome to you all in massive open online course and today, I am starting
module 3 first lectures; I will be delivering today for module 3.
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Outlines of Lecture

# Levy's method for rectangular plate

» General solution of plate equation by Levy's method
# Symmetrical and Anti-symmetrical Solutions

# lllustration of problem of rectangular plate carrying
uniformly distributed load

Let us see what are the topics that I intend to cover in this lecture. The topic that I intended to
cover is Levy's method for rectangular plate, then general solution of the plate equation by
Levy's method, symmetrical and anti symmetrical solutions, illustration of problem of
rectangular plate getting uniformly distributed load using Levy's method. So, you have
understood that today our main focus is to analyse a rectangular plate using another method,

whichever we learned earlier was the Navier's method.

Now we will use the rectangular plate using Levy's method. So, let me see what is the difference

between these two methods; if we recall that Navier's method, then we used the double



trigonometric series for the solution of the plate deflection. Now, this is possible only when all
the edges of the plates are simply supported. So, in a rectangular plate four edges are simply
supported, then we can handle the problem by Navier's method, which gives a very simple

solution with double series.

Of course, the double series increases the complexity in summation, but the series is rapidly
convergent. Here we use another method Levy's method, for the rectangular plate, but the
difference is that. In Levy's method, two opposite edges must be simply supported, so Levy has
proposed a solution considering two opposite edges to be simply supported for which he

proposed a close form exact solution.

Now, what about the other two edges? Other two edges may be simply supported also or may
have any other conditions. That means other two edges may have one edge may be fixed, the
other edge may be free, or one edge may be simply supported, other edge may be supported on
elastic beam, the Levy's method only is possible when two opposite edges are simply supported.
But a plate when all edges are, say, for example, is clamped, then directly using Levy's method

or Navier solution is not possible.

We will discuss it later by using indirectly this Levy's method; how can we obtain the solution
for a clamp plate? So, our intention is to discuss the Levy's method for rectangular plates,
general solution we will formulate. And then symmetrical and anti symmetrical conditions, how
it arises and what are the simplification possible in case of these two special conditions? And for

general conditions, what we will do? So, that will be discussed.

Then I want to illustrate a problem that we had already solved by Navier's method, when the all
edges of the plate was simply supported. So, this problem now I will solve it by Levy's method.
(Refer Slide Time: 04:02)



Lewy's Method for rectangular plate

Levy has shown that a single trigonometric series can be used to represent the
deflected surface of a rectangular plate which satisfies simply supported boundary
conditions at two opposite edges.

This reguires that a rectangular plate can be analyzed by Levy's method when two
opposite edges of the plate is simply supparted,

I the adjacent figure, x=0 and x=a edges are simply
1 : . supported. Other two edges may have any other
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! houndary condition.

I X Levy has proposed the following series as the
| deflected surface
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And the plate that I consider in the last section here that will be carrying a uniformly distributed
load. So, Levy has shown that a single trigonometrical series can be used to represent the
deflected surface of a rectangular plate which satisfied simply supported boundary conditions at
two opposite edges. Now, consider this plate; here, these edges say x = 0 and x = a; these edges
are simply supported. The dotted line shows that it is simply supported, this symbol we generally

use for simply supported condition.

The other two edge y = 0 and y = b may have any other conditions, so I have not specified it.
The condition will be imposed to evaluate the constants of integration that we will see later on.
So, you have seen that x = 0 and x = a, the plate is simply supported and therefore, Levy

proposed a solution w(x, y) single summation a function of y that is called capital Y asa

. . . mmnx
function of y sin sin ——

So, the sum is over with only one term. So, that means, when I expand the series, it will be say
Y1 sin sin % + Y2 sin sin 2+‘:x + Y3 sin sin Sf:x like that it will go. So, the function Ym has
to be evaluated because this is still unknown. Because, did not satisfy the boundary condition

and other two edges. But these edges say x = 0, x = a the boundary condition is satisfied by

taking the sine function to represent the boundary condition at the two opposite as edges.



Because immediately we can see that when x = 0, w is 0 and y when x = a, again the w is 0, so in
both the edges deflection is 0. So, when you consider the bending moment condition, that is the
bending moment is given by -D then multiplied by the curvature in x-direction +( vX curvature
in y-direction). So, since the plate is supported along the y-direction, there will be no deflection

along the y-direction at the edge.

So, therefore curvature is 0 along this x edge, x = 0 or x = a edge. So, therefore the boundary

2
condition for bending moment only reduces to the curvature ‘;V; = 0. And we can readily see,
X

you can verify that by taking this function w(x, y) = Ym sin sin % the boundary condition is

easily satisfied, all the boundary condition, geometric as well as this force boundary condition.

Now I think you have understood the difference between the Navier's method and Levy's
method. Navier's method requires that all edges have to be simply supported, so that means here
I left this edge y = 0 and y = b edge as unknown boundary conditions. But in Navier's method
these boundaries are also have to be simply supported, so this is the difference. So, the generality
of the approach has been improved in case of Levy's method.
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* The rectangular plate in which x=0 and x=a edges are
i - 1 ., simply supported and other two edges, viz v=0 and

y=h may be supporied in any manner or may be free.

