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Some Applications of Symmetrical Bending of Circular Cylindrical Shell

Hello everybody, today it is my third lecture of the module 12. In the earlier lecture, I

introduced the simplified bending theory of the shell, specially, cylindrical shell. So, in this

theory, we have seen that when the shell is subjected to radial load, then the bending moment

is produced at the support. So, bending moment actually propagates as an edge disturbance

and membrane solution becomes the particular integral.

So, that is the specialty of the simplified bending theory. Membrane theory has to be here

used as a particular solution. So, we will show how the membrane theory and bending theory

that is specially the bending theory of this cylindrical shell can be used in some practical

examples to show that the bending moment produced by the radial deformation of the shell is

like an edge disturbance.

So, it will gradually die out at a larger distance from the edge, but the membrane solution will

exist and predominates the behaviour of the shell as a particular solution. So, that will be

illustrated today by two examples that I have selected for this symmetrical bending of circular

cylindrical shell.
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Now, let us see a shell element subjected to load that is radial to the surface normal to the

surface. So, I mean that the component of the load along the x-axis and along the y-axis that

is the tangential direction to the surface is neglected. So, only loads that are important to

cause the stresses in the shell are the load normal to the surface, that is in the radial direction

and it is an axisymmetrical type of loading.

So, by virtue of that, we assume that the membrane shearing forces and𝑁
𝑥ϕ

= 𝑁
ϕ𝑥

= 0 𝑁
ϕ

is constant along the circumference. So, at any location you will find that is constant𝑁
ϕ

𝑁
ϕ

along the circumference. At any circumferential angle if is evaluated, you will get the𝑁
ϕ

same value. It is dependent only on the , there is the longitudinal distance from the point of𝑥

reference.

The bending moment that is in the tangential direction is constant along the𝑀
ϕ

circumference. So, that is another assumption in this theory that is the shell subjected to

axisymmetrical loading and only the loading is in the radial direction the longest general

membrane force that is is taken 0. Hoop force where is the deformation of𝑁
𝑥

𝑁
ϕ

=− 𝐸ℎ𝑤
𝑎 𝑤

the shell.



That is the radial deformation of the shell, which causes the change of diameter, is the𝑎

radius of the shell. Bending moment along any longer general distance measured from the

reference point that is the origin is given by . Now, here is the flexural𝑀
𝑥

=− 𝐷 𝑑2𝑤

𝑑𝑥2 𝐷

rigidity of the shell. And you can find the similarity with the beam bending equation. But in

beam bending equation that was the flexural rigidity.𝐸𝐼

Here the flexural rigidity will contain these Poisson ratio term also. So, is nothing but equal𝐷

to . So, with that background we will try to apply this theory to solve 2 problems of𝐸ℎ3

12(1−υ2)

interest, these 2 problems I will take up one by one. One is your cylindrical pipe subjected to

uniform pressure, internal pressure and it is supported at the end that means the boundaries

are specified.

So, we will see if the length of the pipe is very long, then the how the solution becomes and

when the shell is of finite length, how the solution is obtained. So, after that, I will apply this

theory to a cylindrical water tank that is very common in our application cylindrical container

containing fluid or retaining fluid or any gaseous substance also. So, because of that, the

internal pressures are developed and cylindrical wall, the wall is fixed at the base plate.

So, there will be some bending moment generated at the junction of the base plate and the

cylindrical work wall. And that bending moment we will see how it varies along the length of

the or along the height of the tank.
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So, that two problems we will discuss today we take the deflection of the shell equation the

governing equation for the deflection of the shell. If, the thickness of the shell is uniform,

then governing differential equation for the bending of shell is given by ,𝐷 𝑑4𝑤

𝑑𝑥4 + 𝐸ℎ𝑤

𝑎2 = 𝑍

where is the radial load that is load acting in the radial direction normal to the surface.𝑍

Now, this equation can be expressed in a form that we can easily find out the roots of the

characteristic equation. So, dividing both sides by d we now obtain . So,𝑑4𝑤

𝑑𝑥4 + 4β4𝑤 = 𝑍
𝐷

you can see here is the load that is acting along the normal to the surface and it is we call it𝑍

a radial load.

And is the flexural rigidity of the shell whereas is a characteristic parameter that contains𝐷 β

the material properties as well as the shell dimension. The that expression is given byβ4

, is the radius of the shell and is the flexural rigidity. Now, substituting𝐸ℎ

4𝑎2𝐷
𝑎 𝐷

and simplifying we get, .𝐷 = 𝐸ℎ3

12(1−υ2)
β4 = 3(1−υ2)

𝑎2ℎ2



So, once we find the can be found out and the unit of is the inverse of length. That isβ4, β β

if the length is expressed in meter, then unit of will be . So, with this differentialβ 𝑚−1

equation, we shall now proceed to apply the solution in some problems that I mentioned shell

have finite length supported at the ends and a cylindrical tank.

