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Simply Supported Plate Subjected to Distributed Loading

Hello everybody, today I am starting model 2, and this is my first lecture. In the last week, I
discussed the plate theory and different assumptions required for analyzing of plate. We basically
concentrate on the thin plate with a small deflection. And then, we have derived the differential
equation of equilibrium of the plate. The fourth-order differential equation of the equilibrium of

the plate has been derived.

And it has to be solved for given loading conditions and boundary conditions in the plate. The
plate may have any geometrical shape, and boundary conditions may also be different. But the
exact solution of the governing differential equation of the plate that we have derived in the last
class cannot be achieved in all such cases; in very few cases, the analytical solutions are

available, but these analytical solutions provide a benchmark result.

And it is also used as an auxiliary result in other numerical problems that you require to solve the
complicated plate problem. So, today I will discuss a method for a rectangular plate that has been
developed by Navier. And with the help of this method, we will try to find out the exact solution

of the differential equation.

So, Navier’s method that I have told you this has been developed by Navier, and it is applicable
for plates simply supported along all edges, and it is especially applicable for rectangular plates.
So, today I will discuss Navier’s method for uniformly distributed load and also partially covered
load.
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Rectangular Plate Simply Supported along all edpes

Governing differential equation for the plate
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So, let us see the governing differential equation for the plate; the governing differential equation

for the plate is given as V4W(x, y) = _q%,zl where D is the flexural rigidity of the plate. If the

3

thickness of the plate is uniform, we can assume that D is a constant, and it is given as m,
-V

where h is the thickness of the plate, E is the modulus of elasticity of the plate material, and mu

is the poisson ratio.

You can see here this is a 4th order partial differential equations, and it is also a
non-homogeneous differential equation. So, if I consider the linear analysis, then I have to obtain
the solution in two stages. First, I have to obtain the homogeneous solution taking the forcing
function at 0, and then I have to obtain this particular integral or particular solution, and then

superimposition of that will give you the general solution.

The process becomes lengthy if we follow this or the conventional rule of a solution of the
differential equation. But Navier has overcome this difficulty by using a double trigonometric

series. The double trigonometric series that it proposed is only applicable that it is validity is

only for a rectangular plate having four edges as simply supported. Now here v* is the operator

. 4 " a"
which is givenby V. = — + 2—— + —;
Ox dx 9y dy




We consider a simply supported plate, length is a, and breath is b. Now, here you can see that the
boundary condition for simply supported is written here as equation 1, 2, 3, 4. So, let us see what
their implications are. So, at x = 0, say this edge, we see that for simply supported condition,
deflection is 0, and the bending moment has to be 0. Now bending moment equation, you know
it is given by — D(az—vzv + vivzv)
dx dy

Now, since bending moment is 0 here and bending moment contains curvature in 2 directions in
general. Now, here you can see this edge is supported along this edge x = 0 as that is along the y

axis. So, there cannot be any curvature along the y axis at this edge. So, therefore the second
2

term %, which is multiplied by mu, does not exist. Hence, the condition for boundary at this
y

2

]
edge x =0 becomes w =0, a_V:'
X

Similarly, at x = a just opposite edge, you can see that deflection is 0 obviously, it is supported,

2 2
so deflection is 0. And the bending moment (ZV; + VZ—VZV) is 0. But since it is supported all
x y

2 2
along the edges, 2—“2’ is 0, so the condition becomes simply, % = 0. If we go other two edges,
y x

say y =0 edge and y = b edge.

2
Now here w is 0 and similarly we get % is 0, because here the edge is supported all along the
y

edge which is parallel to the x-axis. So, there cannot be any curvature along the x-axis. So,
therefore the term that only exist in boundary bending moment equation is del square w by del y
square. So, it is 0 because bending moment is 0, this edge permits rotation because it is simply

supported end.

2
On the opposite edges y = b again deflection is 0 and Z—Vzvis 0. Now we have got this condition
y

mainly the condition is deflection and it is second derivative. So, deflection function and at



second derivative along x and along y-direction need to be 0 along the edges, since these edges
are simply supported.
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Navier found double trigonometric series
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where m,n are integers, A, are constants which satisfy the boundary
condition (1) to (1v).

At boundaries, x=0, x=a, y=0, y=b

we get “sine function of (integral multiple of 7)™ if we impose deflection

condition or bending moment condition and hence zero deflection and
zero bending moment conditions are satisfied.

So, Navier has proposed say for such type of condition at double trigonometric series is the most

suitable one for the solution of the differential equation. So, this equation you can see

oo o

wlk,y)= Y ) Amnsin( m::x )sin(%), where m and n are integers and this is a infinite
m=1n=1

series. So, summation index m varies from 1 to infinity, similarly n varies from 1 to infinity. This
series that you are seeing is popularly known as Navier series and it satisfies the boundary

condition.

You can see the boundary condition requires w =0, atx =0,atx =aand alsowis 0,aty =0,y =
b. So, therefore if you put x = 0 here deflection becomes 0, if you put this x = A then sine m pi1
that is of course for any integral value of m, sinsin mm will be 0. So, therefore deflection
condition is satisfied and if you go to satisfy the bending moment condition, you differentiate

this expression 2 times with respect to x as well as with respect to y.