* At x=0, x=a, the plate is simply supported and y=0
and y=b with other boundary conditions, we can
| write the deflected surface as
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* It can be seen that Eq. (1) satisfy boundary condition
along two opposite edges. Substitwe (1) in plate

equation



So, taking a single trigonometrical series, we have seen that boundary condition is satisfied at x =
0, x = a and other boundary condition y = 0, y = b is not specified yet. And depending on the
different edge conditions, we will be able to evaluate the unknown constants of the integration
that we will see later. Now it is the plate equation that equation number 2 is well known to you,

viw = 2

D

4 . . . . : . o .
Where V is the biharmonic operator that is this partial derivative operator that is

4 4 4
ZVZ + 2 562:2 + Z‘Z. So, you know this operator, and this is operating on w. And on the
X X 0y y

right-hand side, q(x, y)is that distributed load, that means q is a continuous function of x and y.
But sometimes, the discontinuity arises because the concentrated load may also act, and there are

also the steep loading or line loading.

So, in this case, we have to deal with in separately the Levy's method. And capital D is flexural

rigidity of the plate; what is the flexural rigidity of the plate? Flexural rigidity of the plate is

3
nothing but ) Eh

2(1-v")

and v is the Poisson ratio. Now, one thing here can be noted that while solving the differential

, where E is Young's modulus of elasticity, h is the thickness of the plate,

equation, we have taken the uniform thickness of the plate.

So, therefore D is not variable in x and y, so that is the characteristics of this differential
equation. When D is variable then plate equation will be complicated and different techniques
have to be used.
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Now, on expansion, the V'w looks like that, that is — + 2—5— + — = 121 So, you
0x d0x dy dy D

have understood that there are three terms and right-hand side this is the load function and

flexural rigidity and left-hand side all are actually 4th order derivative. So, if we see the function

w(x,y) = Ym(y)sin m:x is the proposed solution of the differential equation because it satisfied

the boundary condition on 2 opposite edges completely.

So, if it is the possible solution of the differential equation, then it must satisfy the differential
equation also. So, substituting this series w(x,y) = Ym(y)sin% into the differential

equation. We get an equation like that, say this is the first term that is after differentiation of w 4

4 4
times with respect to x, we get ——- Ym(y). Because capital Ym is a function of y, so it remains
a

undifferentiated.

And then sin sin mmx after even number of differentiation in (()) (11:42) says sin%. Now

one thing is that the m is the half wave numbers, so m can vary 1 to infinity. And for you have

seen for different half wave numbers, the waves are formed, and the superimposition of all waves



4
actually contributes to the total deflection of the plate. Then ZVZ , now here we are taking the
y

differentiation with respect to y.

So, therefore this quantity has to be differentiated 4 times, but this is treated as a constant, so it

remains as it is. So, sin—= remains as it is but this function is differentiated 4 times with

4

respect to y. Then second derivative, this middle intermediate-term or middle term, is AR
x 0y

That means the second derivative of w with respect to x square is first taken, then second

derivative of this result is again evaluated 2 times with respect to x or vice versa.

Because the operators are interchangeable, it is a linear operator, so you can proceed in either

way. So, after doing this operation, you will get here actually you will get the minus sign will

2
. . . . ‘mZTlf2 d Ym(y) . mmx . .
come appear in this equation, and you will get — — ~ 7 Sin— =, s0 the minus sign
a y
appears here.
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¢ Using orthogonality property of sine function
a [;
Cmmx | m'nx a
sin—sin——dx = &
a i

a

B |

And then, substituting this derivative in this equation completely, we get this term and it is under

mmx

. .. . . . . X,
the summation term. So, it is under the summation term, and sin is there in %. Now,

a



our intention is to solve for this differential equation, but we have to get rid of this summation
term. That means there are 2 ways you apply here orthogonality condition to get rid of the
summation term, or you can express q(x, y) in terms of Fourier series and then comparing the

like terms, you will get the coefficient.

So, both are the same, and we will give the same results. Now here we have proceeded from the

first to work in principle. So, multiplying both sides of the equation 3, that equation I am

mTx

numbering it as three by sin integrating with respect to dx in the limit O to a. So, why I have

m

““because the m' is also an integer. So, when sin is multiplied by with

a

taken this sin m;x

another sine function of sin

m'nx .
—, when m and m' are integers.

And when it is integrated from 0 to a with respect to x, that value will be 0 if m is equal to not m'
. Means, when we carry out summation, we will encounter here that sine say m = 1, and m = 2,
so we will get sin sin 1Tchsin sin % , so it will be 0. Then we will get sin sin 2+:x , so it will

be m, and m' are equal, so it will not be 0. So, according to orthogonality condition, that

m'nx
a

. mtx . a .
sin——sin dx = - ifm=m'
. . . . a
But for other values of m, this is never the non zero value; when m = m', it will be = when

m=#m' then this integral will be reduced to 0.
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* Eqg. (6) is to be solved for (i) homogeneous part and (i) particular integral. Then add (i)

and (i1) to get the complete solutions. Four constants of integration for the solution of Eq.
{6} have to be found out applying boundary conditions on edges y=0 and =5,
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So equation 4, now can be written because after integration, only one term will remain, and it

will be % So, this is written as like that because the % will now transfer to the right-hand side,

so here it will be a—ZD, and this term will remain as it is. So, naturally, we get here this is the

ordinary differential equation because the only one function that is Ym which is a function of'y, is

differentiated.

So, Y is a function of y, so 4th derivative appears here; then here it is second derivative and here
2 a

the function itself. So, right-hand side, you are getting —- [ q(x, y)sin%dx , q(x,y) is the
0

distributed load on the plate, this may be any form, it may be uniformly distributed load, it may
be partially distributed load, it may be as a hydrostatic load that is uniformly varying in a linear

manner, or it may be a load which is nonlinearly varying.

Any type of variation of load may be there in practical cases, and this is the general term for
evaluating the load function that can be easily incorporated when g(x,y) have continuous
distribution. So, here you can see that right-hand side now becomes a function of y because the

integration is carried out with respect to x, clear. So, integration is carried out with respect to x,



and it is a definite integral, so the x variable will be replaced by the constant term, which is a, the

limit of the integration.

