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Plate Equations and Boundary Conditions with Examples

Hi everybody, today I am continuing my lecture and let me first tell what I have covered in the

last class and then the outlines of the today's lecture will be given to you.

(Refer Slide Time: 00:44)

So, in the last lecture you have learned the theory of bending in thin plates and what are the

assumptions related to bending. Then we have obtained expression of strain in terms of vertical

displacement. Then effect of multiple middle surface stretching, that we have obtained. Then

expression of moments in terms of vertical displacement, principal moments on any inclined

plane, equilibrium equations for thin plate.

So, that was our last item covered in the last class and you remember that I have derived fourth

order partial differential equation with a biharmonic operator.

(Refer Slide Time: 01:34)



The equation has some specialty in mathematical physics and you know that this type of

equation also represents the airy stress function equation. So, we shall now proceed how to solve

these type of equation for different boundary conditions of the plate and what are the general

method available and whether the method yield the exact solution or we required to adopt any

approximate method. All these will be discussed in our class.

So, discussion on governing differential equation, that will be covered first. Then. what are the

available methods or techniques for the solution. Especially today I will discuss about the exact

solution, approximate solution will be covered later in separate classes. Then boundary

conditions in the plate because plate has straight edge or it may have curve boundary also. So,

today I will specially discuss the boundary condition for straight edges later on I will go to the

boundary condition for the curved edge.

Then there are some cases where the closed form (02:51) solution is readily obtained, very

simple function is chosen and that function is seen to satisfy the boundary condition as well as

your differential equation. So, nobody can deny that this function is not a correct solution, it will

yield the exact solution for them. But there are some specific boundary condition and specific

loading for which only this is possible.



So, one of the rare cases of exact solution of plate and that there are some examples from which

today I will cover the circular plate with clamped boundary. For that you can readily obtain the

exact solution say choosing a simple function. Then I will discuss the pure bending of plate when

the plate is subjected to pure bending moment along the edges, how it deforms and pure torsion

of the plate.

(Refer Slide Time: 03:54)

Now if you see the nature of the differential equation, is the biharmonic operator and if the

right hand side of this equation is 0, then in mathematical physics it is known as biharmonic

equation. So, the homogeneous solution for that type of biharmonic equation is already in

existence in different theories of mathematical physics. And here if we go for the plate subjected

to a transverse loading or it may be some edge loading also, where the homogeneous part has to

be solved, imposing the boundary condition at the edges, so that condition may also arise.

So, differential equation of the plate must be satisfied by the solution and the solution must

satisfy the boundary condition. If two conditions are satisfied simultaneously, then we call the

solution as exact solution. Now we will focus on the exact solution in this class specially, later on

we will cover some approximate method where exact solutions are not possible.

(Refer Slide Time: 05:08)



So, let us see the general techniques that are used for the exact solution or solution of the plate

problem are closed from solution that satisfy the boundary condition as well as differential

equation. Then solution of biharmonic equation that is you get an homogeneous solution and

over which the particular solution due to forcing term has to be super imposed, then only you

will get the total solution or complete solution for a linear case.

So, for a linear case homogeneous solution plus particular integral due to forcing function will

give you the complete solution, so that case may also arise. Now in certain cases the

trigonometry series provide very useful tool or very useful way of finding the exact solution of

the plate problem for the specific boundary conditions or for specific loading, specially for some

specific boundary condition, single trigonometric series or double trigonometric series can be

conveniently use to find their closed form solution.

The rigorous solution of the plate is essentially a boundary value problem, because boundary

condition has to be imposed. When you find the homogeneous solution of the biharmonic

equation then you will get because it is a fourth order equation. So, imposing the boundary

condition at the 2 edges you will get the 4 constants or 4 equations that has to be solved

simultaneously and you will get the problem of finding the constant of integration.



In many cases to simplify this we adopt the symmetric loading, anti symmetric loading, so many

techniques are used to simplify the calculation of the constants of integration because it

sometimes involves a lengthy calculation. So, closed form solution of the plate problems are

limited that statement I am making here and it is true in many cases you will not get. Then you

have to adopt a numerical technique, either finite difference or finite element techniques.

Or any other numerical techniques solving the differential equation, integrating the equations you

can use any numerical methods. So, here wh is the homogeneous solution of the homogeneous

solution of the plate equation that means a biharmonic equation. And wp is the solution for the

forcing function that I call a particular integral or particular solution.

