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Hello everybody, today I am delivering the 3rd lecture of the module 8, and the topic is the

plates and shell; we have covered the plate, and then we have entered the chapter shell. So, so

far, I have introduced this shell to you as a theme structural elements edges stress skin. So, I

have shown you how the membrane analysis of a stress skin can be done, and the differential

equation of a membrane is obtained, which was under the uniform tension.

And we obtain the deformation under the uniform pressure on the membrane. The membrane is

given as an example of a stress skin, and then we discussed the classification of various shells.

So, various shells, you have seen that classification was done mainly based on the curvature

because curvature is the characteristic of the shell. That means shell is actually known by it is

curvature; if there is no curvature, shell is a plate.

So, depending on the nature of curvature, we have group the shell into different categories and

the surface that is formed by translation of a straight line or of a curve; everything was

discussed and given you the full description of the shell of different types. Now today, I want to

discuss the stresses resultants and couples in thin shell. Now the shell that is mainly used in

civil construction as a roof structure is subjected to your self-weight, that is, the dead load, live

load.

Live load is nominal because in the roof structure, except for maintenance, no live load is

significant. So, maintenance live load is very low, so therefore the dead load predominates, and

in some region where snowfall is more, then snow load has to be considered in the analysis and



design of shell structure. Now in case of other applications, say pressure vessels or these

aircraft structures.

Aircraft, the skin that is the fuselage skin which is acting as a membrane, is subjected to wind

pressure, and therefore the stresses are developed on the shell structure. Similar is the case of

pressure vessel, which is subjected to internal pressure, and as a result, the stresses are

developed. So, I have here mentioned the stress resultants and couples, which includes the force

as well as moment in the thin shell in response to the external loading.

(Refer Slide Time: 03:40)

Now let us take a shell element which is of certain curvature, and curvature exist in both

direction; it is an element of doubly curved shell. And the middle surface of the shell is the

surface with bisects the thickness of the shell. So, thickness of the shell is denoted by h, and

thickness is very small compared to radius of curvature in general. So, radius of curvature in 2

orthogonal directions are denoted by and .𝑅
𝑥

𝑅
𝑦

And middle surface here it is shown as dotted line, as you are noting here. And we take an

element of the shell across the thickness at a distance z of say this thickness of the element is 𝐷
𝑧

at a distance z. So, we will consider this for deriving this stress resultant. Let us consider 2



adjacent planes which are normal to the middle surface. So, these adjacent 2 planes are normal

to the middle surface at which the principal curvature exists.

So, principal radius of curvature in these 2 edges in normal planes you are seeing, that in this

plane the principal radius of curvature will lie and here also in this plane the another𝑅
𝑥

principal curvature the will lie.𝑅
𝑦

(Refer Slide Time: 05:17)

Now in this figure, the x-axis and y-axis are tangential at point O to the lines of principal

curvature. So, principal curvature, as you are seeing here, it is along the middle surface, so this

x-axis is tangential to the principal curvature along the x-direction; similarly, y-axis is

tangential along the principal curvature in the y-direction. Now in the x-z plane, the x-z plane,

the principal radius will lie.𝑅
𝑥

Similarly, in the y-z plane, the principal radius, y-z plane that you are seeing here y-z, this is y,

and this is z. And y-z plane, the principal radius will be there, and in another plane, x-z, the𝑅
𝑦

principal radius will be there. Now in the shell, due to external loading, the in-plane shear as𝑅
𝑥



well as radial shear will be developed and also bending moment. So, let us see the in-plane

shear in the x-direction is , and in-plane, shear in y-direction is .𝑁
𝑥

𝑁
𝑦

Membrane shear force is , and are also there in an element. And we are also noting that𝑁
𝑥𝑦

𝑁
𝑦𝑥

vertical shear along the edge, which is parallel to y-axis, is and on the other edge, which is𝑄
𝑥

parallel to y-axis, is . So, , and are in-plane forces, whereas and are radial𝑄
𝑦

𝑁
𝑥

𝑁
𝑦

𝑁
𝑥𝑦

𝑄
𝑥

𝑄
𝑦

shear along the edges parallel to y-axis and x-axis, respectively.