(Refer Slide Time: 09:02)

So, general solution of this equilibrium equation differential equation, have been found and it

can be expressed in two forms. The one form contains the exponential term and the sinusoidal

or cosine functions. So, if I see this form number one that I can see that

.𝑤 = 𝑒β𝑥(𝐶
1

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
2

sin 𝑠𝑖𝑛 β 𝑥) + 𝑒−β𝑥 𝐶
3

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
4

sin 𝑠𝑖𝑛 β 𝑥( ) + 𝑓 𝑥( )

Why it is another function is added?𝑓 𝑥( )

Because the effects is added due to the particular solution. The is the particular solution𝑓 𝑥( )

of the differential equation and you can note that this differential equation is

non-homogeneous equation and therefore, according to theory of linear differential equation,

we have to find the solution of homogeneous part and then it has to be superimposed on the

particular solution. If Z is 0 then no particular solution exists.



So, due to the forcing term present in the differential equation of equilibrium and forcing

term is due to this pressure that is acting normal to the shell surface. And it is the solution of

that particular integral is . Later on, we will prove that is nothing but the membrane𝑓 𝑥( ) 𝑓 𝑥( )

solution of the shell. Now, here one interesting thing you can note that , this term can𝑒β𝑥

amplify the deflection or can decrease the deflection if it is associated with minus sign.

Because is always positive because it contains the material properties and the shellβ

dimensions which are positive quantity. So, therefore, this term there is first expression in

case the deflection with the increase of , but here you can see that , here as a𝑥 𝑒−β𝑥 β𝑥

damping factor. So, in that case, this expression actually tried to diminish or reduce the

deflection of the shell with the increase of distance.

So, in a long shell, we have seen that if a load is applied at a particular section only then at a

very large distance the effect of the load is negligible. So, therefore, we neglected the

constant and for a very long shell, but shells of finite length has to be solved containing𝐶
1

𝐶
2

these four constants of integration. The four constants of integration can be found by

applying the boundary condition at the ends of the shell.

So, one number one equation is useful when the length of the shell is very large if I drop the

constant and . Number 2 form that is𝐶
1

𝐶
2

𝑤 = 𝐶
1

sin 𝑠𝑖𝑛 β 𝑥 sinh 𝑠𝑖𝑛ℎ β 𝑥 + 𝐶
2

sin 𝑠𝑖𝑛 β 𝑥 cosh 𝑐𝑜𝑠ℎ β 𝑥 + 𝐶
3

cos 𝑐𝑜𝑠 β 𝑥 sinh 𝑠𝑖𝑛ℎ β 𝑥 + 𝐶
4

cos 𝑐

. These terms that you are noting here return in terms of trigonometric and hyperbolic

function can be easily obtained.

When we substitute . And also, this term𝑒β𝑥 = cosh𝑐𝑜𝑠ℎ β𝑥  +sinh𝑠𝑖𝑛ℎ β𝑥 
2

. So, with the; use of this exponential term in the form of𝑒−β𝑥 = cosh𝑐𝑜𝑠ℎ β𝑥  −sinh𝑠𝑖𝑛ℎ β𝑥 
2



hyperbolic function and carrying out term by term multiplication and rearranging the

constants.

We can write in this form this is the second form which contains the combination of𝑤

trigonometrical and hyperbolic functions. Here again, effects is the particular integral due to

the load acting on the shell. This form two is useful when the shell is of finite length.

(Refer Slide Time: 13:54)

Now, let us apply this theory or solutions that we have written here in the earlier slide for a

shell of finite length and subjected to uniform pressure with supported ends. So, here I

consider a shell of length is a closed-cell and it is subjected to inform internal pressure the𝑙

thickness of the shell is and the length of the shell is . So, for convenience, we take theℎ  𝑙

centre of the shell as the origin.

There is a point of reference from which we measured the distance , the cross-section of the𝑥

shell is shown here and it is subjected to internal pressure that is acting radially. Now, if the

origin is taken at the centre of the pipe or shell here that you are noting in this figure, then we

can take advantage of the symmetrical terms in the expression of deflection. So, since the



shell is symmetrical with respect to the centre of the shell in respect of loading geometrical

parameters and support.

Then we can only assume that the deflection of the shell contain only the event functions. So,

let us identify what are the even functions in this expression. Even function in this

expression, you can see that all the terms are product of two functions, one is trigonometrical

function and another is hyperbolic function. Now, let us examine the first function

that is the product.sin 𝑠𝑖𝑛 β𝑥 sinh 𝑠𝑖𝑛ℎ β𝑥 

is an anti-symmetrical function is also anti symmetrical function.sin 𝑠𝑖𝑛 β𝑥 sinh 𝑠𝑖𝑛ℎ β𝑥 

So, product of two anti-symmetrical functions is a symmetric function. Similarly, here you

can see is a symmetrical function and is also symmetrical function.cos 𝑐𝑜𝑠 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 

So, product of two symmetrical function is again symmetrical function, but if you examine

these two terms is a anti-symmetrical function whereas, issin 𝑠𝑖𝑛 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 

symmetrical function.