So, therefore there will be no x variable in the integration result, and it will be simply a function

: . : d'y ) 22 d'Y ) 4t
of y. So, these differential equation turns out to be d’"4 - 2= d'"z + = Ym(y)=
y a y a

fm(y) and this is the function of vy, fm(y). So, this differential equation we need to solve

completely.

So, that we know the function Y and then the full deflected surface is known. Because now at

this moment, we are only knowing this function sin%, but still this function Ym(y) is

remaining unknown till now, so let us see how we can solve it. So, this function of y as I
explained that it is integrated with respect to x and the limit is substituted, and then you will get a

function where x variable does not appear.

The equation 6, you can see this equation is an ordinary 4th order linear differential equation
with constant coefficient, but this equation is non-homogeneous because of the presence of the
forcing function, which is appearing as a function of y. So, because of this non-homogeneous
equation as per the theory of linear differential equation, we have to find the solution in 2 parts;

one is homogeneous solution, and second is particular integral or particular solution.

Homogeneous solution is obtained when there is no load function that is right-hand side is 0, and
particular integral has to be obtained when the right-hand side represents the forcing function
whatever force may be. So, equation 6 has to be solved, first homogeneous part and particular
integral. Then will superimpose one over other because it is a linear differential equation, so

complete solutions will be obtained.

Now you can see here it is a 4th order differential equation. So, naturally, in 4th order and

differential equation when you get the complete solution of homogeneous equation, we get 4



constants of integration; that 4 constants have to be evaluated using the boundary condition at the
2 other opposite edges. We have not test the boundary condition or we have not spelled out any

boundary condition on other 2 edges.

In Levy's condition when we started the formulation, we stated that the 2 edges x =0 and x =a
are simply supported. So, 2 opposite edges, other 2 opposite edges y = 0, y = b, the boundary
condition is still now not specified. To solve the homogeneous part of the equation, we will
consider the right-hand side to be 0, so right-hand side is considered to be 0.

(Refer Slide Time: 21:04)
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So, now using the theory of linear differential equation, we assume that solution is in the form of

Ay . oy oy A
Ym = Eme ™, where lambda m is the characteristic parameter. So, substituting Ym = Eme in

. . . _— . 4 :
this equation. Say here itis 4 derivative, so naturally, we will get )\m and other constant will

appear as it is E,, and when you differentiate e to the power exponential function, again

exponential function will appear.

So, exponential function will be common to all the derivative terms and here also, because the

mmn

s o o .
Ym(y) = Em e “ . So, that means after substituting the derivatives of this Ym assumed Ym, here




we get a characteristic equation of this form. That is Em is there, and this will also appear here,

now you can see that E . should not be 0 for non-trivial solution.

Otherwise, you will not get a meaningful result, or we cannot go forward for the solution of the

Ay, . : o .
problem, and e ° is also non zero. So, this quantity inside the bracket expression inside the
2 m'n’ ?
bracket is 0. Now you can see the expression inside the bracket is nothing but the (Am — —2) ,
a

so it can be written as this form.

2 2 4 4
2

. ) .4 . .
That means when we expand this, you will get again Am — 2 }\m + ———. Now, this function
a a

can be factorised as this, because it is a square, so we have written like tat. So, you will get the

repeated root as per the theory of equations, so we get 7\m = % again % repeated roots, — %

mT
and — —.
a

So, after getting this the roots of the characteristic equation, characteristic equation is this,
whatever inside the second bracket this is the characteristic equation. So, we have solved this 4th
order polynomial and we have got this the 4 roots.
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* Hence, homogeneous solution
o mx
Yl = (E;m, + Em!y}e at + {Em’ + Em‘y}e z? i)

* Now, we know, the hyperbolic function can be expressed in terms of exponential function

l.,lu' 4 iy E,H.'l - el

; = coshax ; = sinh ax

I8
e™ = posh ax 4 sinhax
e~™ = coshax — sinhax

* Using above hyperbolic function with ax as ?y im Eq. (10) and readjusting or renaming the

canstanis

v, () ={:1m+ﬂ'my]msh¥y+[fm+ﬂmy]5inhr1—ﬂy m

And then we can write the solution simply as this E o E . 1is a constant E - because of repeated

. . Y —Y
roots here we are assigning a function (Em + Em y)e + (Em + Em y)e . You can see

1 2 3 4

this is the repeated root %, and — % is also another repeated root. So, because of these 2

repeated roots, we have written the solution like that. If the roots are not repeated, then
individually, this say the exponential function will be associated with this each of this constant,

and there will be no variable Y.

Now we know that exponential function and hyperbolic form of it is very useful in mathematical
physics or any problem in engineering. So, therefore I want to express this exponential function

in terms of hyperbolic function. Now the hyperbolic function can be expressed in terms of

exponential function. We know that “—— = cosh cosh ax , that is known to us.

ax —ax

Similarly, % = sinh sinh ax , so this is also known to us. So, you can see now, if I add

e

these two, I can get e, so adding these 2 say += cosh coshax and here

ax  —ax
e —e

> = sinh sinh ax . Now, when these 2 are added, we get e"". And when these 2 are

subtracted, when one is subtracted from another, we get e



ax . . —ax . .
So, e ", you can see cosh cosh ax + sinh sinhax and e , cosh cosh ax — sinh sinh ax .

So, our intention is to express the solution in terms of hyperbolic function. So, using the

hyperbolic function with ax suppose here we are having %y. So, let us substitute ax by %y,

then we can write this equation in terms of hyperbolic function replacing ax by % y.