(Refer Slide Time: 07:27)

Now let us take the thickness of the shell is h. Now, as I have mentioned, this like plate all the

quantities the in-plane forces, then your bending moment, twisting moment etcetera, everything

will be denoted per unit length. So, therefore is also expressed in terms of per unit length.𝑁
𝑥

For example, the force unit is Newton, then will be Newton per meter if the length units𝑁
𝑥

taken is meter on millimetre, whatever you call.

Then if I want to calculate stress, distribution of normal stress across the thickness, , is
𝑁

𝑥

ℎ×1 ℎ×1

the area of the strip. So, because the unit would these taken for the shell in the analysis and

design of shells. So, we multiply thickness by 1 to get the area of the element. Similarly,



and . Now we call in-plane forces as the main forces; let us see what are σ
𝑦

=
𝑁

𝑦

ℎ×1  τ
𝑥𝑦

=
𝑁

𝑥𝑦

ℎ×1

the membrane forces and how these are evaluated?

So, first, let us see the is the membrane force in the x-direction, and you are seeing here in𝑁
𝑥

this figure, this is along the x-direction, x-direction is this, x-axis shown here. So, is𝑁
𝑥

𝑁
𝑥

calculated as . So, if there is no curvature, that means the adjacent edges thatσ
𝑥
(1 − 𝑧/𝑅

𝑦
)𝑑𝑧

you are seeing is actually in trapezoidal shape. So, this is due to curvature and therefore, to

account for curvature, this term is there .− 𝑧/𝑅

And in the appropriate direction, say we are calculating this normal stresses along the

x-direction. So, along the x-direction, that is actually your y-z plane, and in this y-z plane, you

can see that radius of curvature is lying. So, therefore and limit will𝑅
𝑦

−ℎ/2

ℎ/2

∫ σ
𝑥
(1 − 𝑧/𝑅

𝑦
)𝑑𝑧

be to because h is the thickness of the shell and if we take an element at a distance− ℎ/2 ℎ/2

z from middle surface.

Then we have to integrate it from to if middle surface is taken as the reference.− ℎ/2 + ℎ/2

Similarly, , the membrane force in the y-direction is calculated as ,𝑁
𝑦

−ℎ/2

ℎ/2

∫ σ
𝑦
(1 − 𝑧/𝑅

𝑥
)𝑑𝑧

integration limit is to . will be developed because of shear stress. So, shear− ℎ/2 + ℎ/2 𝑁
𝑥𝑦

stress is taken here, and , you are seeing that is acting along this edge which isτ
𝑥𝑦

𝑁
𝑥𝑦

𝑁
𝑥𝑦

parallel to the y-axis.

So, therefore these factor is coming here, that , this term is there and ,𝑅
𝑥

− 𝑧/𝑅
𝑥

(1 − 𝑧/𝑅
𝑥
)

this is actually due to curvature. So, when this is curvature is very small, that means the radius

of curvature is very large. In that case, or can be neglected because this will be small𝑧/𝑅
𝑦

𝑧/𝑅
𝑥

in comparison to 1, and this factor can be omitted. So, this the another component of𝑁
𝑥𝑦



membrane force that is a membrane shear force is given by , toτ
𝑥𝑦

1 − 𝑧
𝑅

𝑦
( )𝑑𝑧 − ℎ/2 + ℎ/2

is the limit of integration.

Similarly, , is the membrane shear force along the direction that is parallel to x-axis So,𝑁
𝑦𝑥

𝑁
𝑥𝑦

that you are getting here . Now to are the limits of the𝑁
𝑦𝑥

 τ
𝑦𝑥

1 − 𝑧
𝑅

𝑥
( )𝑑𝑧 − ℎ/2 + ℎ/2

integration. Now here, should be equal to , but you can see that in general is notτ
𝑦𝑥

τ
𝑥𝑦

𝑁
𝑥𝑦

equal to because the 2 curvature may be different. Because here and here you are𝑁
𝑦𝑥

− 𝑧/𝑅
𝑦

seeing , so when these factor, these or is to be taken in shell analysis, then− 𝑧/𝑅
𝑥