So, product of these two is anti-symmetrical function. Similarly, this iscos 𝑐𝑜𝑠 β𝑥 

symmetrical function and is anti-symmetrical function. So, we shall drop thissinh 𝑠𝑖𝑛ℎ β𝑥 

constant and that means, we need not consider this term containing the coefficient𝐶
2

𝐶
3

𝐶
2

because our problem is symmetrical and we take only the event function in the expression𝐶
3

of deflection.
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So, with that advantage, we can now reduce the deflection equation with two constants of

integration. So, what are the two constants of integration? and that were associated with𝐶
1

𝐶
4

the sin function and sin hyperbolic function and cos function and cos hyperbolic function. So,

both are now symmetrical function associated with a particular integral. Internal

pressurization positive inward.

So, it is acting outward because the pressure that is internal pressure fluid pressure or

whatever maybe it is acting outward so, therefore, it is taken with a negative sign. So, is𝑍

taken as now, since the forcing term is a constant term there is a constant here. So, we− 𝑝

expect that particular solution is also constant. So, according to theory of undetermined

coefficients in the linear differential equation, we now assume that particular integral is is𝑤
𝑝

a constant .𝐶

So, substituting in this exhibition because is a constant. So, when it is differentiated, you𝐶 𝐶

will get here, but here you will get and is nothing but . So, that is the0 4β4𝐶 β4 𝐸ℎ

4𝑎2𝐷
𝑤

𝑝

particular solution is nothing but , now comes out as , where is the structural𝐶 𝐶 =− 𝑝

4β4𝐷
𝐷

rigidity. Substituting the value of and we now simplify .β4 𝐷 𝑤
𝑝

=− 𝑝𝑎2

𝐸ℎ



So, general solution of this differential equation of the bending of the cylindrical pipe now

reduces to . This𝑤 = 𝐶
1

sin 𝑠𝑖𝑛 β𝑥 sinh 𝑠𝑖𝑛ℎ β𝑥 + 𝐶
4

cos 𝑐𝑜𝑠 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 − 𝑝𝑎2

𝐸ℎ

term the last term is due to the load in the radial direction that is the internal pressure . Now,𝑝

here you are seeing the two constants of integrations are appearing in this solution.

So, that have to be found out considering the condition at the ends, since the shell is a finite

length and the boundaries are defined in the problem. We can now apply the boundary

condition.

(Refer Slide Time: 19:45)

In this problem, we assume that shell is simply supported at the ends. So, boundary

conditions now becomes at or say, if is measured positive towards the𝑥 =+ 𝑙/2 − 𝑙/2 𝑥

right from the origin, then right end support of the shell is denoted by located at ,𝑥 =+ 𝑙/2

whereas, left-hand support of the shell is located by the distance or coordinate that is

.𝑥 =− 𝑙/2

And is , locate the support at the left end and locate the support at the right𝑤  0 − 𝑙/2 + 𝑙/2

end, is 0 as well as bending moment is 0 because it is simply supported condition. So,𝑤



applying the above conditions in the following equations, following equation is this

containing two terms of two constants of integration that is and . Now, the solution will𝐶
1

𝐶
4

contain the combination of trigonometrical function as well as hyperbolic function.

So, and . So, first, substitute the conditionsin 𝑠𝑖𝑛 β𝑥 sinh 𝑠𝑖𝑛ℎ β𝑥 cos 𝑐𝑜𝑠 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 

that deflection condition at . So, substituting this condition an now, we get𝑥 = 𝑙/2 𝑥 = 𝑙/2

. So, this is from this equation𝐶
1

sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α + 𝐶
4

cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α − 𝑝𝑎2

𝐸ℎ

that directly we substituted and we assume this parameter .𝑥 = 𝑙/2 α = β𝑙
2

So, you can see here when I substitute this term becomes . And𝑥 = 𝑙/2 𝐶
1

sin 𝑠𝑖𝑛 β𝑙
2  

. So, this is the result of the× sinh 𝑠𝑖𝑛ℎ β𝑙
2  + 𝐶

4
cos 𝑐𝑜𝑠 β𝑙

2  cosh 𝑐𝑜𝑠ℎ β𝑙
2  − 𝑝𝑎2

𝐸ℎ

substitution of and assuming . So, first equation we got from the first𝑥 = 𝑙/2 α = β𝑙
2

boundary condition that . Second boundary condition is obtained when we consider𝑤 = 0

the bending moment at the support or is .+ 𝑙/2 − 𝑙/2 0

So, considering this condition that is we have to now obtain the second derivative of this

equation and after substituting , again we got𝑥 = 𝑙/2

, because of differentiation this𝐶
1

cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α − 𝐶
4

sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α = 0

particular integral term that is a constant here will disappear. So, therefore, you are getting the

term containing and .𝐶
1

𝐶
4

This equation can be solved because it contains two unknown quantities and other𝐶
1

𝐶
4

quantities are known. So, we can solve two simultaneous equations with two unknowns.
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So, here I used the solution with Cramer’s rule. So, we write the equation in matrix form this

equation is written in matrix form. So, if I write this equation in matrix from then coefficient

matrix becomes

sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  − sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  [ ] 𝐶
1
 𝐶

4
 { }

. and are the unknown constants of integration that have to be evaluated by solving this𝐶
1

𝐶
4

matrix equation.