(Refer Slide Time: 08:15)

Now let us see the boundary condition. Because I told you that boundary conditions are the

important components of the plate problem. When the boundary conditions are satisfied then you

will get the solution which is close to the exact value. So, in boundary condition, there are two

types of boundary condition, one is your geometric boundary condition and another I can term it

as a force boundary condition.

In the geometric boundary condition the deflection and slopes are the parameters that have to be

known at the edges. And for fourth boundary condition the shearing force and twisting moment



or bending moment have to be known at the edges. Now here I take an example of a rectangular

plate which is having straight edges. So, the rectangular plate is say OA, BC that you are seeing

here i.e the rectangular plate.

The length of the plate is ‘a’ which is along the x.-axis and width of the plate is b along the

y-axis. And you can see here that edge OA is fixed, it is clamped and edge AB is also fixed. For

example, we have a steel plate at one edge along the edge throughout continuously it is welded to

another plate or another element of steel. For example, base plate is welded or flange is welded

to the web, so this type of condition may occur.

So, that means it has a welded edge OA which represents the fixed boundary condition.

Similarly, AB is also an edge which is welded, so it represents a fixed boundary condition or

clamped boundary condition. Now the boundary condition OA, I will specify that, you see along

this y is 0, so along OA, the y value is 0. If I refer O as the origin then along OA y is 0, so that

means deflection is 0 along OA because it is fixed.

So, w at y equal to 0 is one condition that have to be imposed here. Then slope along the y

direction. So, since this is fixed, so the slope along the y direction the deflection curve will be

such that the tangent here will be almost horizontal if the plate is horizontal. So, the tangent will

have 0 angle making with the horizontal plane.

Therefore, the slope is 0 at the fixed edges, hence.

So, that is partial derivative of , deflection is taken, because deflection is a

function of two variables x and y. Again, you see at the edge AB, so you have to identify what is

the edge. At the edge AB, x is A and this AB is parallel to y axis. So, any y coordinate on AB

will vary from 0 to b. But x is fixed; x is ‘a’ along the AB. So, again at x = a, you are getting the



deflection at x = a is equal to 0. So, whatever deflection solution you obtain involving the 4

constants of integration then you can impose this condition at x = a to relate the constant with

their 0 value.

Now since this AB is fixed along the y direction, so the slope of the deflected curve along the x

axis, i.e along x direction will be 0 because tangent will be making 0 angle with the x axis at the

fixed edges. So, therefore we have taken

Substituted the value of x = a. So, this is one important condition that we generally encounter in

our practical situation of particular life that is the clamped edges.

(Refer Slide Time: 13:06)

Next let us go to simply supported edges. That is very common condition and it is mostly useful

in simplifying the work. Because simply supported condition although in the previous case you

have seen that deflection and single derivative of the deflection is taken. But simply supported,

although it is a very simple condition but the higher derivative is required. So, I will now discuss

what is simply supported condition.



So, simply supported conditions are here in the drawing it is seen that OA is also simply

supported, OC is also simply supported and BC is also simply supported. That means at x = 0 it

is simply supported, (x = 0 is here OC). So, OC edge is simply supported, then y = 0 that means,

the edge OA is also simply supported. And then y = b that is the side CB or BC is also simply

supported.

So, let us see what are the conditions that to be written for simply supported edges. In a simply

supported edges we know that deflection and bending moment has to be 0. So, rotation is

allowed in this simple support that we know. So, w is 0 that is the deflection at y = 0 = 0 for the

edge OA, I am writing the condition for edge OA first. So, if I write the condition for OA first, y

is 0, so therefore w at y = 0 is equal to 0 that is the one condition.

Then second condition bending moment along y direction since this is simply supported along

the y axis, so slope at y = a along y axis cannot vanish. So, therefore the bending moment

curvature exist and therefore bending moment is 0. So, rotation is allowed, so moment is 0. So,

bending moment expression we know that

(where is the curvature in y direction and

curvature in x direction).

Now you can see this edge OA is simply supported, so there cannot be any curvature along the x

direction, it is simply supported along the x axis. So, there cannot be any curvature or slope



along the x axis or along the edges. So, naturally we take this , hence

the second condition is simplified as

So, second derivative of w with respect to x square = 0, so this is the condition at y = 0, so 2

condition we got at y = 0. Now if I want to write the condition for the edge OC then how we will

write. So, edge OC is the x = 0, so boundary condition at OC will be w = 0, that is one condition

and second condition will be, the bending moment along the x direction is 0. So, bending

moment along the x direction is

But since it is supported along the y axis, i.e along the edge OC which is parallel to Y axis, so

there cannot be curvature along the y direction. So, that means , so

for that edges the condition will be w at x = 0 is 0 and .