So, if you see that if the satisfaction of boundary condition specially for bending moment along y

2
x direction requires that curvature along the x-direction, that is ZV; = 0. So, if you take the
X

2 2
m T . . . .

— term will come, and again this sine
a

second derivative of this equation, then obviously that

function will appear with a proper sign. So, again this boundary this condition del square w by

del x square is satisfied.

Similarly, if I differentiate this expression 2 times with respect to y, I will come back again the

2 2

=X of course this coefficient % will come out. Now puty=0ory=>b

sine function, sin sin ,

this bending moment condition will be satisfied, which means curvature will be 0, so the bending
moment condition will be satisfied. So, this Navier series proposed as a trigonometrical series
that is a double trigonometrical series completely satisfy the simply supported boundary

condition.

It is a very well-known series, and it gives the value of deflection and other stress resultant the
converse value of this deflection and stress resultant very rapidly. Of course, if you go this stress
resultant with the higher derivatives, the convergence may be slow. But within, say maximum
say 5 to 7 terms, you will get the convergence within the acceptable limit. Now the most
important thing is the coefficient Amn, coefficient Amn is still unknown, that coefficient if I find

out then I will get the complete deflection.

That is the deflection completely, which means A mn is still unknown. How can it be found?
Now since it is a solution of the differential equation, we take it as a solution of the differential
equation, and it satisfies the boundary conditions completely. So, if it is the solution, then it
should satisfy the differential equation also. So, substituting this series, now in the differential

equation, we have to obtain the A mn.



Now how will the deflection take place in this simply supported plate? Let us see the functions,

nmy

> these are waves, and we will call it half waves because this ranges

. . mmnx . .
the sin sin —=sin sin
from 0 to a and 0 to b, now m and n are integers.
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Waves in length direction Waves in width direction

Now you can see that for m = 1 along the length direction, the first half-wave is this, second
half-wave when we take m = 2, we get this second half-wave. Similarly, if you consider m = 3,
you will get the third half-wave. Like that, even the number of half-waves will increase as you

increase the integer. So, similarly, in the width direction, you will get the half-wave which is the

width direction. The function is sin sin ﬂ;y— .

So, if you put n = 1, you will get one halfway; if you put n = 2, you will get two half-waves and
so on. So, what is the Navier solution? The Navier solution is a product of 2 half-waves and their
summation. So, the superimposition of this is the product of 2 half-waves, and if you have
summed it, then you will get the deflected surface.

(Refer Slide Time: 13:42)



A typical plot of deflected surface formed by double
trigonometric series

A typical plot of the deflected surface of a simply supported plate looks like that when you
superimpose all the waves and if you know the A mn correctly. Then you will get the correct
magnitude of the deflection function or deflection surface of the rectangular plate simply
supported along all edges subjected to any type of load here.

(Refer Slide Time: 14:08)

Deflection of plate simply supported along all edges according to Navier
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salisfy the conditions at the edges.

Now, let us come to the solution. So, w = double sum A mn sine m pi x by a sine n pi y by b. So,

two terms you are seeing it. Now, if we expand this you can write it say a first term will be

A11 sin sin (“Tf) sin(—ﬂbl), this is the first term; you can call it a generic term. Then the second



term is m = 1, n = 2, A , sin sm( " )sm(—by—) Third term m = 1 and n = 3 you will get

3m . e :
A13 sin sin ( . ) sm(—bl)and so on, so you will get an infinite series.

So, if you take the second derivative of this, which we require to calculate bending moment also

if the deflection is completely known, then after taking the second derivative with respect to x,

2

you will get = A sinTrsin () sin(5).  Similarly,  here  you  will
a

2
— A , sin —sin ( " ) sm( 2 ) ) like that because we are taking this derivative with respect to
a

2

Similarly derivative with respect to y we get — A__ sin —-sin ( ) sm(
b a

" )and A because

b

2 . 41 2m . . .
TT[ will come out, so — A 12 sin b—sm( " )sm(—bl)and so on. So, this derivative function

can be evaluated. So, you can see that these derivatives satisfy the condition at the edges because
bending moments have to be zero in the respective edges. Now we have to differentiate it up to

4th order because the differential equation is a 4th order equation.

(Refer Slide Time: 16:25)

Lt us substitute Navier's serbes in plate equation
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4
?3 —. And differentiating w with respect to y
X

So, after differentiating this w, 4 times, we will get

4 4
Z —. Then the middle term, there is 2%; this term is obtained. It can be
y 0x dy

4 times we will get

4 4
easily verified that when we differentiate w with respect to x 4 times, we will get —— as a
a

constant term that will be coming out as a process of differentiation.

But the function that is sin sin (%) sin(ﬂgl)will remain unchanged because it is an even

number of derivatives. Then here, first, we differentiate 2 times with respect to x, and then the
result is differentiated two times with respect to y. So, again it is an even number of derivatives,
and the function remains as it is because there will be no change of sine function, only the
coefficients that will be changed.