So, using Cramer’s rule, we now define this parameter delta that is the determinant form

using the coefficient of this matrix that is I call the coefficient matrix. So,

sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  − sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  | |

. So, that is the determining using the coefficients of the matrix matrix.2×2

Then, , I define as . And if I∆
1

𝑝𝑎2

𝐸ℎ  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  0 − sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  |||
|||

expand this determinant, you can see this expansion and expansion of determinant will lead

to the equation . , we now write it in this way− 𝑝𝑎2

𝐸ℎ sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α ∆
2

.sin 𝑠𝑖𝑛 α sinh 𝑠𝑖𝑛ℎ α  𝑝𝑎2

𝐸ℎ  cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α  0 |||
|||



And we expand this determinant we now get it . So, and− 𝑝𝑎2

𝐸ℎ cos 𝑐𝑜𝑠 α cosh 𝑐𝑜𝑠ℎ α ∆
1

∆
2

are obtained, we can now have to find this determinant .∆

(Refer Slide Time: 25:37)

So, determinant is found and after substituting these, we now obtain∆ 𝐶
1

=
∆

1

∆

. Similarly, we get, .𝐶
1

= 𝑝𝑎2

𝐸ℎ
sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 

α α +α α 𝐶
4

=
∆

2

∆ = 𝑝𝑎2

𝐸ℎ
cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 

α α +α α 

So, the numerator term is that you are seeing is directly coming from this expansion of

determinant with and whereas, denominator will contain the expanded form of the∆
1

∆
2

determining . So, the denominator that you are seeing here is nothing but∆ α α + α α 

expansion of the determinant formed by the coefficient of the matrix equation, matrix.2×2

Following identities are used to simplify further the constant of integration. So, what are the

identities? One identity is trigonometrical identity that is and another2α = 1 − cos 𝑐𝑜𝑠 2α 

is . Then other 2 are this hyperbolic function identity that is2α = 1 + cos 𝑐𝑜𝑠 2α 

and second one is .2α = cosh 𝑐𝑜𝑠ℎ 2α − 1 2α = cosh 𝑐𝑜𝑠ℎ 2α + 1



(Refer Slide Time: 27:42)

So, using these identities here, we can now express the and in simplified form. So,𝐶
1

𝐶
4

𝐶
1

contains . Similarly, contains . So,𝐶
1

= 𝑝𝑎2

𝐸ℎ
2sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 

cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α 𝐶
4

𝑝𝑎2

𝐸ℎ
2cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 

cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α

we can now write the complete solution.

So, complete solution is .𝐶
1

sin 𝑠𝑖𝑛 β 𝑥 sinh 𝑠𝑖𝑛ℎ β 𝑥 + 𝐶
4

cos 𝑐𝑜𝑠 β 𝑥 cosh 𝑐𝑜𝑠ℎ β 𝑥 − 𝑝𝑎2

𝐸ℎ

and are now completely known. So, therefore, substituting as this quantity and as𝐶
1

𝐶
4

𝐶
1

𝐶
4

this quantity in this expression, we can now get the equation in this form

, this term.𝑤 =− 𝑝𝑎2

𝐸ℎ {1 − 2sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 
cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α sin 𝑠𝑖𝑛 β𝑥 sinh 𝑠𝑖𝑛ℎ β𝑥 −

Then the other term is . So, you will now get2cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 
cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α cos 𝑐𝑜𝑠 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 

the complete equation of the deflection.
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So, it is written again here and substituting this and using these, , we can𝐸ℎ

𝑎2 = 4𝐷β4 β = α2
𝑙

find , we can now express that is appearing in this equation is . So, usingβ = 2α
𝑙

𝐸ℎ

𝑎2
64α4𝐷

𝑙4

this parameter we now express the deflection as

𝑤 =− 𝑝𝑙4

64α4𝐷
1 − 2sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 

cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α sin 𝑠𝑖𝑛 β 𝑥 sinh 𝑠𝑖𝑛ℎ β 𝑥 − 2cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 
cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α cos 𝑐𝑜𝑠 β 𝑥 cosh 𝑐𝑜𝑠{

. So, since this shell is supported symmetrically and loading is also symmetrical and the shell

thickness is also symmetrical, that means, it has a uniform flexural rigidity.

