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Hello everyone, so, today I am delivering my lecture on module 1 on the course plates and

shell. Now, in the last few lectures I have given you some basic concepts of the elasticity,

three dimensional elasticity and from there I reduced it to a two dimensional problem, which

will be used for plate analysis. Then I told you about these assumptions in the theory of plate

in bending specially for thin plate, which is popularly known as Kirchhoff-Love hypothesis

for thin plate bending.

Where the assumptions I have mentioned very important assumption is that the deflection is

small, it is limited to one fifth of the thickness of the plate, then I have discussed another

important assumption that normal to the plane before bending remains normal after bending.

That means length of the normal does not change after bending. So, this indicates that εz in

this vertical direction where the z axis is aligned in the vertical direction is 0.

Then I have discussed this stress strain relationship and how the stresses are expressed in

terms of vertical deflection, then the stress resultants, bending moment, shear force and edge

shear for the plate I have derived. After that I have gone to the equilibrium equations of the

plate, there I have taken a small element of a plate and I have shown the free body diagram of

this element under the action of external loading, distributed loading and internal forces that

is developed.

All internal force quantities that is the bending moment, shear force, twisting moment

etcetera are expressed in case of plate as unit of per unit length. Thereafter, I told you the

characteristics of plate equations and how it can be solved in special cases. One of the rare

cases I have discussed is the circular plate with clamped edges and general technique for the

solution of the plate problem that involves a homogeneous solution and a particular integral.



So, up to that we have discussed in boundary condition that we encounter in a plate of

straight edges I have mentioned and in course of that discussion, I have also covered that

these slope and curvature of the plate in any direction, which is at an angle of inclination α

with the x axis, then we have derived the differential operator in the new direction, normal

direction and tangential direction.

With that knowledge, I think we will be able to apply to some problems that today I have

brought for you. Today I intend to solve some problem based on the lectures that I have

delivered in the first modules. So, what are the problems? Let us see.
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Five problems I have brought for you. The first problem is let us read this problem. For a

steel plate, whose length along y direction is very large compared to its width along the x

direction, the deflected surface in that case is assumed to be a cylindrical, the axis of the

cylinder is parallel to the length of the plate. At a certain point, the strain in shorter direction

was measured as 0.001.

Now, taking modulus of elasticity Young's modulus of elasticity as 2 × 105 N/mm2, Poisson

ratio as 0.3 we required to find the normal stresses, σx and σy. So, that is the first problem,

second problem let us see. The slope in x direction and y directions are known as the first

derivative of the deflected surface with respect to x and with respect to y, respectively.



Now, I want to prove or whether you will be able to show this with the knowledge that you

have developed. The maximum slope in a slightly bent plate is given by

. So, that is 2 problems here.
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Next problem let us see, we have derived the boundary condition for straight edges. Now, let

me derive the boundary condition for curvilinear edge. A plate may have a curvilinear edge

say all the edges may not be perfectly straight line. For example, you have a quarter of a

circle required for any purpose for resisting the flow load or live load, then in that case the

two edges are straight, but one edges are curve.

So, we want to formulate the boundary condition along the curved edges for 3 different edge

conditions that is one is clamped, another is simply supported and another is free. And I want

to show the formulation from the first principle, if you can derive the equation from the first

principle then we can substitute our known expression and we can get the full boundary

equations after simplification.

Then question number 4, find the expression for the distribution of internal stresses in a plate

and show its variation along the thickness with reference to the middle surface. Now, here the

internal stresses in thin plate is σx, σy, τxy, which other stresses that is σz then your τxz and τyz we

neglected, but in general they also exist. So, their influence is small because compared to

others, but they are also existing.



So, we will try to find the expression for all stress components and when the thin plate

example come then we can show that these components are negligible compared to the free

component of stresses σx, σy and τxy. Then we will go for one problem that we want to solve

exactly exact solution we want to find and it is possible because of the boundary condition

taken as fixed.

So, for that condition, let us derive the expression for deflected surface and one of the

deflected surfaces found you can find the expression for a moment. So, let us solve this

problem one by one and if some steps are not completed, you can complete it.
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Now, let us see the first problem that I have told you, a steel plate whose length in y direction

is very large compared to it is width. So, that means, if I have a plate like that, say this is the

x axis and this is our y axis. So, along the y direction the length is very large such that the

plate deforms in the form of a cylinder. So, deflected surface of the plate is a cylinder. Now,

due to this assumption, we can say that εy that is the strain in y direction is 0.