So, it can be written in the similar way at this edge OC alright. Now, let us go to other condition.
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That condition I have written along OC, that I have told you now it is written and you will get in

my note also. So, free edge, let us see what the free edge indicates. Free edge, though there is not

any support but condition imposed is very complex at the free edge. Because at the free edge we

know that forces or stresses vanishes. So, therefore the force boundary condition has to be

imposed on the free edges, not geometric boundary condition.

Because at the free as both slope and deflection cannot be 0. In the simply supported edges, we

imposed one geometric condition that is w = 0, but one fourth boundary condition that bending

moment = 0. In clamped edges, we imposed two geometric conditions only that w = 0 and slope

= 0. Simply supported edges one geometric condition and one force condition. But in the free

edges geometric condition cannot vanish because w has to be non-zero and slope also has to be

non-zero.

So, in that case we have to impose the force boundary condition that is condition for shearing

force and bending moment. Now in the plate you know that due to generation of shear stress,

there will be twisting moment. So, at the free edge we have three quantities to be vanished, one

is bending moment 0, twisting moment 0 and shear force 0. Now since this edge AB is located

by x coordinate as x = a, x = a denotes the edge AB completely.



This along AB, the y coordinate varies from 0 to b but x coordinate is fixed x = a along AB. Now

here three conditions are there, these three conditions have been given by poisson.

(Refer Slide Time: 20:09)

And later on, this other authors, Kelvin and Tait found that three conditions are not necessary.

Because these last 2 conditions can be combined that is the shear force and twisting moment can

be combined to give a single condition because these are not independent quantities. So, Kelvin

and Tait pointed out that second and third equation that I have shown you that for bending

moment and the twisting moment and shear force (0) can be combined because they are not

independent.

And if you combine it you will get a realistic boundary condition. Now let us see how we can

combine it. In the adjacent figure we see that the twisting moment Mxy acting on a element dy.

Because all quantities in the plate (i.e whatever stress resultant etc.) are per unit width that you

remember. So, M xy is also per unit width.

So, if it acts on a length dy, so total twisting moment on this length will be Mxy dy. Now you can

see this, this twisting moment Mx dy can be represented by 2 equivalent opposite forces Mxy and

Mxy, so that it give rise to a couple M xy dy. So, this M xy dy is equivalent to a total Mxy and d xy

equivalent opposite forces is equivalent to a couple Mxy dy. So, based on that it is found that in



adjacent element there will be some increment Mxy + dMxy. And dMxy is the increment which in

the full form is

That is coming from Taylor series expansion that I have given you in the equilibrium of equation

lecture. So, how the incremental quantity is written on the opposite faces or at a distance given

by at a distance dx or dy apart. So, this on the adjacent element you will get that Mx + dMxy this

is the twisting moment. So, Kelvin and Tait pointed out that any free edge addition of vertical

shear, vertical shear is already there.

So, in this edge the vertical shear Qx is already there. If Qx is added to the shear force generated

due to twisting moment and then it is equated to the edge shear (if there is some edge shear), then

it will represent the true boundary condition. So, at the free edge there is no shear force, so edge

shear is 0. So, that means the edge shear that is to be balanced by the component of shear force

acting on this edge Qx plus the increment of shear force due to twisting moment. So, let us say

how this can be found out?

(Refer Slide Time: 23:43)

So, Kristov has given an expression for the edge shear therefore it is popularly known as Kristov

edge shear. So, in this slide you can see that net vertical force in the element of dy you will find



. So, you can see this is equivalent to the unit of force. Because the

Mxy is the force per unit length and this is your this y, so this will be again the unit of force per

unit length.

Because the shear force is expressed as the unit of force per unit length. Hence total vertical

shear at the edge should be Vx, which is total vertical shear. So, Vx multiplied by the length of the

edge which is dy or length of the element dy should be equal to the shear force that is generated

due to vertical force Qx, Qx into dy for this element plus this is the component of shear force

produced by twisting moments.