And then arranging the constant terms because you will get cosh, sinh common with associated
with other constant then we can plot these terms and constant can be renamed as other constants.

So, here the constants are renamed as Am Bm C . Dm etcetera. And you will find that the solution
can be written in this form (Am + Bmy) cosh cosh %y + (Cm + Dmy) sinh sinh %y , SO

this is what is a homogeneous solution.

But because the differential equation itself is a non-homogeneous equation, you must find the
particular integral also. That means the solution for the loading function; if loading function is
non zero, then you have to again obtain the solution of that differential equation, then you can
superimpose these two solutions to get the complete solution. So, this is our solution 11 one for
this rectangular plate, which has two opposite edges; what are the two opposite edges simply
supported? x = 0 and x = a, these 2 edges are considered to be simply supported, other 2 edges at
y = 0 and y = b the boundary conditions are not specified till now. Let us see what we can do
with this solution.

(Refer Slide Time: 28:21)



We can write total solution as

LY

wix,y) = z !-’,,,l:y)xln?x (2

m=1

[[mm + Buy) cnsh? + (G + D) m?} " PJ'] sin ?

s

1

(Pf = Particular Integral)

So, we can write the total solution is Ym(y) sin sin %x , this. Now you can see the earlier this

solution is homogeneous solution, here I have added another term say PI, PI is the particular
integral or particular solution due to forcing function. If there is a no forcing load, for example, a
plate is subjected to edge moment, then there will be no force though in that case PI will not

appear. But since the force is existing, so, therefore, I have taken PI also along with this solution.

So, total Ym(y) is this function inside the 3rd bracket, and it is multiplied by the function

sin sin ——x, which represents the waves in the x-direction, half-waves in the x-direction in the

deflected series. Now sine function is used in the deflection series because it is obvious they are
2 opposite edges are simply supported. So, only sine function is the appropriate algebraic or
trigonometry function that can satisfy both geometric as well as force boundary condition.
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The edges y=0, y=b are simply supported

In this case, one should take the series in the form

() = i o) sin 2 (12
-'_h e | Hence, by substituting this in plate equation
| - and making use of orthogonality condition, one
1 | gets
| |
: : 24 xn(x) - ﬁ d2an(x)
PE— .ax'* bt dxd
i 13
’ o Ka(@)=g,(x) it
2 . nmy
gn()=s J) ) sin™S2 dy 1

Now, what will happen? If suppose, here the y = 0 and y = b, these edge are simply supporting.
So, it is the y-axis, and it is the x-axis, x-axis taken here vertical and y-axis horizontal. Only to
see what will be the difference with the expression that we have earlier obtained. So, one should
not confuse that only x = 0, x = a should be simply supported, it is not like that y =0 y =b that
the other 2 opposite edges, why we did not touch here till now that may be also simply

supported.

So, if this edge is simply supported, that is y = 0, y = 0 edge and y = b edge. So, these 2 edges

are simply supported then we can write this solution just by reversing the function. So, earlier it

was Ym(y), now here it is written as Xn(x) sin Sinﬂgl, so this is the difference in series.

Because it will be expanded with function of x, and function of y is now a sine function.

Because the deflection and moment are 0 along the y-direction, so that is why we have taken this

sin sin n—zy , here represent the length of the plate in the y-direction. So, by substituting in plate

equation again similarly and making use of orthogonality condition as we have done earlier, we

d*x ()
now arrive at this equation. So, that is nothing but d"4 ; now, here, all derivatives of the
X

functions are with respect to x.



Previously we have obtained the function with respect to y, because this function was assumed as

a function of y. Now similarly, we will get the forcing integral, that is, a forcing part is a function
of x, because when we multiply these by sin%, this is the function, and it is integrated with
respect to y. The variable y has to be replaced by constant, which are the limits of the integral;
so, therefore, the result will be a function of x. Hence this is the differential equation right-hand

side; this non-zero part is a function of x.

(Refer Slide Time: 32:15)

Therefore, homogeneaus solution becomes

nr nm
.k',,ix} = (Ay + Byx) cush?x + (L + Dyx) sinh ?x

The general solution can be written as

m

nm ni nm
wix,y)= Z [(A_., + By x) cosh b x + (€, + Dy x) sinh ¥ t (P. 1)} sin hy

=l

in which P.| stands for particular solution

So, therefore homogeneous solution becomes this. So, these are the constants again, but with the

variable n, the harmonic number is here n instead of m. The general solution now can be written

as {(A + B x) cosh cosh —-x + (C +D x) sinh sinh <=x + (P. I)] sin sin = . So,
n n n n
that we have seen previously, it was a function of y completely; the expression inside the 2nd

bracket was function of y because the x = 0, x = a simply supported.

But in that case, y = 0 and y = b are simply supported. So, therefore the simplest about a s
function is satisfied by this sine function, and other function must be a function of x. In which P I
stands for particular solution.
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Characteristics of Hyperbolie functions

A L Ay Ty
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Figure 7

Figure

sinh ax

tanhax =

coshax

Now let me show you the characteristics of hyperbolic function, how it looks? You can see the

cosh cosh L;[L or cosh cosh nzx , b whatever we encounter in the solution, total solution in
the complete solution of the Levy's method. There we have to deal with this function that we

nt o, . mrx
have seen cosh cosh /=2 , or you have seen that it is cosh cosh —— , whatever maybe.
b ° a

mmx

So, here you can see that if I plot this graph with with this index, then you can see the cos

a

hyperbolic is a symmetric function; it is symmetrical with respect to your x and y-axis. But if we
plot, say sinh sinh % , we will see that it is anti-symmetric function, so that is the difference.