But strain in y direction, we know that from expression is . In this equation, σy
is the stress along the y direction normal stress and σx is the stress along the x direction, ν is



the Poisson ratio. Because of this condition this is equal to 0. So, that means we get σy = ν ×

σx. So, this equation we will use later on. Now, we are aiming to find the σx and σy.

Now, let us write the expression for εx. εx = 1/E {σx ˗ ν σy}. Now, since σy is given as ν × σx
this equation can be simplified as σx/E × (1 – ν2). Based on that because our major quantity is

εx given the εx = 0.001. Now, this is given. So, we are aiming to find σx. So, σx can be found

out σx = (E × εx)/(1 - ν2).

So, substituting this value that is E is 2 × 105 εx is 0.001 and ν is 0.3. So, 1 - 0.32, after

calculation these becomes 219.7 Newton per millimeter square. So, once σx is found, then σy
from this relation can be easily obtained σy = 0.3 × 219.7 and this is equal to 66 Newton per

millimeter square. So, this is the answer of this problem based on the stress strain relationship

and for the condition that in one direction strain is negligible. So, by that way we could get

the result because of this assumption. Now, let us go to next problem.
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Next problem let us see, we have this regarding slope. So, the problem is that the maximum

slope in a slightly bent plate assuming w is small is given by . Now, let

us show the coordinate axis x, this is y. So, we know the slope, in x and y direction. Now, for

an element if I take an element of plate of length dx and width dy. So, in any other normal

direction say this direction is denoted by n direction.



And other direction perpendicular that is t direction tangential direction and say normal is

making an angle α with the x axis. So, we expressed this deflection in this dw is the

contribution of this plus. So, we have shown this as in our last classes that means, slope in x

direction which is increased by the length and slope in y direction increased by the length

. From that we got this .

Now, from this triangle we can see that dx/dn is cos(α) and dy/dn sine(α). So, accordingly I

can write this . So, this is the expression for slope in any direction. For

the condition that the slope in that direction is maximum, we have to use the maximization

principle of calculus that this is equate to 0 at some angle α equal to α1 with taking the

derivative with respect to α.

So, this equation is say 1, if I take the partial derivative of that equation with respect to α we

will get this and α1 will substitute because I have taken a particular

angle α = α1 the slope will be maximum. From this equation number 2 we get that tan(α1),

tan(α1) will be your equal to this .

So, this equation we have obtained that is the direction of maximum slope is given by this

tan(α1) that is the slope in a direction α1 and we got this as . Now, let us see the

expression of maximum slope. Now, if I substitute the angle α in this expression equation

number 1 then we will able to get for that particular direction the slope which will be

maximum because we are imposing the condition.
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Now, before substituting this expression, let us first express the tan(α1) in terms of sine and

cosine. So, tan(α1) we obtain there . So, suppose this is right angular triangle and we

have this angle is say α1. So, this is say for example, this side and this side is .

So, naturally hypotenuse of this triangle is .

So, we get this sine(α) as sine(α1), sine(α1) will be . Similarly, cos(α1)

we will get . So, this is the thing that we obtain for this sine(α1) and

cos(α1).

Now, let us put in this expression. The maximum slope is given by this for the particular

angle we have found that it is given as . Now, substituting these

expressions that I have got here for cos(α1) and sine(α1) we can see that the denominator of

this expression is this; numerator of this expression will be this.

So, one can get from this expression very easily that maximum slope is nothing but root over.

So, this is proved. So, whatever we have given in the question it is now proved. So, we get



the maximum slope in this slightly bent plate is under root of the square of the slope in x

direction plus square of the slope in y direction. Let us go to the third problem.
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Now, third problem we are having about the boundary condition. This is regarding the

boundary condition and we will see that curved boundary condition having the different

expression, different expression because of this curvilinear coordinate that is necessary to be

involved here. So, here what do we mean that actually we have a plate say a portion of the

plate certain plate and this is curved, this edge is curved.