𝑧/𝑅
𝑥

𝑧/𝑅
𝑦

your and is not required.𝑁
𝑥𝑦

𝑁
𝑦𝑥

(Refer Slide Time: 13:03)

Radial shear, we express in terms of again integration because the vertical shear stress that is

is taken here. And if the distribution is known along the thickness, then the is developedτ
𝑥𝑦

𝑄
𝑥

due to . So, is this force that is the vertical shear stress, so and it isτ
𝑥𝑦

τ
𝑥𝑦

τ
𝑥𝑦

(1 − 𝑧/𝑅
𝑦
)𝑑𝑧

integrated in the limit to . Similarly, , is the radial shear along the edge,− ℎ/2 + ℎ/2 𝑄
𝑦

𝑄
𝑦

which is parallel to x-axis.



Then we are getting . So, these are the radial shear, so what are the stressτ
𝑦𝑧

1 − 𝑧
𝑅

𝑥
( )𝑑𝑧

resultant that we have got? We have got and . Now quantity𝑁
𝑥
,  𝑁

𝑦
,  𝑁

𝑥𝑦
,  𝑁

𝑦𝑥
,  𝑄

𝑥
  𝑄

𝑦

influence the magnitude of this stress resultant, that is, your membrane forces as𝑧/𝑅
𝑥
 , 𝑧/𝑅

𝑦
 

well as shear forces. But when the thickness of the shell is small compared to the radius of

curvature, then are negligible in compared to unity.𝑧/𝑅
𝑥
 , 𝑧/𝑅

𝑦

So, in that case, this quantity and can be neglected. For example, for a small thin shell𝑧
𝑅

𝑥
 𝑧

𝑅
𝑦

this for a certain data, it becomes . So, in that case, we can ignore this term, and𝑧/𝑅
𝑦

1×10−6

we can simply write tau xz into dz, to is the integration limit and then find the− ℎ/2 + ℎ/2

result. So, similar is the case with other stress resultant.

(Refer Slide Time: 15:10)

That means if z, the thickness of the shell is very, very small compared to the radius of

curvature. Then this term can be neglected because it is very low value compared to 1. So, in

that case, the magnitude of in-plane forces that can be found simply by integration of σ
𝑥
×𝑑𝑧

and can be found as simply by integration of , can be found by integration of𝑁
𝑦

σ
𝑦
×𝑑𝑧 𝑁

𝑥𝑦

, is simply found .τ
𝑥𝑦

×𝑑𝑧 𝑁
𝑦𝑥

τ
𝑦𝑥

×𝑑𝑧



Now when we neglect these quantities, then we can easily verify that , which𝑁
𝑥𝑦

= 𝑁
𝑦𝑥

quantity? That . If these quantities are approximately are tending to 0, then𝑧
𝑅

𝑦
𝑎𝑛𝑑 𝑧/𝑅

𝑥
  𝑁

𝑥𝑦

will be equal to because of the complimentary nature of the shear stress and . So, we𝑁
𝑦𝑥

τ
𝑥𝑦

  τ
𝑦𝑥

got all stress resultants in the shell except the bending moment, but bending moment effect in

the shell in many theories are neglected.

And it is found that the bending moment influence is mostly predominant near the support. And

away from the support, the membrane state of stress in-plane forces are mostly significant and

can be taken for the design. And in simplifies the design procedure and calculation. However, at

this support, the bending moment effect is seen that is if the support when the shell joint with

the edge beam, then there will be a moment. And this moment will alter this test condition near

the boundary. So, that condition have to be taken in the shell theories by knowing the

expression for the bending moment.

(Refer Slide Time: 17:30)

So, now we will discuss the bending moment expression. Let us take a small element of the

shell at a distant z from the middle surface, and this element has a unit width, for example. So,

therefore area is , so is the force along the x-direction. So, now this force1×𝑑𝑧 (1×𝑑𝑧×σ
𝑥
) 



multiplied by the lever arm z that is, we are taking the moment of the forces about the neutral

axis as about the middle surface, which is analogous to the neutral axis.