So, if these two forces are added and equated to the edge shear then it will reflect the true

boundary condition at the free edge. So, Kristov has given this expression and dividing both

sides by dy you will get Vx = Qx + dMxy by dy. So, this is the edge shear force. Now, at the free

edge since there is no shear force acting, so edge shear is 0, so Vx will be 0 at the fixed end.

Now let us find out what is the expression for Vx in terms of deflection, because we will solve

the equation of deflection, plate equation is expressed in terms of deflection, the generic

equation. So, we will find the solution in terms of deflection which is a function of x and y. So,

therefore let us express the edge shear in terms of deflection. Now here you can see that Qx from

the equilibrium equation if you remember in my last class.

We have obtained the equilibrium equation that

. So, what is Mx. Mx is the bending moment in the x direction and

bending moment in the x direction is given as



, this is the bending moment expression along the x direction.

So, the first derivative of bending moment is taken and then the first derivative of twisting

moment is taken.

So, with the twisting moment expression that is the twisting curvature with the

twisting moment you know that a term is associated. So, this term

is there again and it is minus, so is there and the derivative of

the twisting curvature is taken with respect to y. Now if you take this differentiation, then you

will find that cubic the third derivative will be resulting.

And after simplification it is a very interesting thing that after simplification in the edge shear

expression in the shear force expression you will not get any poisson ratio term. So, there is no

poisson ratio term in the shear force expression. Shear force due to vertical force or transverse

force. So, shear force due to transverse force transverse load in the plate is simply -

and this you know this is the by him say Laplacian equation.

So, we can now say that Qx is nothing but into that is the

Laplacian operator multiplied by w. And here for Qy the derivative has to be taken with respect to

y. So, once we know the expression for Qx, now substitute the expression for Qx here, from here

to here. I brought these two here and dMxy you know that the expression for dMxy is this term and

multiplied by this term.



So, I have brought this expression for dMxy and I differentiated this with respect to y. So, after

differentiation and rearranging, you will find that edge shear is giving a very interesting

expression. That is edge shear equal

. Now you can see here this is the edge shear force at x

= A, that is at the x edge means x coordinate is constant along the edges, x coordinate is constant

but y is varying.

For example, we want to find out say, in the previous case let me show the figure. Say this is the

free edge that I have taken AB where the x coordinate is constant x = A. For example, if OA is

free instead of clamp as suppose OA is free, then we have to write at y = 0, edge shear Vy is 0.

So, expressions for Vy can be written with an analogy of that expression, Vy will be

So, for depending on the edge, where the coordinates are specified, you can express the edge

shear and the edge shear has to be equated to 0 at the free edge that is the first condition. Second

condition as the free edge there will not be any bending moment.
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So, bending moment because this is the x edge, so x = a bending moment is 0, so bending

moment expression is 0. But here in the simply supported edge compare to the two expression

here for free edge we are equating bending moment 0. In the simply supported edge we also

equated bending moment equal to 0. But you can see the distinction or difference between these

two expressions. In the simply supported case where the bending moment at x = a that edge was

simply supported, we take it to 0 and then we neglected the curvature along the y direction.

So, only was there. But here interestingly you can see because it is the free edge,

so curvature cannot vanish. So, it is going to be deflected and free edge deflection will be

measurable, significant deflection will be there at the free edge, slope will be there. So, therefore

you have to take two terms in the moment expression and Vx is known as the Kristov edge shear.

So, that is very important condition for the free edge because originally poisson has given 3

condition the bending moment 0, twisting moment 0 and edge shear 0. But twisting moment and

vertical shear are combined to give a Kristov edge shear. So, ultimately the final condition

reduced from 3 to 2. So, it becomes easier after combining these two-expression twisting

moment and these vertical shear force.
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Now let us go to the other condition that is sometimes we get this type of situation a plate or slab

Say for example; a slab is supported by a beam where beam is also a elastic element. Because

when the slab load is transferred to the beam, beam has to react to this load; beam is not a rigid

element. So, when the load is applied to a elastic element or a flexible element it has to undergo

some displacement whatever small maybe.

So, similarly here due to load transfer from the slab to the beam there is some deflection in the

beam, nobody can deny. And you can also see that this edge where it is supported by the elastic

beam the moment when bending moment acts along the lengthwise direction here, will also try to

rotate the beam. So, this bending moment has to be resisted by the beam torsional capacity.