4 4
m T

So, coefficient here we are getting — — plus due to differentiation of this quantity w with
a

respect to x 2 times and the result is again differentiated with respect to y two times; we will get

2 2 4
the coefficient 2%. So, the coefficients are plugged in here, and the function remains as
a

. , mix . [ nmy
sSin sin 2 sin b

q(xy)

T and it is under summation because Amn is there,

And the right-hand side remains as it is

so the double sum is written here. Now we want to find out our target is to find the Amn? So, Amn

can be found out by expressing the load q(x,y) as a Fourier series and then taking a general term

and comparing the coefficients of like term we can find the Amn. So, I will illustrate the process

from the first principle.

So, this function or this constant that is written inside the second bracket

4 4 2 2 4 4 4 2 2 2 2
n 1 m T n T

2
T+ 22—+ i can be conveniently expressed as { — + 7 ] . So, that is of bias

a ab a

from this quantity.



Then this function is written here, sin sin ( m:x ) sin( ml:y )and the right-hand side is the loading

q(xy)

5 This loading is here a distributed loading, which means q is also a continuous

function

function of x and y. Now multiply both sides of the above equation, this equation by

. . m'nx . n'm . .
sin sin ( - ) Sln( by ), where m dash n dash are integers, m and n also integer and m dash, n

dash are also integers.

So, we have taken different symbols with the intention to use a well-known principle of
mathematics or sine series. So, therefore we have used this simple integer A mn integer with the
difference sine simple m prime and n prime. So, if I multiply both sides by this function, I am
writing this left-hand side which was this

e e 'f'T'lz‘l'[2 nzTIZ 2 mmnx nTt m"rtx Tl‘T[
> XA — + ——¢ sin sin( )Sin( y) X sin sin [——| sin[—>
mn b a b a b

m=1n=1 a

Of course, this quantity is under summation. So, the summation is with respect to m as well as

with respect to n; it is a double sum. And the right-hand side is —q%zl, and due to the

multiplication of both sides with this quantity that is sin sin ( m;x ) sin(n—;%), we also write

sin sin ( m;x ) Sin( n;y ) in the right-hand side.

(Refer Slide Time: 21:56)



Now, integrate both sides in the domain of the plate
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Now integrate, the next step is to integrate both sides in the domain of the plate. So, I integrated
the equation that we obtained in the last slide; this equation with respect to x and y, and the limit
is 0 to a and 0 to b. We have taken the origin of the coordinate system as one of the corners of the
plate; I have taken in the left-hand side top corner of the plate. So, in this x along the x-direction,

the range of x is 0 to a, and along the y-direction, the range is 0 to b.

So, we put the limit 0 as the lower limit of the integration with respect to X, a as the upper limit
of the integration with respect to x. Similarly, here 0 is the lower limit for integration with
respect to x y, and b is the upper limit for integration with respect to y. So, we have written the
limit, and now we can integrate it. So, we plugged the x term together and then try to integrate

with respect to x.

b

Similarly, we plug this y term that is sm( 5

)and sm( ) and then try to integrate with

respect to y. On the right-hand side, there is no problem, there is no sum, so we write

sin sin ( m;x ) sin( n;ty )dx dy, where m dash n dash are integer whether you put here m or m

dash or n or n dash, it does not matter, it makes any difference. So, here this equation can be

simplified.



This equation if I number it by equation number 4 here, it can be simplified by using the

orthogonality condition. So, the orthogonality condition of the sine function is well known, and it

1s sin Sin(m:x ) sin( manx )dx 0 to a. So, if I integrate this, then for m = m’, the value the

integral is a by 2 to and for other values of m and m dash which is not equal to each other, there

is m not equal to m’, we get 0, so this is one condition.

Similarly, along the y-direction, when I integrate the function with respect to y with a limit 0 to

b, we get b by 2 for n = n dash and 0 if n is not equal to n dash. So, using this property, now it

can be seen that all the terms containing the sinsin ( m:x ) sin( m;x ), where m and m’ are

different will be vanishing. Similarly, all the terms in the summation with

sin sin ( m;y ) sin( n:y ) with the condition that n is equal to not n” again will vanish.

So, ultimately will be leftover only with the term to be integrated that

.2 . .
) (%) dxx [ sin (%)dy. So, two integrations are needed. Now, here for, m = m’ and n =
0

. So, here now we can write because the summation

Nl@"

n’. And obviously, the result will be % X

term in now, not required because the only terms that is remaining m = m’ and n = n’ other

terms will be 0 because of orthogonality condition.

So, that property orthogonality property is the q point here. So, without this orthogonality
property, this Navier method cannot be formulated. So, the orthogonality property of the sine
functions is utilized here, and then we get A mn coefficient as A mn into m square pi square by a
square + n square pi square by b square whole square ab by 4, ab by 4 has come here, this term

has come here due to product of a by 2 and b by 2.