Thickness of the plate is h as usual, as usual this is the middle plane and say for example, this

is x axis and this is your y axis. Now, this length is taken as elemental length dx and dy, this

length is the arc length. Now, we define the direction in which we want the derivative or the

quantities of moment and 2 directions, one is normal direction that is normal to the edge and

another is tangential direction t.

And this normal makes an angle for example with the x axis as α. So, that things are given to

us and now we go for deriving the quantities for this plate if the edge is clamped, if the edge

is simply supported and if the edge is free. For clamped edge there is no difficulty, clamped

edge we have w = 0 and . Now, in terms of this the Cartesian derivative you can



write it . So, these 2 equations represent the boundaries along the

curved edge if it is clamped. Now, let us go for the simply supported edge.
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Second is simply supported. In the simply supported edge, for example, again I am drawing

this curved edge. This is curved edge; this is the middle plane. So, this is normal direction

and this is your tangential direction as usual. Now, it is given that we have to obtain the

boundary condition from this first principle. Now, if you see that along the normal direction

the normal stress is σn.

So, if I want to calculate because in simply supported condition the moment and deflection is

0. So, one condition at the boundary at the curvilinear boundary is w = 0 that is easily

satisfied, but second condition is that Mn = 0, bending moment along the normal direction

that has to be 0. Now, let us obtain the expression for the new moment Mn from the first

principle. Now how Mn is generated?

Mn is generated Mn and Mnt, Mnt of course, it is not necessary here, but we will still evaluate

this. Now consider a small element, small elements say this angle is α, this is dx, this is dy

and say this slanting side is dt, this side is dt. Now, we have a small element here situated at

any point on the plate at a distance z from the middle surface. Then we can write the moment

of this element force on this element is σn × area of the element dz × 1.



If I take the unit width, then this is the force. So, force into a distance z and if it is integrated

from – h/2 to + h/2, we will get the moment along the normal direction. Now we have to

obtain this σn from the first principle. Now, if you see this condition then along the h which is

if this is the direction x, this is direction y, along the h where the x axis is normal.

So, this is your σx and along the y axis is normal, this is σy. Then you have shear stress in the

2 phases τxy and another shear stress along these phases τyx or τxy because these are same. So,

let me write τyx. So, this is any element on the curve boundary because dt is for a small

element the curve length and the straight length is same.

So, I have taken dt is approximately equal to your curve length. So, now, I want to obtain the

expression for σx and σy when they are resolved in the normal direction. So, expression of

normal stresses along the normal to the inclined plane, tangential plane is σn and σn can be

found by equating the sum of the forces to 0 along the normal direction.

So, that is the principal. So, and of course, the shear stress will also act shear stress say here

tau nt. So, these 2 stresses will generate the moment along the normal direction and twisting

moment with reference to n and t direction. Now, let us find out what is σn? Now, if you see,

if you resolve the forces along the normal direction, what do we get σn × dt is the length of

this slanting side into h, h is the thickness of the plate.

So, this is the force in the normal direction and this is equal to the component of the force on

the x and y direction that we are showing here in the free body diagram of the element. So, I

can write σx dy × thickness h and after resolving it normal direction it will have the term

cos(α). Similarly, σy and dx × h and if I resolve to the normal direction it will have sin(α).

Then we have τyx, τyx is acting on the face dx, so dx × h is the area and when I resolve it to the

normal direction it will be cos(α), + τyx, it is acting on the face dy. So, dy × h into sin(α).

Dividing both sides by your this dt × h, we will be able to get this very interesting expression

we also know this σn = σx cos2(α) + σy sin2(α) + 2 τxy sin(α) cos(α).



Because we know from this triangle there dx/dt is sin(α) and dy/dt = cos(α). So, making use

of these 2 relationships in this expression we arrived at the normal stress component.

Similarly, if I want to find out the tangential stress component τnt, which generates the normal

the twisting moment Mnt. Mnt generated by τnt and similarly here dz × 1, if I take a unit width

of the plate and integrated from – h/2 to + h/2. We need τnt. τnt is found after resolving the

forces.
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Say this is my triangular element that I have shown you, here it is α and this is dt, this is dx,

this is dy. So, this stress is σx this normal stress is σy and there is shear stress τyx and there is

also shear stress τxy. So, resolving tangentially along say tangent direction, this is σn and this is

tau nt. So, τnt is found after making the equilibrium equations for all the forces that are shown

in the tangential direction.