So, you are understanding here the two conditions are necessary, one is that the beam deflection

here will be same as the plate deflection. But beam deflection will only can be found when we

know the distributed load over the beam. Distributed load over the beam is nothing but the edge

shear along this edge, whatever edge shear you are finding along this edge this will be the load

acting on the beam.

Similarly, the bending moment whatever you get here for the plate this will be your distributed

twisting moment over the beam which has to be resisted by the torsional moment or torque in the



beam. So, let us find the mathematical expression for these conditions. So, two conditions I were

expressed and I have written here. We should know two parameters for the beam one is B, that is

the flexural rigidity of the beam, E is the modulus of elasticity of the beam and I is the moment

of inertia of the beam.

It is not necessary that plate and beam should have same modulus of elasticity, beam maybe of

different materials. Suppose if you construct a slab say of concrete of say 20 MPa then beam

maybe of concrete of 30 MPa. So, there will be difference of modulus of elasticity again two

different types of metal can also be used when the metallic plate is resting on another metallic

support.

So, therefore this modulus of elasticity of the beam not necessarily the same as the modulus of

elasticity of the plate, so that you should remember. Then the torsional rigidity of the beam,

torsional rigidity is defined as the product of shear modulus into torsional constant J. Torsional

constant J is slightly difficult to find out specially for rectangular section because we will find

that a rigorous solution is obtained for the torsional constant and a chart was given in the book of

theory of elasticity by Timoshenko.

For rectangular beam of different width depth ratio, so that you will find. So, coefficients are

given and you can find from that coefficient. For a circular section that torsional constant is very

easy, for circular section J is nothing but polar moment of inertia. But for rectangular section or

other thin wall section the torsional constant is not readily determined as the sum of the moment

of inertia, it is not equal to the polar moment of inertia.

Polar moment of inertia is nothing but Ix + Iy, Ix + Iy gives a moment of inertia perpendicular to

the x and y axis. But it is not the case of other type of section, only it is true for circular section

where you can easily get the polar moment of inertia as is Ix + Iy. However, for rectangular beam

or rectangular support that rectangular sectional support that we are showing here the torsional

constant has to be found out by proper method. So, these are two parameters that should be

known for beam then only we can write the boundary condition.
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So, for the beam if we see the deflection of the beam, deflection of the beam is to be written as a

fourth order equation , that is the differential equation or the very

well-known equation for beam deflection subjected to uniformly distributed load of constant

cross section ‘B’. Then you can see the right-hand side is nothing but the load transmitted on the

beam and load transmitted on the beam is nothing but the edge shear.

You can see this quantity is edge shear, there is the edge shear per unit length will be distributed

load on the beam. So, knowing this quantity at x = a, we can find out or we can impose the

boundary condition to evaluate the unknown constants of integration. So, this indicate that the

deflection of the plate at edge x = a will be equal to the deflection of the beam. Then second

boundary condition is obtained from the twist of the beam produced due to edge moment Mx.

So, at the edge x there will be the bending moment Mx along the x direction and you can see the

resistive moment is offered by the beam due to it is torsional rigidity. So, this moment has to be

found, bending moment expression we already know it.
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So, bending moment expression is known here and we have equated these two torsional moment

or torque of the beam and how it is evaluated. For example, at one end of the beam or at one

element of the beam the couple is empty, torsional couple is empty at a distance dy the torsional

couple will be at a distance dy. So, that means if I take

the equilibrium of the element for torsional moment because at the other side the sign will be

different.

So, this minus this will be your bending moment Mx dy. So, you can see that this quantity, the

first line equation is nothing but . That means

here the torsional moment that is you have to find out. And torsional moment is nothing but,

Torsional moment of a beam if we know the twist, rate of twist multiplied by the torsional

rigidity is your torsional moment.

So, rate of twist is nothing but and it is multiplied by the torsional rigidity C which is

nothing but equal to G j, G is the shear modulus of elasticity and it is derivative is taken with



respect to y and it is equated to the bending moment at x = a. So, both the quantities are

evaluated at x = a. So, this gives the second boundary condition for this case, when the plate is

supported along the elastic beam, continuous support, there is no discontinuity of the support that

you should remember.

So, Mt a is found from the rate of change of angle of rotation at any cross section multiplied by

the torsional rigidity. So, after simplifying you will get this, this is the equation i.e second

equation for the boundary condition of this case when the beam is plate is resting on the elastic

beam and the first boundary condition is this. So, 2 boundary conditions we have written.