So, the maximum deflection we obtain at the centre of the shell. So, at the centre of the shell

substituting . In the final expression of the deflection, you can see this term will vanish𝑥 = 0

will be vanished, because when you put here this will be 0 and as well as this will be 0𝑥 = 0

and when it is evaluated with the it will be 1, also will be 1.cos 𝑐𝑜𝑠 β𝑥 𝑥 = 0 cosh 𝑐𝑜𝑠ℎ β𝑥 

So, the maximum deflection is obtained as . That𝑤 =− 𝑝𝑙4

64α4𝐷
1 − 2cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 

cos𝑐𝑜𝑠 2α +cosh𝑐𝑜𝑠ℎ 2α ( )
means, second term is a hyperbolic function, so .cosh 𝑐𝑜𝑠ℎ 2α 
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Now, some important conclusion will draw from this expression. Let us consider the shell is

very long. So, in the long shell that we use this , we use the . So, naturally,α = β𝑙
2 α = β𝑙

2 α

parameter will be very large for very long shell. So, now if you see, if you substitute here

, which is very high value then this term becomes very large value denominatorcos 𝑐𝑜𝑠 α  

will be very large. So, naturally this fraction will be negligible.

So, hence maximum deflection for a very long shell is obtained as because this term𝑝𝑙4

64α4𝐷

can be ignored for the reason that the will be very large because of this largecosh 𝑐𝑜𝑠ℎ 2 α

length . So, second term inside the parenthesis approaching 0 and therefore, we writeα = β𝑙
2

the expression of deflection for the long shell at the centre with this expression

.𝑤 =− 𝑝𝑙4

4β4𝑙4 𝐸ℎ3

12(1−υ2)

And in place of D, we now substituted and also in place of alpha we brought this𝐸ℎ3

12(1−υ2)

parameter is assumed as . So, is appearing here. Now, substituting as we haveα β𝑙
2 β β4



obtained earlier as and then is already there and we substituted this D here also is3(1−υ2)

𝑎2ℎ2 𝑙4

substituted written here, then is also written here .𝐷 𝐸ℎ3

12(1−υ2)

So, after simplifying this expression you will find that . Now, this expression can𝑤 =− 𝑝𝑎2

𝐸ℎ

be a examine say is nothing but hoop stress in a cylindrical shell subjected to internal𝑝𝑎/ℎ

pressure. So, stress divided by strain that is divided by modulus of elasticity that is E will

give you the strain. So, stressed by E that is will give you strain and strain multiplied byσ/𝐸 

radius will give you the changing radius.

So, that is the radial deformation. So, you can see that w that we get here for very long shell

is nothing but your membrane solution .𝑝𝑎2

𝐸ℎ
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So, for what very long shall we now conclude that and two interesting things we𝑤 =− 𝑝𝑎2

𝐸ℎ

can note here. If the shell is very long and it is a thin shell cylindrical shell, of course, we are

dealing with the cylindrical shell behaves as if ends are free and deformation is due to hoop



stain. So, that is a bias for a very long shell the effect of bending moment can be neglected.

The effect of end supports upon the mid-span deflection is also negligible.

So, if the particular integral does not appear in the shell deflection equation, then the effect of

this support that is there is no question of this applying the boundary condition because the

shelves are very long and the boundary condition will not affect the deflection at the

mid-span. So, that to conclusion; we can arrive from this expression.
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Expression for any moment can be obtained by differentiating the deflection equation two

times with respect to x. So, differentiating twice the expression with respect to x, of course,

you have to multiply the differentiated quantity with the flexural rigidity of the shell. It is also

multiplied with D and finally, we get the bending moment expression.

As

𝑀
𝑥

=− 𝑝𝑙2

4α2
sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 

cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α cos 𝑐𝑜𝑠 β 𝑥 cosh 𝑐𝑜𝑠ℎ β 𝑥 − cos𝑐𝑜𝑠 α cosh𝑐𝑜𝑠ℎ α 
cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α sin 𝑠𝑖𝑛 β 𝑥 sinh 𝑠𝑖𝑛ℎ β 𝑥{ }

. So, this is the expression for bending moment of the shell.
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Maximum bending moment occurs at the centre again because of symmetrical problem and

maximum bending moment we get from the earlier expression from the earlier expression

when is substitute x = 0. So, if I substitute x = 0, this term will not be coming into picture and

this term will be 1. So, therefore, maximum bending moment wecos 𝑐𝑜𝑠 β𝑥 cosh 𝑐𝑜𝑠ℎ β𝑥 

will get .𝑀
𝑚𝑎𝑥

= 𝑝𝑙2

4α2
sin𝑠𝑖𝑛 α sinh𝑠𝑖𝑛ℎ α 

cos𝑐𝑜𝑠 2 α+cosh𝑐𝑜𝑠ℎ 2 α{ }

So, one interesting thing you can see there again if alpha is large that is for very long shell

this quantity approximate 0 or becomes very small quantity. So, therefore, very long shell the

bending moment at the centre is negligibly small. So, that it is observed very clearly from this

expression if is large. Therefore, the medial portion of the shell is under thecosh 𝑐𝑜𝑠ℎ 2α 

action of merely hoop stresses.