So, if I resolve the forces in the tangential direction, then we have τnt × dt × h, there is the

forces in this tangential direction on this inclined face is equal to σx dy × h sin(α) then we

have this – σy dx × h cos(α) + τxy dx × h sin(α) and ˗ τxy dy × h cos(α). Now divide both sides

by dt × h that we have done earlier. So, ultimately we will get τnt after simplification, (σx – σy)

sin(α) cos(α) ˗ τxy {cos2(α) ˗ sin2(α)}.

So, the expression for τnt is now known. So, based on that expression what we describe in the

previous slide we can obtain this Mnt just by substituting τnt that we have obtained here in this



equation. Now the boundary condition along the simply supported edges, this is 0 and Mn =

0. Mn now is obtained after substituting the expression for σx σn, that we have obtained in the

expression of this moment there you substitute here, you will be able to get Mn.

So, expression for Mn is obtained as very simple term it is obtainable (Mx) × cos2(α) + (My) ×

sin2(α) + 2 (Mxy) sin(α) cos(α), why I wrote this term inside the bracket? Because I know the

expression for Mx, My and Mxy in terms of derivative. So, if I want to write this in terms of

derivative instead of keeping this as Mx I can write it say -D and this is cos2(α) + and again

minus will be there ˗D then for My I can write and then this Mxy, Mxy expression also we

know it.

That is -D then 1 - ν then , these two will get cancelled. Now, after rearranging this

you will find that this gives you a very interesting expression Mn equal to we will get -D and

you will get . So, that is the Cartesian derivative . And then

.

And then that is there in this term. You will get this is

transformable in terms of the second differentiation in the normal direction. That operator I

have shown you in the earlier classes you can see these notes. Then with another terms that is

once you get the second differential operator in the normal direction, second differential

operator in the Cartesian reaction is obtained only by changing the angle α.

So, instead of α you put 90 + α. So, you will get operator in the tangential direction. So, you

will be able to find this expression is simply reduced to like that, so Mn is having very simple

expression like that equal to 0. Now since the plate is supported along the boundary, naturally

there cannot be deflection in the boundary. So, ultimately with the same reasoning that we

have done earlier in the straight edges, we have for simply supported edges along the

curvilinear boundary, is this one condition.



And first condition is this, second condition is this. So, this is the condition along the simply

supported edges. Now when it comes to the free edge then difficulty arises.
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Now let us see curvilinear free edge. Curvilinear free edge has your different obligations.

Because of the fact that the free edge bending moment is 0, so this edge is free and say this is

my x axis and this is the y axis. So, along the free edge you have this if this is taken as an arc

length s. So, Qs there is the shear force along this s direction plus this twisting moment and it

is derivative with respect to tangential direction.

So, we have at any point on the curve boundary, we have 2 directions along the tangent t and

normal to the tangent n. So, this is equal to 0 is one condition and another condition is Mn =

0. So, first condition can be easily substituted that we have earlier obtained but second

condition we want to derive Qs and Mnt is known and the operator has to be found out.

So, in this connection the Mn is that we have found earlier ˗D. So, this is Mn and this is equal

to 0 because it is not supported. So, I cannot take this as one curvature is 0, that is not

possible alright, so we have taken this is Mn = 0. Second equation is coming from this

. So, that is the edge shear Kirchhoff edge shear along the curved edge. So,

that means it is not necessary to consider the twisting moment and shear force along the

curved edges to be 0 separately 2 effects can be combined to give the single equation.



Now if I see an element, this is dx, this is dy, now here I am telling it say ds whatever maybe

and this is angle, is α. So, for the equilibrium if the forces here, these shear forces here are Qy

along this edge dx, edge along the dy shear force is Qx. And these are taken upwards, so I can

write Qs ds = Qx dy + Qy dx, that I can write. Now dividing both sides by ds we now get Qs =

Qx dy/ds + Qy dx/ds, dy/ds we can write cos(α) and dx/ds we can write as sin(α).