2
2 2 2 2

As a result of the integration of Amn{ 4+ nb*; } aTb, so as a result of this, you get here ab by
a

4. The right-hand side remains as it is % integration of course 0 to a, 0 to b that integration is not



completed, it depends on the nature of the function q x y, then only you can integrate. So, q X y is

. . mmx . nt . :
i n are in .
here, and the term sin sin ——| sin by s here, so m and n are integers

(Refer Slide Time: 28:03)
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Now, from this equation, now it is possible to write A mn the coefficient of the deflected series

4qmn

or deflected function, deflected surface whatever you call is Amn = ————, how this term
Dabn4{Lz+"7]
a b
. : . 2. . 4
has come? Because this integral is taken as ¢ mn and this is say 7 is taken out, so it becomes 1
and ab is there and 4 is there.
4q

mn

So, if this term is gqmn then we can write Amn = —————. Now q mn here remains to be
Dabn4{%+n7]
a b
determined, you can see ¢ mn can only be determined when you know the load function. So,
given the loading condition in the plate, it may be a uniformly distributed load, it may be a

uniformly varying load, or it may be any other variation of load that may not follow the linear

pattern, and it may be a partially distributed load.

So, all these kinds of loads can be incorporated here. So, q(x,y) is the loading function that we

have to know, and then after integration of this quantity, we can now find A mn. Now once Amn



is found out, your deflection is known. So, deflector surface you can completely know if you can

find the Amn. So, what I see here the important steps in the Navier’s method is first the Navier’s

method has to be applied only when all the edges of the plate are simply supported, so that is the

condition.

Then for the given loading, you calculate the coefficient ¢ mn; once the ¢ mn is known, then you

calculate Amn. After knowing Amn You can find the deflected surface. So, from the deflected

surface or deflection function, you can go further to find out the slope, bending moment,
shearing force, edge shear, corner reaction everything, you can find after finding the deflected
surface.

(Refer Slide Time: 30:55)

Example-Simply supported plate r*arrving uniformly distributed load
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Now, let us take an example of a simply-supported plate carrying a uniformly distributed load.
So, this is a simply supported plate that carries a uniformly distributed load. Now, you can see
here the section is shown along the longer direction as well as along, the shorter direction that is
the length direction that is a and the shorter direction you can see this width b. The aspect ratio of

the plate is a by b.



Now here, the q x y, the loading function that we consider in the solution is now a constant

quantity, which is a uniformly distributed load per unit area, so it is denoted as q0 so, as we have

developed earlier the solution where the A mn is nothing but Amn =

(Refer Slide Time: 32:01)
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So, most important thing is to find q mn. So, q = [ q, X sin sm( " )s n( )dxdy
00

You can see here that q 0 is a constant quantity, so it can be taken outside the integral sign. And

after integration with respect to x you will get this term as a constant — ——, and the integration
mm

. M mnx . mnx
of sin sin (T) will be cos cos ( " ) .

And this constant appears after integration that the constant #with a minus sign comes out

here. And the limit of integration is shown here at 0 to a. Similarly, for the term sm( )dy an

integrated within a limit 0 to b you will get — % as coefficient and cos( 5 )and to be
. . . . qab .
evaluated with a limit 0 to b. So, when we evaluate this quantity now, we get —, this m, n are
mnt

coming here 1 is coming, and ab is there and minus minus again plus sign will be there.



And due to

{cos cos (mm) — 1}cos cos (nm) — 1}. One interesting thing is that for any odd value, even

value of m say for m = 2, this function will be 0. And for n = say 2, this function will be 0. So, if

m = 1, n = 1, then you will get this as a -
ultimately the result is 4q0ab, and then you

m and n are only odd integers.

So, that integral value is non zero, and otherwise, for the even value of integers, there is m and n

are even integers, then the integral will be 0.

(Refer Slide Time: 34:53)
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Then,

m=1n

So, once the ¢ mn is known, you can get Amn

16q0

mn 2 2

6| m n
mnm {—,+
a b

One interesting thing you can see here that the deflection function is evaluated for uniformly

w(x,y) = i i

substitution of this upper limit and lower limit,

1 - 1 that is — 2, and here also you will get -2. So,

. 2 .
are getting mnm where m and n are integers. These

So, our ¢ mn is now

mnm

formn=135,..

i
[

|

16q,5in

)sm('“;—”)
2 n2)2
oy

=1
az

mnm®

— form,n = 1,3,5, ...

Jo

distributed load covering the entire plate only for odd harmonics.

you will now get

4q0ab

So, Amn after simplification



There is only odd half waves will contribute to the deflection, q 0 is the known quantity a and b
are the size of the plate, and D contains the material property as well as thickness of the plate.
Now once you know w, then you can go for calculating the other quantities.

(Refer Slide Time: 35:53)

Navier's series for rectangular plate Simply supported along all edges
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So, other quantities of interest our slope, slope in the x-direction is given by g—:: and it is equal to

g—: = %summation. And due to differentiation of this sine function this % term will come

out. So, % is a constant, we have taken outside this summation term and the integer m we have

kept inside this summation term. So, it is written like that

oo (o]
a—"; =X X mA_(coscos = )(sinsin %)
m=1n=1

Similarly, the slope in the y-direction is calculated

[ee] [ee]
6_1;1/ = 21 21 nA  (sinsin —=)(cos cos =*)
m=1n=

Bending moment quantity has to be calculated utilizing the second derivatives. So, we write the

. . d a
bending moment expression as Mx =— D[ avzv + Ua—vzv]
x y



62W
6x2

2
Similarly, M =— D["’—VZ +
y dy

2
Twisting moment is calculated by this cos derivative aax;; and one of the deflection function is

known; systematically all the derivatives can be calculated.
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Derivatives of w required to calculate various quantities
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So, for convenience, I was just showing you the other higher derivatives aMZ] that is — — term