(Refer Slide Time: 41:13)

Now there may be case when one of the edges is supported by the linear spring continuously

distributed, there is no break. Although in the figure you can see that a break is there, but it is

with a very close spacing. So, it is a distributed spring, it is acting on this plate edge if this is the

origin of the coordinate system then x = a, the spring is distributed or the spring is attached at x =

a, so this is linear spring.

Another case maybe there when they torsional spring or rotational spring is attached and this

edge x = a. So, these are the 2 non-classical boundary condition. Previous one also non-classical



boundary condition. Classical boundary conditions are clamped, pinned or simply supported and

your free clamp, simply supported, free, these three are classical boundary condition.

Non-classical boundary condition I have shown that the beam resting on the elastic support.

Then plate resting on the elastic beam then plate resting on the linear spring and plate resting on

the rotational spring. So, let us see what may be the equation for boundary conditions in these

two cases separately.
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So, first let us see edge supported by linear spring, so linear spring is supported. So, 2 condition

we have to impose, bending moment at edge x = a is 0, here bending moment is 0 and spring

force, here due to deflection at the edges spring will offer resistance. So, spring resistance at

these edges k stiffness of the spring multiplied by the deflection this should be equal to your

edge shear. So, spring force should be equal to edge shear, so that is one condition. But first only

condition is bending moment equal to 0.



So, bending moment equal to 0 gives the implication

This is the bending moment expression at x = a, you have to substitute in the expression x = a,

then only you can write the equation. And the second condition spring force = edge shear. So,

this is the edge shear expression at x = a that we have derived earlier + kw that is the spring force

equal to 0.

That means you can write the D into this whatever quantity is there within this second bracket

equal to kw. So, it indicates that spring force has to be resistant or has to be balanced by the edge

shear. So, these are the condition when the one edge is supported by linear spring.
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Then edge supported by the rotational spring, 2 condition at the edge x, a must be satisfied. So,

let us see what are the condition. Since, it is rotated by the rotational spring or torsional spring, it

will offer resistance to the bending moment along the edge. So that means along the edge, the



bending moment transferred from the plate should be balanced by the resisting moment offered

by the rotational speed.

So that is one thing, the bending moment along the edge x = a as equal to the resistance or

resisting torque offered by the rotational speed and second condition is edge shear is 0. So hence,

we can write two equations at the edges. One is this, this is your bending moment plus this is the

rotational or torsional resistance offered by the spring, ‘β’ is the torsional constant or rotational

spring constant that we take.

Beta is the rotational spring constant multiplied by the angle of rotation . So, this

should be equated at x = a for such cases to get first condition of boundary. Second condition of

boundary is obtained by equating edge shear = 0. So, we have discussed boundary condition that

we generally encounter in practice, classical type and non-classical type. In classical types are

common but non-classical types also we have to impose in certain cases alright.
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Now I want to discuss that in certain cases of plate problem, we can obtain very interesting

solution without a very rigorous calculation. And that are some rare cases, one of the cases is

such that when a circular plate is clamped along the edges, so that is one case, a rare case.



Circular plate clamped along the edges and subjected to UDL throughout the plate, so Q0 per

meter square Q0 per unit square a square is the load intensity here.

And a is the radius of the circle. Now you can see how this problem can be solved. This is

proceeded like that. If I assume a deflection function, say this, C is a unknown constant and

If I assume this as the deflection function, then it shows that

it readily satisfies the boundary condition. So, what are the boundary condition?

Boundary condition at the fixed these edges, fixed edges will be your slope, it is deflection is 0.

And the slope, because this is a curved edge, so I take slope with respect to normal direction,

. And this can be decomposed into a Cartesian coordinate slope also that we have seen if the

angle of inclination with the original x axis is known, that derivation I have done in my earlier

classes.

So, these two conditions have to be satisfied at the edges, and taking this function, you can see

that at the boundary . So, this quantity becomes 1, so 1 - 1 is 0, so deflection is

satisfied. Again, if you take this derivative of that quantity with respect to x, or with respect to y,

this expression within the bracket will come first, and then we will take the derivative with

respect to x or y whatever maybe.



So, again it will be 0 because this term is again appearing in the expression of slope. So,

therefore the same condition is also satisfied. So, you have to take a quadratic term with this

expression, .

So, the expression shows that boundary conditions are satisfied at once without any difficulty for

clamped edges, nobody can deny.