So, this is the expression for Qs and it is equated to be 0 actually. Now expression for Qs, Qx

and Qy unknown in terms of Cartesian derivative, where we have derived earlier

where is the Laplacian operator that is . So, this is Qx

similarly .

So, these two equation can be substituted here to find the Qs. Now question coming here is

. Whereas Mnt expression is already obtained, τnt is obtained, so naturally you can

obtain Mnt alright. Once you know the τnt you can obtain the Mnt by simply integrating across

the thickness. So, that is possible and based on that we can write this the second equation that

is this equation.

Only knowing these operator, so , Qs we have substituted whatever we got

here and . Now, is operator which is actually found from this we know that

. Now to find , we only substitute, we only change the

α. So, because the normal direction and tangential direction are mutually perpendicular.

So, if I substitute α = π/2 + α or 90 degrees + α, then I get simply as this operator

. So, substituting Mnt that we have obtained from τnt after

integrating across the thickness and then differentiating it. That means, you use this operator,



we will be able to get the expression for the second term and Qs term is already given here Qs

= Qx cos(α) + Qy sin(α).

And Qx and Qy expressions are written here. So, you have to substitute and write down the

full expression for the curved boundary.

(Refer Slide Time: 43:19)

So, let us now go to the fourth problem, fourth problem we will go here, we find out the

picture. So, 4th problem is to find the distribution of internal stresses in a plate and show its

variation along thickness with reference to the middle surface. So, we have, say a rectangular

plate. So, I have shown a part of the plate subjected to load q.

And suppose this is my Cartesian axis x, y and z. So, along the middle surface let me show

the middle surface, I am showing the stresses this along the x direction normal stresses along

the y direction. And then τxy, τyx here, τyx and here τxy, other stresses are shear stress though

we neglected, let us find the expression also. And then when the τxz, τyz are considered this is

not a thin plate problem but let us find this from the first principle.

Now σx is known to us, it is equal to ˗E × z/(1 ˗ ν2) × curvature this, that we have derived

earlier. Now we also know the expression for Mx, so Mx is ˗D and this curvature. So, this

term can be written as {12 Mx/h3} × z. Now why it is 12/ h3? Because in the denominator



h3/12, and if I take a unit width of the plate, 1 × h3/12 is nothing but moment of inertia of the

plate of unit thickness.

So, you can see it is similar with the beam, so that means the stresses varies linearly, if I

measure the stresses from the middle plane, then it varies linearly with z along the depth. So,

h thickness is known, and the quantity Mx that will be found out and then you can find the

variation of Mx. Similarly, we can find the variation of σy, variation of σy is this, τxy you can

similarly find τxy is .

Now what do we know that Mxy is nothing but ˗D (1 – ν) and twisting curvature. So, based on

that we can simplify it and bring it in terms of Mxy, twisting moment. So, twisting moment

Mxy is responsible to produce the shear stress τxy. So, 3 expressions are known σx, σy and τxy

and τyx is similar. And you can see here that all the three stresses that we assign for thin plate

problem is linearly varying along the thickness.

So, maximum will be when the z = + - h/2. So, maximum value can be found out, σmax =

6Mmax/h2. Similarly, σ, this is say for example, this is x similarly σmax, y is also found as, this

is also bending moment in the x direction. Similarly, this is bending moment in y direction, I

am writing as a subscript to distinguish between the bending moment along x and y direction,

and this is.

Maximum τxy is again given as at z = h/2, so 6(Mxy)max/h2. So, these are the quantities, so

readily we can know the variation, let us find the variation of other stresses.
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Variation of other stresses, we have to find out from equilibrium equation. So, let us take the

equilibrium equation in x direction, in general 3D elasticity. So, we have this, in absence of

body forces this is written as like that. Now whatever we get in σx τxy and etcetera we will

substitute. Our aim is to find τxz, so we substitute this, this is we found it as {12 Mx/h3} × z,

then here, we found it as {12 Mxy/h3}× z.

So, this quantity remains now as it is. So, what we actually find it here from this equation? I

can write as z, z I can take common and 12/h3 I can take common, so I can write like that,

that represents moment of inertia of plate of unit thickness. So, there you can see that 2 things

can be arranged like that . Now recall the equilibrium

equation, that is nothing but our Qx, if you recall this, this is equal to Qx.