X a

will come, and inside this summation, it will be m Amn(sm sin % )(sin sin % )- And it is

needed for calculation of M x or M y in both bending moments expression M x, M y these

derivatives are needed. So similarly, 7 is given by
y
2 oo oo 2
TC . . mmx . . nt
— =Y Y n"A_(sinsin —— )(sin sin —*)
b m=1n=1 ™ ¢ b

2
This mixed derivative, ;x;; which is needed for calculation of this twisting moment. Twisting

moment is developed in the plate, so this twisting moment is sometimes important and it is



calculated as with the help of this derivative. Of course, it has to be multiplied by — DX (1 — v).

2 [o¢] [o¢]
. . . . T mmnx nt
So, final result of this derivative is =— Y 3. mnA_ (cos cos —— )(cos cos —= )
2 ab 1 1 mn a b
m=1n=

Shear force, you need to find out. So, shear force equate third derivative, so third derivative is
calculated. Again you can see this function when it is differentiated with respect to x; you will

arrive at the third derivative quantity that is

a3w 3 [oe] 0]
== 2 X mA (coscos—)(smsm—L)
Ox 4 m=1n=1

Because the derivative is taken with respect to X, so this term remains untouched.

a’w i
Similarly, —-=— —
dy

3 . . mmx n .-
] n'A_ (sinsin ) (cos cos =), and these quantities are

1

T s
MM s

1

needed for shear force calculation.
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Shearing Force
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Now, here see these shearing force expressions, shearing force expression is given as this —V w

2. ) . . . 2 2 .
, V is the Laplacian operator. Similarly, Qy is also given as — Dalyv w, where, V' here is a

Laplacian operator. So, it is obvious from these two expressions; edge shear force is also used in



plate problems because edge shear has been proposed by Kirchoff by combining this effect of the

twisting moment and shear force along the edges.

So, he combined these two conditions to give a single quantity edge shear along the x-axis along
the edges, which is running parallel to the x-axis or along the edges, which is running parallel to
the y axis. So, edge shear force if you see it will be distributed like that. So, the edge, say y =0
edge, here you are getting the edge shear force is it is for a simply-supported plate, of course, it is

a sine function, and it is a function of x.

Similarly, if you see the edge shear force along, say x = 0 edge, the edge shear force is a function
of y, and it is a sine function. And opposite edges you can also see. So, edge shear force when
you integrate it, integrate this edge shear force you will get to total edge shear at these edges.
Similarly, all other edges and this edge shear plus other reactions at the corner should be
balanced by the vertical load or transverse load acting on the plate.
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Kirchoff's edge shear

Along the edges of the rectangular plate, shearing force and twisting moment
are combined to give a single quantity known as “Edge Shear”

Along an edge, parallel to y axis
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Along an edge parallel to x axis
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So, Kirchoft’s edge shear, we require this third derivative and this. So, Kirchhoff edge shear is
calculated, we require third derivative as well as the next derivative. So, all these quantities I

have shown you in this slide in the previous slide so that you can utilize them here to calculate



the edge shearing force, which is very important. And along an edge parallel to the x-axis and
along the edge parallel to the y axis, the edge shears are calculated.
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Ex. For a square plate axa , find the maximum deflection and maximum bending
moment for u.d.] of intensity qg. Examine the effect of number of terms of the series.
For a square plate a=b, then expression (9) becomes,
16gqa*
wix,y) = ZZ sin '1II1—
mnr®{(m? + nt)? { ] { J
_ Em zm m*:m[ ]ﬁlnl,’ ’ {q”ﬂl} 2
me1 Ln=1 :lmir.r“{mhn ]n‘ D i
Maximur deflection eccurs al the cenlre x = IE and y = g
Henge,
qua Z Z )4 (rrm) ) (::rr)
Wyngy = —sin sin | —
max = mnmS{m? + n?) 2 2
m=1n=1

Now, let us see an example. We take a square plate dimension axXa we have to find the
maximum deflection and maximum bending moment for u.d.l. So, we take the Navier series, we
have already obtained this solution, and here we take a = b. The purpose of this problem is to

find out the deflection quantity as well as to find the effect of a number of terms in the series.

Because we are using a series, so we have to see how it converges. So, w(X,y) is given as the
. . 4 . : .
summation of this term 16q 0% because a = b, so I have manipulated this such that this factor

dimension factor a only remains here. So,

16q a4
W)= 3 3 ——sin(2I) sin(2)

m=1n= 1mn1'r(m+n)D

Of course, you should only sum with the odd number of terms. So, maximum deflection occurs
at the center, so x =a by 2 and y = a by 2. So, when we put this x =a by 2 and y = a by 2, we get

4
q,a
D

the maximum deflection as this. So, is a constant term, and we have taken outside the



summation term. And that summation term, we now have to evaluate and see how the maximum

deflection converges with the number of terms.