Now if this condition is satisfied and if I think that it is the solution of the differential equation,

that it must satisfy the differential equation. So, if I take certain function as a solution, I have to

substitute it in the differential equation to see whether both sides are equal. So, that means, this

function or wxy, now have to be substituted in this differential equation.
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Let us see, if I substitute this in the differential equation

which is expanded in this form



Q0 is the uniformly distributed load. Now you require here to evaluate or know the derivatives up

to fourth order because the expression is given for w, as . So, you can

successively obtain the derivative.

So, if you obtained the derivative is obtain, is obtain then is obtain.

So, lastly, we go to the 4th derivative, so 4th derivative is , it can be easily

verified.

(Refer Slide Time: 50:25)



And similarly, we can obtain the derivative with respect to y and the cross derivative that is

required for the second term, that is , so that quantities also

evaluated. Now substituting all these derivatives in the differential equation, in the equation

number 20, we will get this constant C, C is easily evaluated as

.

So, hence the deflection surface is defined by this, C is known, so exactly deflection surface is

obtained. So, from the deflection surface now you can go for other quantities like bending

moment, shear force, twisting moment etc. whatever you may be but for x is symmetrical case is

there will be no twisting moment, so bending moment you can obtain. And it can be seen that

maximum deflection will occur at the center.

So, substituting x = 0, y = 0 in this expression, expression 22 you get the maximum deflection of

the plate as . So, that is very rare cases where the solution is obtained just

by assuming as suitable function which is satisfying first the boundary condition and after

imposing this into the differential equation, we get the unknown constant.

(Refer Slide Time: 51:59)



Now let us see the pure bending case of a plate, that is very interesting, a interesting surface is

obtained when we find out this deflection of the plate. Now, the plate is subjected to pure

bending along the edges M1, and it is a symmetrical case. This is symmetrical case it is shown

here, but there may be at anti symmetrical case also. The moment curvature relationship is

expressed you know that moment curvature relationship is this.

And since there is no twisting moment, so

Now, equation number 24 and 25, you can see here this is the curvature in the x direction and

this is the curvature in y direction. Here this is curvature in y direction, this is curvature in x

direction and these are the moments that is applied moment M1 and M2 on the plate.
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So, solving 24 and 25 simultaneously, one can obtain this expression of curvature in x direction,

and expression of curvature in y direction. And twisting moment as usual, we have written

Now let us integrate these, because we are targeting these w, w has to be found out. So,

integrating the first equation, with respect to x, we get and it is x and constant of

integration. Now constant of integration here I take as a function of y because I am doing the

integration with respect to x.
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Then again integrating the first expression, this expression I get this expression will be

. So, is coming, and then f1 (y) x and then another constant of integration which also I

will take as a function of y because I am integrating with respect to x. Similarly, integration of

the second curvature equation, second curvature equation is this equation number 28. So,

integrating equation number 28, first we get this, so here the function of x will appear. And after

second integration we will get another function of x.
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Now integrating the twist curvature equation, twist curvature now I am writing in this way, an

integration of this equation simply results. Say if I integrate this equation first equation, this

equation equal to 0. Then I will get and function of G(x) function of x, because I am

integrating with respect to y. And in the second case, I am integrating with respect to x. So, I am

getting a function of y as a constant, which means that earlier cases, if you compare this you will

get the f 1(y) = constant in g 1(x) = constant.

So, these constants I termed as A and B. Equating both the expressions for wxy, we have got after

twice integration of curvature in x direction and after twice integration of curvature in x

direction. So, equating these we get this. So, there are some interesting conclusion will arise, you

can see here in the left-hand side, the expressions are function of x. In the right-hand side, the

expressions are function of y, this clearly indicates because M1, M2, poisson ratio and capital D

all are constant, B is a constant, A is a constant.
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But how a function of x can be equal to a function of y. This is not possible unless both are

constant. So, that is very important conclusion.

(Refer Slide Time: 56:06)

And based on that we take these holds good only when both the sides are constant and that

constant I am taking at -C. So, that means in the first equation, see this is the first equation of

deflection obtained from integration of curvature in x direction, and this is the second equation of

deflection obtained from curvature of y direction, so both are constant. So, if I add this to a

constant a constant in as added to a first equation and we get this.