And in the middle portion of the shell and his vicinity the membrane state of stress exists. So,

that is an important conclusion for very long shell.
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Now, let us apply this solution to another problem that I have told in the beginning of this

lecture that a cylindrical shell has to be analysed. And that type of shell is frequently used as

water-retaining structure or storage tanks in many applications and the for the solution, we

take the wall thickness is uniform, but it is not necessary that wall thickness should be

uniform, it may also vary.

So, in that case, differential equation for the deflection of the shell will contain the coefficient

which is variable in x radius of the shell is a and it is built in at the bottom edge. So, the shell

is fixed at the bottom edge. The depth of the water in the tank is d. Water or any fluid whose

density is taken as gamma, now assuming that cylindrical tank is infinity log shell will use

this condition that shell is infinitely long, but it is not necessary also.

If the conditions at the two ends are defined and the shell is treated as a tank of finite length,

then also the equation or solution can be obtained. So, our intention is to find the hoop

tension and bending moment in the shell. So, we proceed with that differential equation

,where Z is the internal pressure in the tank.𝑑4𝑤

𝑑𝑥4 + 4β4𝑤 = 𝑍
𝐷



And at a distance x, x is measured from this base. Base is taken as the reference plane. So, if I

take this as the origin is measured upward positive. So, at a distance x, the depth of the𝑁
𝑥

water causing the pressure is . So, will be the pressure at this level and the𝑑 − 𝑥 𝑑 − 𝑥( )γ

variation of the pressure you can see it is linear hydrostatic pressure. The governing

differential equation of this shell now can be written as .𝑑4𝑤

𝑑𝑥4 + 4β4𝑤 =− 𝑑−𝑥( )γ
𝐷

Instead of Z, we can substitute this quantity. Solution of that equation is given earlier and it is

written here again

,𝑤 = 𝑒β𝑥(𝐶
1

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
2

sin 𝑠𝑖𝑛 β 𝑥) + 𝑒−β𝑥 𝐶
3

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
4

sin 𝑠𝑖𝑛 β 𝑥( ) + 𝑓 𝑥( )

is the particular solution due to internal pressure.𝑓 𝑥( )
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Because the shell is very long. So, as we have treated earlier these two terms have to be

dropped otherwise, the deflection and bending moment at the other end will be unbounded.

Because this quantity will increase with x because is a positive quantity. So, therefore,𝑒β𝑥 β

we have to retain only these two constants of integration and and the solution now𝐶
3

𝐶
4

written as .𝑤 = 𝑒−β𝑥(𝐶
3

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
4

sin 𝑠𝑖𝑛 β 𝑥) + 𝑓(𝑥)



So, this is the final solution and two constants of integration now have to be determined from

the end condition.

(Refer Slide Time: 42:23)

So, homogeneous solution we have obtained and particular solution now, we can obtain using

this the theory that earlier I have explained, because the particular integral is due to the

forcing function which is a linear function. And therefore, we assumed . So,𝑤
𝑝

= 𝐶(𝑑 − 𝑥)

we assume and substituting these in the differential equation, we finally𝑤
𝑝

= 𝐶(𝑑 − 𝑥) 𝑤
𝑝

get the particular solution as .𝑤
𝑝

=− γ(𝑑−𝑥)𝑎2

𝐸ℎ

So, this is the particular solution. Simplification, of course, is made by using this quantity

.β4 = 𝐸ℎ

4𝑎2𝐷
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So, now complete solution is written as

. So, this is the particular solution.𝑤 = 𝑒−β𝑥 𝐶
3

cos 𝑐𝑜𝑠 β 𝑥 + 𝐶
4

sin 𝑠𝑖𝑛 β 𝑥( ) − γ(𝑑−𝑥)𝑎2

𝐸ℎ

And again, we will prove that particular solution is also the membrane solution. So, let us

prove this, so at any level say x that is defined, x is measured from the bottom of the tank the

hoop stress is given by .γ(𝑑−𝑥)𝑎
ℎ

So, hoop strain is . Also, we can write hoop strain as the change in circumferenceγ(𝑑−𝑥)𝑎
𝐸ℎ

divided by the original circumference for a small element of the cell, which subtends an angle

at the centre. So, length of the part of the circumference of the shell which subtends an𝑑ϕ

angle at the centre is and this length is change due to radial deformation.𝑑ϕ 𝑎𝑑ϕ