So, I can write like that. Now, I can write , integrate this equation will

be able to obtain the τxz. So, after integrating . Because you we are

integrating with respect to z, so it will be a function of x and y. But we know at surface the τxz

is 0, so at z = + - h/ 2 we get τxz = 0.



So, imposing this condition, we get C1 = 3/2 Qx/h. Hence, the expression for τxz now I am

writing here, the final expression here I am writing . So, this is very

known expression suppose at z = 0, we get the maximum shear stress, there is the vertical

shear stress is 3/2 Qx/h, that is shear force divided by 1.5 into nominal shear stress Qx/h, that

quantity is known. In a rectangular section, the maximum shear stress, the average shear

stress, maximum shear stress is 1.5 times of the maximum shear stress. So, that the

expression we have obtained for τxz.
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Now if I want to find for τyz, similarly I will carry out the integration of the second equation

after substituting the value of My and this. So, second equilibrium equation is

. So here again, let us substitute this, this τxy we will

substitute τxy is 12Mx/h3 × z. And this σy we will substitute My × 12/h3 × z and this remain as

it is.



So, similarly we can understand that, ultimately we get an equation that and

12 z/h3 can be taken outside. And then we have , this quantity is known as Qy.

So, similarly after integrating we obtain this expression for τyz I am skipping the steps,

because it is known to you from the previous integration.

So, therefore τyz can be written as finally is , so this expression we have

written. So, all the expression we have written and then next expression is remained that is σz.
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So, third equilibrium equation, let us take this third equilibrium equation

. Substituting these value of τxz and τyz that we have obtained

earlier. And we can integrate this quantity that is if I want to integrate then final expression



that you will get. You will ultimately get an expression of σ after substituting this known

value that we have obtained earlier; you will get a quantity like that.

And with that constant will be . So, all the value of τxz and τyz whatever I have

obtained I have substituted here and I have taken isolated Qx and Qy. So, this is nothing but

the expression that we have obtained is ˗q. So this expression is ˗q. So, then after integrating

and imposing the condition and imposing at z = ˗ h/2 when the bottom is free from any load

˗h/2, this σz is 0.

So based on that, we have obtained this final expression for σz as σzz or σz whatever you call

3/2 q/h, q is that transverse load on the plate, . Ultimately after integration and

substituting the constant, then you will get this is , 3 will be there in the

denominator. Then a constant term q/2 is coming.

So, you can see now at z = 0, that is at the mid plane, the σz the normal stress that is the

crushing stress you can call it q/2. But at z = ˗h/2, it is 0 at z = +h/2, it will be q. So now I can

show you the distribution fully for all stresses.
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So, let me draw the plate. So, this is a part of a plate subjected to distributed load q and let me

draw the stress distribution in a different colour. So, first this is the x axis, this is the y axis

and this is z axis. So, we have this σx variation of normal stress along the x direction, if this is

the neutral plane it will be like that linearly varying zero at this center and this is. So, this is

the variation of σx, compressive at the top and this.

Then if I want to know the variation of τxy. Let me show the variation of τxy in a different

colour, so that you are not confused, so this is the variation of τxy. Again this is your what is

called it is linearly varying. So, on the other side also you can plot like that, there is no

difficulty to plot this. On the other side, you can show this the variation of this along the

middle plane, this is σy compressive.

And this if you want to see this variation of τxy it will be similar, but let me again show it,

there is no harm in showing 2 times. So, you will get this variation as like that. But

interestingly you will get the variation of these other 2 stresses that is similar to your beam

shear stress that we get. So here, if I want to draw this τxy, it will be parabolic and maximum

here. Similarly, if I want to draw the τyz, it will also be parabolic and maximum here.

So, y variation of τy and τxy or τyx, this is the variation of τxz and this is the variation of τyz.

And for the σz, if you want to see the variation of σz because it will be clumsy, let us show it

separately. This is the plate portion, this is the middle plane, this is h/2, this is h/2. So, here

you will get the variation is like that. Here you will get this value q/2 and here it is q and here

is 0. So, this shows the variation of this axis. Last problem let me see and I will give the hints

and it can be solved. In the assignment problem, I will give the solution and you try the last

problem, thank you.