Now these three arbitrary constant A, B, C, now have to be evaluated based on the prescribed

condition at the boundary. Because here boundary conditions are not specified, it is just a plate

on which the moments are applied. That is in the boundary condition we know the moments. But

these constants can be eliminated if we take the center of the plate as the reference point from

which the deflections are measured, deflection or slopes are measured.

So, if I take the origin as the reference point, then I get that at x = 0, y = 0, the slope and

deflection will be vanished because it is a symmetrical bending. So, therefore in that case we will

get A = 0, B = 0, C = 0.
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So, in that case the deflection surface is simply written just like as a function of x2 and y2. And

the coefficient of x2 you know and coefficient of y2 you know here. That can be arranged after

arranging the multiplier in a suitable way. So once the deflection wxy is known, other quantities

in the plate can be determined, that you know the usual practice.

But if I take M1 = M2 is equal to some constant value. That means plate is bended by equal

couple on all sides, then you will get interesting thing like that. The wxy is becoming this, so this



indicates the surface deflects in the form of a part of a sphere, so one can find in this case the

radius of curvature as .
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So, the surface will look like that when M2 by M1 = 1 and poisson ratio is 0.3, for that I have

plotted.
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And for different values of M2 by M1 ratio, 1.53, but all are symmetrical cases, so symmetrical

bending you are finding that curvature in one direction, so it is a simplistic surface.
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Now when there is a anti symmetric moment, then you will find the reverse curvature. So,

reverse curvature is seen when the moments are not equal, or not symmetrical. I should not tell it

equal magnitude is maybe whatever maybe but this is not symmetrical. So, in that case the M2 by

M1 is -1.5 that the senses are different and here M2 by M1 is -3. So, here you will get a reverse

curvature and therefore this type of surface is known as anticlastic surface.
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If I see the pure torsion of the plate, so in that case bending moments are 0, only the torsional

moment is applied. And torsional moment equation we know, this is the torsional moment

equation this and we can write this torsional moment equation as this. So, integrating above

equation and using same argument as before, we can arrive

.

So, this is another equation for deflection of a flake subjected to pure torque, so pure moment is

there.
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So, in that case the deflection surface will look like that.
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So, let us see whatever we have covered in this lecture, let me summarize this. So, in this lecture

we discussed about the analytical solution technique available for the plate equation. Then we

have introduced different boundary condition in the plate, classical boundary condition,

non-classical boundary condition, plate edges, simply supported, clamp, free. These are 3

classical boundary condition, non-classical boundary condition as resting on the elastic beam.

Then your edge resting on the elastic beam, then edge resting on the elastic spring, then edge

resting on the rotational spring. In the first case the edge resting on the linear elastic spring and

in the second case the edge resting on the rotational spring. So, this type of boundary condition

we have seen. Then I have focused that there are some cases where the closed form solution can

be readily obtained.

So, these are the rare cases, it happens for some particular boundary condition and particular type

of loading, not for all cases, very limited cases it can be obtained. So, one of such cases is the

circular plate clamped along the edges and subjected to uniformly distributed load. So, that case I

have demonstrated, how to find the deflection, taking a suitable deflected surface to find the

unknown constant associated with the deflection function.

And from that we have seen that the maximum deflection occurs, as we expected at the center

and magnitude is given in terms of the radius square and this load intensity and your radius to the



power 4, load intensity and this flexural stiffness of the plate. As usual in case of beam also we

have seen that deflection decreases if we increase the depth of the beam. Here also in the plate

equation, we have seen that deflection decreases when the thickness of the plate is increased.

Because in the flexural rigidity of the plate the h cube term is appearing. So, there is similarity

with the beam and plate also. So, then we have seen that pure bending of a plate subjected to a

moment at the edge moment same sense but of different magnitude. And then when the

magnitude of the moment and sense of the moments are equal, a purely symmetrical case of

equal magnitude.

Then we have seen that deflected surface is a part of a sphere, and radius of the sphere can be

easily computed from this deflected surface by taking the second derivative, the curvature and

reciprocal of this will be radius of curvature. Then we have seen that for a anti symmetric

moment, there will be reversal of curvature. So, the two terms I have introduced one is simplistic

surface but the curvature is in the same direction.

And anticlastic curvature the bending takes in a reverse way, so reversible curvature occurs due

to inter symmetrical loading. Then we have seen the pure torsion of a plate, and how it is solved

from the twist equation in a very simple way. And we have demonstrated the form of the surface

that is formed due to pure twisting. So, thank you, again we will meet in the next class to proceed

further, thank you.