So, the neutral axis in case of beam, so here we are taking it as a middle surface. But the

properties of middle surface is that they are the stresses are 0, and all the quantities are actually

referred to in the middle surface. So, here if we take z is the distance of the element from the

middle surface, then moment of the force is , and this factor is taken because ofσ
𝑥
×1×𝑑𝑧

curvature.

So, in the x-direction, if I see this curve, the radius of curvature is , so factor is there. Now𝑅
𝑦

𝑅
𝑦

we can write the expression for if we know the normal stress along the y-direction, so in𝑀
𝑦

that case, . So, here are the principal radius is , will be your , and isσ
𝑦
(1 − 𝑧/𝑅

𝑥
)𝑧𝑑𝑧 𝑅

𝑥
𝑀

𝑦
𝑀

𝑥𝑦

developed due to shear stress. So, twisting moment is given by .τ
𝑥𝑦

1 − 𝑧
𝑅

𝑥𝑦
( )𝑧𝑑𝑧

Now all the quantities that you are seeing is due to curvature. So, when the𝑅
𝑦
,  𝑅

𝑥
 𝑎𝑛𝑑 𝑅

𝑥𝑦

thickness of the shell is small compared to the radius of the curvature, then these quantities are

negligible, and we get a very simplified expression. Now here, the quantity is nothing but𝑅
𝑥𝑦

your twist curvature. So, that twist curvature we have seen in case of small deflection that is the

if z is the shell surface then is the twisting curvature.∂2𝑧
∂𝑥∂𝑦

(Refer Slide Time: 20:16)



Now let us discuss what will be the stress-strain relation in case of thin shell. We assumed the

linear elements AD and BC, which are normal to the middle surface, remain straight and

become normal to the deform middle surface of the shell. So, this assumption is familiar to you

as we have seen in case of plate also. So, linear element AD and BC, AD is an element you are

seeing here, so along the edges or 2 adjacent edges are AD is a common element.

So, similarly element BC, ER, you are seeing the element BC and know which are originally

normal to the deformed a middle surface before deformation. After deformation also remains

normal and also straight and it is also further assumed. So, there will be no extension of this

normal, that means normal are inextensible; in that case, the strain in this direction normal

direction is to be taken as 0.

Now this and are the radii of curvature or curve in the undeformed and deformed states,𝑅
𝑥
 𝑅

𝑥
'

respectively. So, now we distinguish the curvature by 2 notation; one is before deformation

because shell has original curvature. So, this is a element which has initial curvature. So, is𝑅
𝑥

the original radius of curvature of the shell and is now the curvature which is formed after𝑅
𝑥
'

deflection of the shell.



So, if this is so, then normal strain produced due to bending of the lamina; if we take a lamina

in this middle surface, then we can see that . That we can see that normal strain due toϵ
𝑥

=

bending is . Now here, curvature is modified, this as modified as− 𝑧×𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 1/𝑅
𝑥
'

. So, 2 radius of curvatures are here, one indicates the radius of curvature after1

𝑅
𝑥
' − 1

𝑅
𝑥

deformation, and another represents the radius of curvature before deformation.

And this is the factor that we have taken originally due to effect of curvature, so .1 − 𝑧 − 𝑅
𝑥

Now suppose the thickness is very small compared to your radius of curvature, then these

quantities will be neglected, this will be neglected. So, in that case, the normal strain𝑧 − 𝑅
𝑥

produced due to bending will be curvature along the x-direction . So, this is you canϵ
𝑥

=− 𝑧×( )

tell the effective curvature, you can take it as effective curvature as the difference of the

curvature after deformation and the curvature before deformation.

Similarly, we can say that the normal strain produced due to bending along the y-direction =ϵ
𝑦

. So, again, this factor is due to curvature effect and one is one term that is− 𝑧
1− 𝑧

𝑅
𝑦

1

𝑅
𝑦
' − 1

𝑅
𝑦( )

is the curvature after deformation and is the curvature before deformation. So, when you1

𝑅
𝑦
'

1
𝑅

𝑦

neglect the contribution of this thickness that is , that term is small because the thickness𝑧 − 𝑅
𝑦

is small in comparison to radius of curvature, then it becomes a simple expression ϵ
𝑦

=− 𝑧×(

curvature along the y-direction .)