So, here m and n are odd integers because we have seen that even integers have no contribution
towards the solution for the deflection in the case of simply-supported plate subjected to a
uniformly distributed load.
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For m=1, n=1

16 gt goa*
= b = —_—
Winax [nﬁx1x1{]2+12)2]( D ) 0'00416( D

For m=3, n=1

[ 16(-1)(1) goa’
Wmax = mdx3x1(3°4+ 14\ D

- (qoa*
= -5,5475 x 10°° (%T)

So, for m =1, n = 1, the center deflection is calculated, and it is found after substituting the value
of integers, say; here, both the integers are 1. So, we get the result as 0.00416, and this is the load
dimension and flexural rigidity. Similarly, m = 3, n = 1 when we increase the number of
half-waves in the x-direction, but the number of half-waves in the y-direction is 1, then again we

a4
qO

D

get the center deflection as this -5.5475 into 10 to the power -5 and

Because the integers power appears in the denominator, so, therefore, gradually, the deflected
value or deflection will decrease when you go in the higher number of integers.
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i
First term gives wy,, = 0.00416 (%)
Considering the sum of four terms, L.e, m-Ln-Lim- 3, n-L:m-1, n-3
and m-3, n-3, we find

qoa’
Wi = 00040606 |~

0.00416-0,0040606
0.0040606

Error when only first term is considered is ( ) % 100% =

245%

So, for calculation of deflection at centre for the square plate, only first
term of Navier’s series is adequate.

So, we have seen that considering only the first term; we get the deflection as 0.00416 the

. 9,2 . .
coefficient and other terms are there OT. When we consider the term m and n bending from 1 to

3thatism=1,n= 1;m=3,m=1;n=3andm=3;n=3wegetwmaxas0.0040606x%.

So, the difference between this 00416 - 0040606 if we evaluate and take the ratio of the

improved deflection that we get after considering the higher number of terms in the summation.

Then we will get the percentage difference is 2.45% only. So, the first time is adequate to give a
reasonable value of the deflection surface of the series. So, for calculation of deflection at the
center of the square plate, the only first term of Navier’s series is adequate.
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Expression for bending moment
In this case, 1‘4; = M,

o ﬂzw+ aw
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Maximum bending moment will oceur at the centre
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But if we go for the higher quantities, higher derivatives to find this test resultant like the

bending moment shear force, etcetera. Then the first term may not be adequate. So, here the

bending moment expression is this M =- D( p g = ) And after taking v = 0. 3 we have
X

ay

taken here mu = 0.3; later on, first, we arrange this equation, D, D will get canceled.

So, the maximum bending moment again will occur at the center. Maximum bending moment

16q a4 sz[Z nZT[Z mm nTt
quantity is M Z Z — { + v )xsin(=5)sin(5o)
a

m=1n=1 nﬁmn(m +n") a
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Mm“ = Aq"ﬂz
*

where A is coefficient of Bending Moment

wow
z Z {m? 4 un?} x :in(E}cin[E}
mu(mz +nf)? s 2k a7

m=11m=1

(m, n are odd integers)

So, the maximum bending moment is written like that, and considering this number of terms, we
now see how it converges?
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Taking Poisson ratio as 0.3

m=1, n=1,, A=0.05338

th=1, n=3, A= -0.0020258

m=3, n=1, 4=-0.0050519

m=3, n=3, }=+0.000659

with only first term, M., = 0.05338¢,a°

with summation of first four terms (m=1,3, n=13), Myay = 0.04692q,a*

0.05338 - 0.04692

TOr = = 1 1
Yeerror ( 004692 )xll}U 13.77%

So, taking on the first term, we get the coefficient of bending moment as 0.05338. And with
other terms, we calculate the coefficients, and then when we sum up the terms, then we get the
difference. So, when we take the first four-term which is m varying from 1 to 3, n is also varying
from 1 to 3, the maximum bending moment comes out to be 0.04692 coefficient. And here

coefficient is 0.05338. So, the percentage difference you can see here is 13.77%.



That means the percentage error in bending moment is higher compared to deflection in Navier’s
method. So, more terms are needed to improve the accuracy.
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with summation of first four terms (m=1,3, n=1,3),
M]ndx - [].04692q|]ﬂ2

0.05338 - 0.04692

Wherror = ( TR )x 100 = 13.77%

The convergence of the series is not rapid, however, error can be reduced
considering more terms of the series,
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Maximum deflection coefficient Vs Aspect ratio
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i
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D

So, if you see the deflection versus aspect ratio curve, you will see that deflection increases with

the aspect ratio first and then after it does not increase much and it becomes almost the same, so

with the higher aspect ratio.
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bfa " k

Maximum bending mement coefficient for I, with change of aspect ratio b/a
M, = Aga?
So, if we compute the bending moment, say I take the bending moment along the x-direction
with b by a ratio. And we see that our Navier’s solution gives a result this with a blue curve that
is seen here, that is the variation of bending moment coefficient with the aspect ratio. But if I
take the IS code value, because our Indian standard 456 has given the bending moment

coefficient for simply supported slab for different aspect ratios.

So, here we can see that IS code values are slightly are conservative compared to this exact
method that has been used in Navier’s solution.