So, changed length of this element is along the circumference, an original length𝑎 − 𝑤( )𝑑ϕ

was . So, if I take the ratio of this to this will in the hoop strain. So, hoop𝑎𝑑ϕ (𝑎−𝑤)𝑑φ−𝑎𝑑φ
𝑎𝑑φ

strain is now obtained as . Now, from this quantity, if I want to solve w. So, this is anγ(𝑑−𝑥)𝑎
𝐸ℎ

expression which connects w with the hoop strain. So, if I solve this equation for w then what

do we get?
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We get , you can see from this equation this equation will get cancel. So,𝑤 =− γ(𝑑−𝑥)𝑎2

𝐸ℎ 𝑑ϕ

therefore, this circumferential strain will be nothing but . So, is nothing but− 𝑤/𝑎 − 𝑤/𝑎

. So, w can be readily found as . So, it is again proved that particularγ(𝑑−𝑥)𝑎
𝐸ℎ − γ(𝑑−𝑥)𝑎2

𝐸ℎ

solution and membrane solution are same.

The complementary solutions actually depend on the boundary conditions and it may be

looked at as a disturbance emanating from the edges. So, but these disturbance dies out

gradually because we have taken a damping like factor .𝑒−β𝑥
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At x = 0, . So, this is our given boundary condition. And applying these𝑤 = 0,   𝑑𝑤
𝑑𝑥 = 0

boundary condition in the deflection equation that we obtained here. Here, if I apply the

boundary condition at x = 0, we obtain now, two constants and𝑤 = 0,   𝑑𝑤
𝑑𝑥 = 0 𝐶

3
= γ𝑎2𝑑

𝐸ℎ

. So, after substituting and , we can now write as,𝐶
4

= γ𝑎2

𝐸ℎ (𝑑 − 1/β) 𝐶
3

𝐶
4

𝑤

 𝑤 =− γ𝑎2𝑑
𝐸ℎ [1 − (𝑥/𝑑) − 𝑒−β𝑥{cos 𝑐𝑜𝑠 β𝑥 + (1 − 1/β𝑑) sin 𝑠𝑖𝑛 β𝑥 }]

.

So, this is the complete expression of the deflection where all the parameters are known,

because d is the depth of the fluid or depth of the tank. If the fluid is up to the full height of

the tank, then d will be height of the 1tank, h is the thickness of the shell a is the radius of the

cylindrical shell and other quantities, you will know that beta is the characteristic parameters

that we have found earlier.

So, once you will know w then the membrane stresses membrane stresses only one

membrane stress is of importance that is , others are insignificant in the problem and these𝑁
ϕ



are neglected. So, and substituting here we get ,𝑁
ϕ

=− 𝐸ℎ𝑤
𝑎 𝑤 𝑁

ϕ

.γ𝑎𝑑 1 − 𝑥
𝑑 − θ(β𝑥) − 1 − 1

β𝑑( )ζ(β𝑥)⎡⎣ ⎤⎦

Now , are the functions which contains this exponential term with cosine terms or the sinθ ζ

term.
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So, these functions are defined as there are several functions which contain this combination

of exponential term and cosine and sin term. So, here you can see I have written four

functions ,ϕ(β𝑥) = 𝑒−β𝑥(cos 𝑐𝑜𝑠 β 𝑥 + sin 𝑠𝑖𝑛 β 𝑥)

, etcetera. So, here we abused only these twoψ(β𝑥) = 𝑒−β𝑥(cos 𝑐𝑜𝑠 β 𝑥 − sin 𝑠𝑖𝑛 β 𝑥)

functions and .θ(β𝑥) ζ(β𝑥)
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So, it is written in the functional form and the maximum deflection will be obtained

somewhere but, this deflection you have to calculate by plotting the graph or you can impose

the condition what the slope is 0 to get the maximum deflection. The membrane force can𝑁
ϕ

be obtained as which is nothing but .− 𝐸ℎ𝑤
𝑎 γ𝑎𝑑 1 − 𝑥

𝑑 − θ(β𝑥) − (1 − 1
β𝑑 )ς(β𝑥)⎡⎣ ⎤⎦

Bending moment is obtained by calculating the second derivative of these deflection

functions and then multiplying the second derivative with the flexural rigidity. So, bending

moment is obtained as . You should distinguish−γ𝑎2𝐷𝑑
𝐸ℎ − θ″(β𝑥) − (1 − 1

β𝑑 )ς″(β𝑥)⎡
⎣

⎤
⎦

between these two symbol capital D is the flexural rigidity of the shell whereas, small d is the

depth of the tank or depth of the water in the tank.

indicates that second derivative of this quantity, because second derivative of these twoθ″

terms will be 0.
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So, is written after simplification that is putting the value of these various parameters that𝑀
𝑥

are appearing here d flexural rigidity that and bringing them in terms of that is the𝐸ℎ3

12(1−ν2)
 β

characteristic parameter of the shell without right the bending moment in the shell as

.2β2γ𝑎2𝐷𝑑
𝐸ℎ − ζ(β𝑥) + (1 − 1

β𝑑 )θ(β𝑥)⎡⎣ ⎤⎦

Substituting the value of and again it can be expressed in another form. So,β 𝐷

. So, can be calculated now, along the𝑀
𝑥

= γ𝑎ℎ𝑑

12(1−υ2)
− ς(β𝑥) + (1 − 1

β𝑑 )θ(β𝑥)⎡⎣ ⎤⎦ 𝑀
𝑥

height of the tank and maximum bending moment you can see is only at the fixed end.