Here cos hyperbolic is a symmetric function and sine hyperbolic is anti-symmetric function,

. . . . . . . ..+ _sinhsinh ax
tanh tanh ax is nothing, but just like your trigonometric quantity, it is — = —=~"—.
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# Integral of hyperbolic function
. 1
sinh ax dx = - coshax
a

1
J cosh ax dx = —sinh ax
a

# Integral of tanh ax

g% _ p-af
J tanh ax dx = I — iy

g0 4 =i

Let %% 4 =% =y — ot = a(e™ — ¢~ )dx
!

1 fadu 1
fanhardyr=-| —=-Inu+r¢
al u a

So, we will be requiring to use several times this integration of sinh is cosh or derivative of
sinh is cosh, so you must be familiar with that. So, integration of sinh is cosh cosh ax,
cosh cosh ax the integration is sinh sinh ax , integral of tanh tanh ax is found out like that.
Because tan hyperbolic first 1 expressed in terms of the ratio of sinhsinhax to the
cosh cosh ax , then after method of substitution, I obtained the integral.
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+ cosh ? is symmetric function whereas sinh ? 15 anti-symmetric function,

+ Product of two symmetric function is symmetric,

+ Product of one symmetric function and one anti-symmetric function is anti-symmetric.
* Product of two anti-symmetric function is symmetric.

+ Also, an useful identity is (cosh ax)® — (sinhax)® = 1
# Derivatives of hyperbolic functions

d
d—fcushuﬂ = asinhax
& E{tnnh ax) = alsechax)®

da
— (sinhax) = a cosh ax
dx R

So, derivatives are also important. So, derivative of cos hyperbolic is sinh sinh ax , derivative of

sinh sinh ax is cosh cosh ax , tanh tanh ax is like that. Now, the characteristic of the function



is cosh function is symmetric function, and sine hyperbolic function is anti symmetric function.

So, that statement is very important to solve the problems using the Levy's method.

Because in symmetric function, if the loading is symmetrical or boundary condition is
symmetrical, then there will be no question of any anti symmetrical term in the deflection
expression. So, naturally, we can omit from physical reasoning. Then also, we know the product
of 2 symmetric functions is symmetric, that is also true. Then product of 1 symmetric function

and one anti-symmetric function is again anti-symmetric.

So, suppose the x square is a symmetric function, and sine x is anti-symmetric function,

naturally, so X square sine X is again anti-symmetric function. Similarly, here say we have got

when we found the solution, we have seen that the terms yXx cosh cosh m:y

appears. So, in that

case, yX cosh cosh % , what will be the nature of the function? It will be anti-symmetric,

. . . . mm
because y is anti-symmetric function and cosh cosh ay

1s symmetric.

So, product of one symmetric and one anti-symmetric function is again anti-symmetric. But

mmy
a

when we see that y is multiplied by sinh sinh % , then y is anti-symmetric, sinh sinh is
anti-symmetric. So, product of 2 anti-symmetric function is again symmetric function, so that we

will use. Then useful identity for simplifying the condition or solution there ax — ax = 1.

So, there is a difference that you can note, in trigonometrical function, say if 0 is the angle
6 + 6 = 1 . But here, you can see ax — ax = 1, so that identity can be used in simplifying
the solution.
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]
= Eln{Emsll ax)+e

1
J tanh ax dx = Elu{E coshax) +¢

So, integral of this tanh tanh ax is given here.
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Symmetric loading and symmetric support condition

* When the plate is symmetric with respect to load and support, there cannot be antisymmetric
term in deflection,

a * In this case when x =0, x = a is simply supported,
T T for other two edges being symmetric, lef us take
| I I x-axis through middle of the vertical side as
: : B shown in Figure 2,
] e ——— —_ - . 3 : " .
01, I * Then the plate 15 symmetric with respect (o X-axis,
1 | Therefore,
| |
1 1

Ym(y)-.ﬂ,,tnsh?-i-ﬂm}rsihh? (1)

Figume 1

Then we can see what happens when there is a symmetric loading and anti-symmetric and
symmetric support condition. Now, in many cases, we adopt the symmetric type of construction
because symmetric structure or symmetric element is easy to construct and also easy to analyse
also and load resistance response to load is also favourable. Because when there is a
anti-symmetric condition, where there is an eccentric loading or anything, then in addition to

your this vertical deflection, the twisting moment will be also of significant amount.



So, therefore, in practical conditions, we will try to keep the structure symmetric as far as
possible. Now, we call this structure symmetric when the loading and support conditions are
completely symmetric. Now, here see this plate, this plate has length a and width b, and two
opposite edges are simply supported x = 0 and x = a are simply supported if this represents the

x-axis along the length direction and along the width direction the y-axis is shown.

It 1s not shown in the diagram but considers that along the edge parallel to y here, parallel to
width, the y-axis exist. So, the plate here is symmetrical; if I take the x-axis or origin at the
centre of the left-hand edge, then we draw a horizontal line. Then we can see that plate is
symmetrical about that line provided the other two opposite edges have also same boundary
condition. So, for example, the boundary condition may be simply supported on two opposite
edges, or it may have this fixed clamp condition on two opposite edges or it may have free

condition at two opposite edges.

For example, a slab culvert, you have seen the slab culvert or slab bridge, slab is also there for
small span; only the slab is resting on the abutment. So, in that case, you can see that if this line
these are the abutment support, so it is supporting the slab on the two opposite edges just like it
simply support. And the other two edges are free if there is no stiffening beam or girder. So, then
these two edges are free, so this condition may also represent a slab bridge supported by

abutment at the two ends.