(Refer Slide Time: 50:39)



Corner Lifting force for simply supported plate

' Mf‘ .d'r:‘L : _
w Ul R=iMy
AV

Torsional moment M, dy on an element of length dy at the edge of a simply
supported plate may be replaced by two equal and opposite vertical forces
M,,=M, at an element of length dy or dx.

At the corners of rectangular plates, the above stated forces add up instead of
cancelling, producing additional corner force.

Now let us see what corner lifting force is. The corner lifting force is a force that is generated at

the corner. How it generates? You can see that torsional moment Mxydy if we take an elemental
length dy. Then torsional moment Mxydy can be replaced by 2 equal and opposite forces. So, if

we do this at the corner, these forces will adopt and giving reactive force upward. So, in the

length of dy, say here the total torsional moment M xydy can be replaced by 2 equal and opposite

forces M .
xy

Similarly here also along the adjacent edges, the torsional moment Myx or which is equal to M .
Myxdx will be replaced by 2 equal and opposite forces Mxy, and at the corner, you can see these
2 forces are added up, and the reaction is R o So, R 0= 2Mxyis the corner reaction. So, this

happens in the case of the simply-supported plate.
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* I no anchorage is provided, these forces can lift up the corners.

koL . . .
* Since this condition is generally undesirable, it should be avoided by
holding down the edge of simply supported plates.

* For reinforced concrete slab, when lifting up of the corner is nat
prevented, special comer reinforcement is required to eliminate local
failure.

So, if no anchorage is provided, these forces can lift up the corners. Since this condition is
generally undesirable, it should be avoided by holding down the edge of a simply supported
plate. For reinforced concrete slab, provisions are given in IS code for providing the corner
reinforcement to prevent the lifting up of the corner.
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Simply supported plate under partially covered u.d.l
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Now let us see a simply supported plate when instead of a fully covered load, a partially covered
load is applied. So, again the load is uniform having an area of ax[3, so that is the loaded area.

And let us assume that the center of the load is located at the coordinates § and 1. So, the



x-coordinate is €, and the y-coordinate is 1 for the center of the C.G. of the load. So, you can see
this section here; it is not fully loaded. So, in that case, how will we proceed?
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With Navier's method for 5.5 plate, deflected surface is given by

L

W(x.y) —Z Z Ay 50 0 sip B
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Where, Apn = Sl
DahTT*( Tt7 )

Ad  Qpn = _fuu J;j?q[x,y}l s'Ln% s'Ln%dx dy

Sinee, qlxy)=9q, for E-Zsxsl+2

and for 1]—';J =y <+t

The procedure is the same, now here the Navier’s method has been taken here again to find out

the exact solution and W(x,y)= ) ) A sinsin anx sin sin n—I;L, this is the deflected
m=1n=1 m
4q

mn

surface equation, Amn is this —, ¢ mn here will be different because q is not fully

2 2

4. m' | b
Dab ( 74— ) )
distributed fully covered load. So, this q is now containing or occupying a certain area of the or

certain portion of the plate.

Now let us see what will be the limit of the integration? In that case, the lower limit of this

integration will be instead of 0; it will start from here. So, obviously, it will be § — % And the

upper limit is here, so it will be § + % Similarly, in the y-direction, the lower limit is your

£

n — —- this point, and the upper limit is n + -;L So, these limits are written here. So, the only

thing is that you have to evaluate in the same way by changing the limit of integration.
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We can wrie,
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Using trigonometrical identity,

cos(A + B) - cos(A - B) 2 sind sing

So, limit of integration has been changed here suitably, and integration is carried out. After

carrying out integration, you can see that when the limits are substituted, you are getting a

function like that {cos cos %(E + %) — COs cos %(E - % )}. Similarly, for integration

with respect to y, the result will be a {cos cos % (n + %) — Cos cos %(11 - %) }

And coefficients are there which are known quantity, that is q 0 is known, a and b are known, m,

n are integers and this pi is also known. So, using the well-known trigonometric identity cos (A +



B) - cos (A — B) = -2 sine A sine B. So, these two functions can be taken as cos (A + B) and cos
(A — B), so this formula can be applied.
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We can obtain
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Where f(&n,a,f) = sin™ sin"S sin " " sin
And after the application of this, you will
4 Pab E nn ma
q == sin sin 2% sin sin 2L sin sin 2% sin sin =& . So, you get q. and hence A
mn apmn b 2a mn

is found out. So, A youcansee 16 P and ) q ,so 16 P q__is this function, so 4 into 4 was
mn mn mn

there, so 16 is there and ab will get cancelled. So, ultimately we are getting that
16 P f(& nap)

6 mt |
m affmnD (T+7)
a b

mn 2

And this f, the function of §, n, a, B; €, n are the coordinates of the center of the load, and «, 8
are the dimensions of the load. So, this function I have written separately so that this function is

. . . TU
now this. So, f, f(§, 1, a, ) is nowsin sm—E sin smTn sin sin 2—sm sin 2B . So,

knowing this function, we can completely know the Amn, and then this q and other quantities

can be calculated.
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Self Assessment Problem

Caleulaie the deflection at the cenier and maximum bending moment in a simply
supported slab of a bridge deck 210 mm thick and made of M25 Conerefe ( v=0.2)

p—

P=300 KN
ax[f=05x075m

So, I am giving a self-assessment problem just application of this theory partially distributed load
and Navier’s method. Partially distributed loads are sometimes very useful, especially for bridge
deck design. So, the bridge deck consists of full load, and full load may not be fully distributed

over the deck slab panel. So, the contact area is distributed only on the tire contact area.