So, fixed end provide restraints. So, maximum bending moment is calculated at x = 0. So,

maximum value is obtained by putting x = 0 here and we can obtain that maximum value is

nothing but .𝑀
𝑚𝑎𝑥

|
𝑥=0

= γ𝑎𝑑ℎ

12(1−υ2)
1 − 1

β𝑑⎡⎣ ⎤⎦
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Now, such types of tanks are very common in our construction industry, whether you use it

for steel tank or these reinforced concrete tanks. The provisions of various quotes for design

have been available. So, here is such one provision that is given by the code IS Indian

standard 3370 part 4. So, in this code the bending moment hoop tension and base shear

coefficients for different values of a combined geometrical parameter are given.

Now tables in the codes provide coefficients for bending moment hoop tension base shear at

different heights of the cylindrical shell. Base shear of course, at the base and other quantity

you can obtain at different height. The coefficients are available up to certain combined ratio

of height of the tank, diameter of the tank and thickness of the wall. So, this is the actually

limitation of this code.

So, you will get these coefficients up to a parameter that I have defined as I call it as ,α

. So, if this parameter is greater than 16, no coefficients are availableα = (𝐻𝑒𝑖𝑔ℎ𝑡)2

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟×𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

in the code. However, using the general theory, the coefficients are generated for different

values of alpha also. And then once the coefficients are known from the code the moment is

given by coefficient into .γ𝐻3



H is the depth of water and it is with a cubic quantity so, H cube ring tension that is the hoop

tension developed is nothing but .= 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡×γ𝐻𝑎

(Refer Slide Time: 54:48)

Let us discuss a numerical problem a circular cylindrical water tank has a diameter 18 meter,

total depth of the water 8.7 meter, thickness of the cylindrical wall 350 millimetre density of

the water 10 kilo Newton per meter cube. We have to calculate the maximum value of the

bending moment hoop tension and sharing force, of course, you can calculate produced by

hydrostatic pressure.

Now, let us see these tank. The diameter of the tank is 18 meter, the height of the water here

is 8.7 meter, density of the water is 10 kilo Newton per meter and thickness of the wall is

0.35 meter.
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So, with this given data, I use the expression for maximum bending moment

. After substituting the numerical value, we can obtain, first let𝑀
𝑚𝑎𝑥

= γ𝑎𝑑ℎ

12(1−υ2)
1 − 1

β𝑑⎡⎣ ⎤⎦

us calculate the beta. So, And after substituting the numerical value Poissonβ4 = 3 1−ν2( )
𝑎2ℎ2

ratio for concrete it is RCC tank.

So, we have taken as , substituting the value of this parameter beta comes out as0. 15

.0. 5214𝑚−1
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So, now maximum bending moment will be at the base and here we take d = H in the

formulation. So, substituting all the parameters in this maximum bending moment expression

here, we now obtain the maximum bending moment as . So, this is the124. 75 𝑘𝑁. 𝑚/𝑚

result of maximum bending moment. Meridional stress hoop stress that can be calculated

and the expression after substituting w.𝑁
ϕ

=− 𝐸ℎ𝑤
𝑎

And return using the special function and , we can now expressθ ζ

. And after substituting the numerical value𝑁
ϕ

= γ𝑎𝑑 1 − 𝑥
𝑑 − θ(β𝑥) − (1 − 1

β𝑑 )ς(β𝑥)⎡⎣ ⎤⎦
here we now an expressing all the quantities that is the force unit in kilo Newton and length

unit in meter. We now get and it is unit𝑁
ϕ

= 1566× 1 − 𝑥
8.7 − θ β𝑥( ) − 0. 7796×ζ(β𝑥){ } 

is . So, the variation of is obtained for different values of x along the height of the𝑘𝑁/𝑚 𝑁
ϕ

tank.
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And that variation is plotted here and you can see the maximum Hoop force is obtained here.

Say at a distance of these around 5.7 and variation Hoop of force is maximum at this point.
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So, let us summarize today's lecture. In this lecture, we have discussed the solution of the

differential equation for the radial deformation of the cylindrical shell subjected to

symmetrical loading. The application of the theory has been illustrated with an example of

cylindrical pipe of finite length subjected to internal pressure. The theory of bending of

cylindrical shell has been further applied for the solution of a analysis of a cylindrical tank



containing fluid. Lastly, I have given a numerical example to illustrate the theory. Thank you

very much.