So, in this case, at x = 0 and x = a, simply supported for other two edges being symmetric.
Symmetric means condition we have not specified yet, let us take x-axis through the middle of
the vertical side as shown in figure, then the plate is symmetric. And we have seen the solution

of this w(x,y), homogeneous solution, here; you can see that when this cos hyperbolic m pi by a

into y is multiplied by A,,, then cosh cosh

mt . . . . mrtt .
ay is a symmetric term, and sinh sinh Ty is

anti-symmetric term.



But when the anti-symmetric term is multiplied by another anti-symmetric term, it will be a
symmetric term. So, when the support condition and the loadings are symmetrical, then we can
take the symmetrical boundary conditions. And therefore, the equation becomes simplified. That
means keeping only the symmetric term of the solution cosh and yXsinh. Because sine
hyperbolic is anti-symmetric and y is anti-symmetric, so product of 2 anti-symmetric term is

symmetric term.

So, therefore for this type of condition, we have kept on these symmetric terms. But when

anti-symmetric condition exists, then we will keep Bm sinh sinhi;% + other terms say

C ycosh cosh =% . Because in that case y is anti-symmetric and cos hyperbolic is also
m a

symmetric, so product of anti-symmetric and symmetric function is again anti-symmetric.

So, accordingly, after knowing the nature of the function, now you have completely known
because graphical representation also I have shown. So, you can take appropriately the
symmetric terms or anti-symmetric terms.
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Now, different boundary conditions for this condition say 2 edges are simply supported. So, if |

take the x-axis here, running through the middle of the vertical edges, then at y = +b.



Suppose, this is the positive direction of x-axis, so it is y = + % and here it will be

y = - %, that simply supported boundary condition again have to be satisfied. So, this
P d’y
conditions are M, = 0, and this condition M, = 0, that means 7 = 0, that means y — = 0.
y y

Free condition for example, y = +b. So, for example, this is a slab bridge or a slab culvert, so
these two edges are free. So, in that case the condition here the bending moment is 0, so this
curvature term is 0, and edge shear is 0. So, edge shear quantity is this quantity and when it is

differentiated with respect to this function, then m square pi square by a square come because of

62W

. - . mmx
> = 0, because w contains sinh sinh —= also.

0x

So, this is the two boundary conditions at the free edges. So, naturally imposing two boundary
conditions at the 2 edges, we will get the 2 equations and that can be solved for 2 unknowns
constants associated with the homogeneous solution.
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Then at the clamped condition, we have w = 0, and the slope is 0, which requires that derivative
of Y,, with respect to y = 0, because this edges along the y the edges clamped. So, the slope is 0

along the y-direction.
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Now examples of unsymmetrical edges.
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So, unsymmetrical edges, again we know that these boundary conditions will be different, say
boundary condition say if it is unsymmetrical say this figure, we have shown this figure, this
shows that y = 0 edge is fixed, and y is b edge is free. So, because of these boundary conditions,

the plate is unsymmetrical plate. So, in that case, the requirement is that at y = 0, that means here

Examples of Unsymmetrical Edges

* Consider a rectangular plate in which
; =0 and r=a edges are simply
supported and other two edges, =0 is

clamped and y=b s free (Fig.6).

Since o=0, r=a ecdges arc simply

supported and edge =0 15 clamped

and edge y=b is free, we can wrile

W@ry)= ). Yolylsin—

m=1

* The boundary conditions are:

¢ Aty=0, ¥,.=0 and also

da¥,
=0
dy
Al p=h,
T
Mo=0 LTm_,
: dy?
=0
a'w [i} Ih‘
I.ﬂ; ] bl I:] |]1.lr'|,'|,! L
¥, mind di,
' iy e at dy _

along this edge, the slope is 0, and deflection is 0.

(1




So, y is 0 and Y, is 0, that means Y, is 0 and slope that is the first derivative of Y m is also 0. At

2

m

a’y
y = b that is this edge M, = 0, that is = 0 and edge shear 0, edge shear 0 means
y

3 3
Z —+ (2 - V) aaawz = 0. So this obviously reduces to this equation, and imposing this, we can
y0ox

find the constants of integration.

(Refer Slide Time: 46:43)

E

+ For the above case, ¥, (v) 18 wrilten as

o) = (A + Bo)cosh ™y + (G + D) snh -y
.

Four constants of integration now have to be evaluated imposing
two boundary condition at each of the edge y=0, y=b

So, in that case, the full equations have to be retained, that means we cannot omit any terms. So,
4 constants are retained here, and therefore 2 condition at each edge need to be imposed to find
out these 4 constants of integration from 4 algebraic equations. After applying the boundary
condition, the problem will be these boundary value problems, so you can calculate the constants
of integration.
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(). Analyse a rectangular plate, simply supported along all edges. carrying
unifermly distributed load by Levy's method

) : * By Levy's theory,

2 X
" W)= ) tsin

— --Ir_ ________ H L > o
' HIE
e e eee e ¢ For symmetrically supported and loaded, we
. have
M Y -
l | ¥ (v} = Ay, cosh—=+ D, ysinh —=+ PI
4 A a -
Figure (1.

Now let us illustrate the Levy's method in a rectangular plate, which simply supported edges in
the 2 opposite edges simply supported. But there is no restriction that Navier's method can only
be used for all edges simply-supported. Levy's method is more general, that means when all 4
edges are simply supported, you can also use the Levy's method. But Levy's method relaxes
more boundary condition that means it is also applicable when other 2 edges are also differently

supported.