And different contact areas as specified in the course of provisions, course of practice in different
countries. So, here I am taking an arbitrary contact area, say 0.5 meters by 0.75 meters just to
illustrate the process. And the total load I have taken as P = 300 kilonewton. And for example,

this is a panel of the bridge deck 4 meter by 3 meter simply supported along all edges. And

concrete slab, we take the grade of concrete as M25 and whose characteristic strength is 25 X >

mm

, Poisson ratio of concrete is assumed to be 0.2. So, the loaded area is 0.5 + 0.75, and the total
load is 300 kilonewton.
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Given data

8=3 m, b=d

=05 m, [=0.75 m, Jas2s Nfmm for M25 concrete
E=1.5m, n=2m

E = 5000,/ fy Nfmms2.5x10" KNfm?

k!
D= 20098 kN-m

12{1-u?)

LY
Expression for deflection

6Py MEX .!rill'l “':L |f|:-;'--'}.u.ﬁ':l 3
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Bending moments,

P e, ) = iy ﬂl il L.J-l:'l il .:_:I: il ”.-:..;: Mx at the centre=56.49 k"l'l'l,lrl'l"l
' ' ' My at the centre=43.61 kNm/m

Centre deflection (taking m=1,3; n=1 3] is found

i, = LB

So, the solution is obtained; I am giving some important hints. You can complete and compare
the results with the results given here. So, a = 3 meter, b = 4 meter and alpha = 0.5, beta = 0.75,
load is placed symmetrically with respect to center. So, our & that is the x coordinate of the center
of the load, is 1.5 meter, and y coordinate of the center of the load is 2 meter, modulus of
elasticity because in this problem, only this characteristic strength that is grade of concrete is

given.

Now, based on the grade of concrete, say M25 concrete is selected here. For M25, concrete

characteristic strength is 25 N /mmz. So, the modulus of elasticity is given by this formula

Indian Standard Code. So, this is an empirical formula we take the help of this formula to

calculate the modulus of elasticity. So, modulus of elasticity is here 5000, /fck. So, it is

calculated as 2.5 into 10’ kN / m’,

Because this quantity is newton per millimeter square, so converted into kilonewton per meter
square. Flexural rigidity D is coming out as 20098 kN — m. So, the expression for deflection is
this 16 P sine m pi x sine n pi y by b. And this function f(§, 1, o, ) contains the coordinates of

the load centroid of the load and the dimension of the loaded area.



) ) .6 ) )
And denominator contains this ™ af3 that are the dimensions of the loaded area, m, n are the

integers, and D is the flexural rigidity we have already computed here. And these functions are

2 2 2
there (=5 + %) . So, after substituting these values and carrying out this summation, we take
a

here these two terms, m=1to 3 and n =1 to 3.

And we have calculated this w max center deflection; because it is a symmetrical problem, again
the deflection will be maximum at the center. And the bending moment in both the directions,
say M x and M y-direction, is calculated in the x-direction it is 56.49, in the y-direction, it is
43.61 kN. m/m. Remember one thing that all the stress resultant, that is, bending moment, shear
force, edge shear, twisting moment, all are expressed in their respective units per unit length of

the plate.

Suppose, for example, the bending moment you need is kN.m, so it has to be expressed as
kN.m/m.
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SUMMARY

In this lecture, we have outlined an exact solution of the plate equation
where the plate is simply supported all along the four edges.

This method was developed by Navier which is characterized by double
trigonometric series solution.

We have also illuttrated the results of simply supported rectangular plate
under

(i) Uniformly distributed loading

(ii) Partial uniformly distributed loading

The convergence of series has been studied for deflection and bending
moment.

The corner reaction force along simply supported edge is discussed. A
exercise based on Navier’s method is given for self assessment,

b TART
So, let us summarize what we have done in today’s class. In today’s lecture, we have outlined an
exact solution of the plate equation, where the plate is simply supported all along the four edges.

So, actually, Navier’s method is an exact solution, and it is a very well-known analytical method



used everywhere, say when you take a composite plate or any other thing. This Navier series has

to be taken for such a boundary condition.

And simply supported boundary condition is very common, and it provides the benchmark result
for various completed problems. So, therefore this problem that we have discussed in today’s
class has a significant impact on various other results that will obtain in the future or will be used
in a research project. So, in this lecture, we have outlined this exact solution, Navier’s method is

used, and it is characterized by double trigonometrical series.

And the method is illustrated by a simply supported rectangular plate with uniformly distributed
loading and also partially uniformly distributed loading. The convergence of the series has been
tested for deflection and bending moment. And it is concluded that for deflection, the
convergence is repeated in the case of Navier’s method. Only first term gives reasonably

accurate results.

The corner reaction force along simply supported as is also discussed, and lastly, an exercise, a
self-assessment problem based on Navier’s method, is given for solution. So, you can solve the
problem and compare the results with the results that have been given in the slides. Thank you

very much.