But one essential thing is that 2 opposite edges must be simply supported. Now, here in this plate
problem that I have for this class, the x = 0 and x = a are simply supported this edge and y =0
and y = b; also, I have taken simply supported. And I have taken the x-axis running through the
middle of the vertical edges. So, plate is symmetrical about this x-axis, and therefore

symmetrical condition exists.

And we can take now only this Am cosh cosh L;y— + Dmy sinh sinh i;l + PI, because the

plate is acted upon by uniformly distributed load of intensity q, per unit area. So, the load
generally expressed in the plate or per unit area when it is distributed, so q, is expressed as load
per unit area. And because of the loading, the particular integral is non zero, and we have to

consider this particular integral in this expression.
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* Let w, be the particular solution for the case of uniformly distributed load.
A

* Earlier we got,
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m¥ = hm' b

noan

Now let w, the particular solution for the case of uniformly distributed load. Now, here there are
different ways of solving the non-homogeneous differential equation. One very attractive method
for our physical problem that is the problem encountered in structural mechanics is the method
of undetermined coefficient. So, in this method, observing the nature of the forcing function or

this non-homogeneous part, we can assume the possible solution.

For example, if the forcing term is a constant, then obviously the particular solution is also
constant. If the forcing function is a harmonic, say sine function, the particular solution should
also contain functions of sine and cosine; that is harmonic, it may be cos; also, it may be sine
also. So, there may be phase difference, of course, so a harmonic forcing function may require or

may necessitate the particular solution as also harmonic.

So, here seeing the nature of this particular integral, this forcing function as q,, we first evaluate
f.(y). And f (y) is evaluated by this integral that I have shown in the beginning and that it
becomes this value. After integrating sine with respect to cos and then putting the limit, we get

4q 0
nDm

this , Where D is the flexural rigidity of the plate and m is the integer.



And you can see that integral is valid only for the odd number of m; for even number of m, this
function will disappear. So, you can see that when this m = 2, or 4, 6, etcetera, then this function
will be 0, the integration, after putting the limit, it will give you 0 result. So, only the result that
is obvious it is -2 when m is odd number that is 1, 3, 5, etcetera. So, we get this f, (y) as this
function, and this is obviously a constant.
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* Sinee, ffv) 1s constant, we can assume particular integral or particular
solution to be constant,
k

* S0, =W here, C 18 & constant {iii)

* Substitute Eq.(it) in Eq.(i}, we get

mint Ay, 4y (iv)
- = B 0E Wy —
at mom Y = D
* Hence
i miy _ommy  Adgea’
Y(y) = An cosh—=+ Fﬁ".p.}fﬁlnhT’h’r = ¥

gt

So, therefore, we assume that particular integral or particular solution is also a constant. So, let
us assume that w,=C, where C is a constant. Substituting these 3 in equation 1, equation 1 is this.
That means if this is a solution, then it must satisfy the differential equation that is the

philosophy. So, after substituting this, we get when the constant is substituted Ym = Constant,

then this term goes to 0, this also goes to 0.

. . rt 4q . . . . .
So, here it will be =——C = —=. So, after doing this, we get this equation from where C is
a nbDm
. . . . . . 4qa .
obtained as, C is nothing but particular integral is — - Where m and m appears with a 5th
m T

power, you can see, so it will be rapidly converging.



So, m contains the power of 5, so when this first term is taken for deflection, you will get almost
accurate result. When the second term that is 3 is taken, 3 to the power 5 in the denominator will
decrease the value drastically, so the series will rapidly convergent after taking a certain terms.

Hence the complete solution is for

4

mri qu
a

4
Ym(y) = Am cosh cosh —%- + Dmy sinh sinh m:y + — 5 D is the flexural rigidity.
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iy
* First derivative,

d ¥ mm mry o ommy  mm mmy

—= A, —sinh—+ 0y (smh ——+ y—cosh —]

dy a i a i a

So, now let us see how we can impose the boundary condition. So, refer the figure of the

question that they simply supported plate here again, and this is the x-axis, and this is the loading
that applied on the plate. Since aty = -_F%, when y =+ %, that means this edge or — % is this
edge, then the boundary condition is same. So, first applying the boundary condition on this

edge,y = % on deflection.

So, deflection series that means this expression will come and when you substitute y = %, this

function will be 0 of course, because at y =% deflection is 0, so Y, is 0. So,

mth b . . mmb 4‘70‘1 . . . .

A _coshcosh == + D_—-sinhsinh + ——=— = 0. So, this term is written, and this
m a m 2 2a m’’D

constant term is transferred on the right hand side with q 0.



Then from other boundary condition, that is the second derivative of this y is 0. So, first
derivative is taken, very carefully you have to take the derivative otherwise, there is a chance of
committing mistake in the solution, so first derivative is taken.
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Figure of [.III

Then second derivative is again taken of this function. And you can see now imposing the
boundary condition at y =+ =, or — —-, that curvature in the y-direction is 0, because the edge
y =0, y = b is also taken as simply supported. That means here not y = 0, y = b because the axis
is taken running through the middle of the vertical sides. So, that means y =+ —-, or — —, the

edge is simply supported.
(Refer Slide Time: 55:48)
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So, substituting the boundary condition on second derivative, we get this. Now you can see that 2
unknown constants and 2 equations are obtained. One condition is obtained using the deflection
condition that is the equation. Second equation is obtained by imposing the curvature condition
that is bending moment equated to 0. So, these 2 equations are of the form,sayC1 Am+C2D

m = Q 1 this is one equation. And another equationis C3Am+C4 D m=0.

So, because of the loading, we get this as non zero term Q,. So, 2 equations are obtained and 2

unknown, and these are algebraic equation, and this can be very easily solved. Where they C, are

the coefficient that can be collected from this expression, and you can see that this is the second

equation for after imposing the boundary condition on bending moment. So, therefore, C 1, we
2

2
get this C, that we get is written here C, is ———cosh cosh
a

mmb
2

And C, is this quantity that is written here. Q, is the right-hand side of the first equation, this is.
So, these 2 algebraic equations are written in equation number 8 and coefficients are identified

clearly. So, this can be solved by using any rule.
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+ Solving by Cramer’s rule, find A_ and 1.
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: mih
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The easiest rule is Cramer's rule using the determinant, it is a systematic procedure, and you can
find that using Cramer's rule the coefficient, the variable A m, the unknown constant A,
becomes this determinant of Q, C, I am telling you row wise. So, Q, C, 0 C, divided by A, what
is A? A is the determinant formed by the coefficients associated with the A, D,, C,,, A, and D,,, 2

variables are there, so A, and D,,

So similarly, we get there is a first coefficient is A,,, so first column is replaced by the right-hand
side value, so right-hand side value is Q, due to forcing term, in second equation it is 0. And the
second column contains the coefficient C, and C,. Similarly, for the second variable that is D,,,,
we get this second column as the forcing term Q, and 0 and the first column with the coefficient

associated with A, C, and the second row coefficient associated with A, is C.

And delta is the determinant that is form by the coefficient, and it can be found out by expansion.
So, after doing this algebra, we can get the value of A, as this quantity and value of D, as this
quantity.
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So, once the value of A, and D,, is found, then you can completely write the equation for Ym(y).
So, Ym(y) is written completely because this is known, and this is known, and these quantities
are known. So, after writing this equation, we get now the complete expression for Ym(y)

function; it is given like that.
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And the deflection is now Ym(y)sin%. Now, a rectangular plate carrying infinitely distributed

load. And we see this a symmetrical support condition simply supported along all edges, the



standard result we know from Navier's solution already. And we can compare our result that we

obtained by Levy's condition. So, maximum deflection is obtained at the centre of the plate, that
isxz% and y = 0.

Now, for example, the plate is a square plate that is a = b, then after putting this a = b in this
expression of deflection. Because now the quantities are completely known and taking the
summation with any number of terms. Say if we take first term, you will get the accurate result,
enough accurate result for the deflection. Of course, for bending moment, you require more

terms to get the convergence of the series for shear still more terms.

So for deflection quantity, we take on the first term and taking first term and a = b; this series is

evaluated because Ym is completely known, m is taken here as 1. And whatever value here, that
for Ym, m is substituted as 1. So, after calculating this, the deflection is found to be

4
q,a
D

0.00406 . So, this quantity coincides with the value that we obtained earlier by Navier's

method.

So, Levy's method has application in more general cases compared to your Navier's method.
Because Navier's method has severe limitations because all the edges must be simply supported
for a rectangular plate; otherwise, double trigonometrical series cannot be used. But Levy's
method relaxes one restriction, that is 2 opposite edges only need to be simply supported; other 2
opposite edges may have any condition, may have same condition or may have different

condition, does not matter.

Classical or non-classical boundary condition, anything can, but requirement is that 2 opposite
edges must be simply supported; without that, Levy's method cannot be used. So, let us see what
we have done today.
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Summary

In this lecture, the analysis of rectangular plate whose two oppasite edges are
simply supported is discussed with an exact theory. The methad is popularly
known as Levy's method,

With the help of single trigonometric series, the general solution for any
loading function is derived By the principle of superposition of linear
differential equation.

The symmetric and antisymmetric cases are described. The deflected surface
of simply supported plate subjected to uniformly distributed load has been
found using Levy's method,

3 4.mr

In this lecture, the analysis of rectangular plate whose 2 opposite edges are simply supported is
discussed within an exact theory. Because Levy's method is an exact theory, it yields the
closed-form solution, closed-form expression for the differential equation of the plate; the
method is popularly known as Levy's method with the help of single trigonometric series

because the 2 boundary conditions are known only.

So, one sine function is taken in the deflected surface assumption first. So, with the help of single
trigonometric series, the general solution for any loading function is derived. We have derived
this general solution for other functions, that is, y, for any loading condition. Particular integral,
of course, have to be found out depending on the nature of the load, that I have told you that best
method to apply in the plate problem is the method of undetermined coefficient in the theory of

non-homogeneous linear differential equation.

So, the general solution is derived by the principle of superposition that means homogeneous
solution is first obtained, and particular integral is added to this to get the complete solution. But
the constant of integration are evaluated, imposing the boundary condition. In general, there are
4 constants of integration, and 4 constants of integration require 2 boundary conditions on each

edge, so that have to be applied.



But this requires only if the conditions are completely unsymmetrical. But if this is anti
symmetrical or symmetrical, we can use only the 2 constants appearing in the homogeneous
solution of y because the other 2 constants can be drop. If the conditions are symmetric,
anti-symmetric a term in the deflection function can be dropped. Similarly, if the condition is

anti-symmetric, then this symmetric function can be drop.

Anyway, the results are simplified based on the condition of symmetry. So, that we have utilised,
and we have compared the results of simply supported plate means rectangular plate, simply
supported along all edges. And this is analysed for deflection is in Levy's method, and we knew
the results obtained from Navier's method, and it is also available in the textbook. So, we have

seen that 2 results coincide and are in well agreement.

So, Levy's method, you have understood, it is more general compared to this Navier's method.
And in our next few classes, we shall explore this method to obtain the solution for other

boundary condition, and for other load conditions. Thank you very much.