(Refer Slide Time: 24:56)



So, now let us consider the middle surface elongation due to action of membrane forces unit

elongation of the middle surface in x and y-direction are and Previously we have seen thatϵ
1
  ϵ

2
.

and are the strain or unit elongation produce due to bending of the lamina, middle surface.ϵ
𝑥

ϵ
𝑦

Now here we will tell this and are 2 strain quantities which refers to this strain due toϵ
1
  ϵ

2

elongation of the middle surface in x and y-direction, respectively.

So, in this figure, a section is taken that is along the x-direction. So, you can see here that is𝑙
1

the original length of the fibre, and after deformation, you can see that the length becomes ,𝑙
2

the elongation in normal the strain produced in the normal direction now will be . But
𝑙

2
−𝑙

1

𝑙
1

𝑙
1

that we can see here, is nothing but the arc length , so this factor is taken𝑙
1

𝑑𝑠×(1 − 𝑧/𝑅
𝑥
)

because of the existence of the curvature in the shell.

If there is no curvature, then or is very small, then also . So, here the𝑙
1

= 𝑑𝑠 𝑧/𝑅
𝑥

𝑙
1

= 𝑑𝑠

length of the element that elongates after the middle surface undergoes in-plane strain, then this

element will be increased. So, the increment of will be found out as . So, this𝑑𝑠 𝑑𝑠 𝑑𝑠 1 + ε
1( )



is the new length of the element , and therefore is found as , is𝑑𝑠 𝑙
2

𝑑𝑠 1 + ε
1( ) 1 − 𝑧

𝑅
𝑥
'( ) 𝑅

𝑥
'

taken because this refers to the radius of curvature after deformation of the shell.

So, then the unit elongation along the x-direction due to middle surface stretching is nothing but

. Now substitute the value of here from this equation to here and also the value of to
𝑙

2
−𝑙

1

𝑙
1

𝑙
2

𝑙
1

this equation and here. Then after simplification, you can write asϵ
𝑥

.ε
𝑥

=
ε

1

1− 𝑧
𝑅

𝑥

− 𝑧
1− 𝑧

𝑅
𝑥

1

(1−ε
1
)𝑅

𝑥
' − 1

𝑅
𝑥

⎡⎢⎢⎣

⎤⎥⎥⎦

Now you can this expression is obtained just by substituting this in this expression and𝑙
1
,  𝑙

2

simplification. Now while simplifying this result, you will find that here, in this term, inside the

bracket first term, you will get . This factor was originally not there; it will be the factor
(1+ϵ

1
)

𝑅'𝑥

will be appearing in the numerator and denominator no factor was there only was1 + ϵ
1

𝑅
𝑥
'

there.

But if I multiply by , that is, if I multiply the numerator and denominator of1 + ϵ
1( )  (1 − ϵ

1
)

this expression by . Then in numerator, this factor will be and denominator1 − ϵ
1( ) 1 − ϵ

1
2( )

. Now seen this strain is small, is a small quantity, so is neglected. So, ultimately1 − ϵ
1( ) ϵ

1
ϵ

1
2

final expression becomes this .
ε

1

1− 𝑧
𝑅

𝑥

− 𝑧
1− 𝑧

𝑅
𝑥

1

(1−ε
1
)𝑅

𝑥
' − 1

𝑅
𝑥

⎡⎢⎢⎣

⎤⎥⎥⎦

So, this term that you are seeing or here is due to your the curvature of the1 − 𝑧
𝑅

𝑥
1 − 𝑧

𝑅
𝑥

element. Now when is small, that means when it becomes small, when the shell is thin? If it𝑧
𝑅

𝑥

is a thin shell, then the thickness of the shell is very, very less compared to the radius of



curvature. So, in that case, is a negligible quantity, that means it is very small compared to𝑧
𝑅

𝑥

1. So, in that case, the expression becomes .ϵ
1

− 𝑧 1

(1−ε
1
)𝑅

𝑥
' − 1

𝑅
𝑥

⎡⎢⎢⎣

⎤⎥⎥⎦
(Refer Slide Time: 30:48)

So, in a similar fashion, we can calculate the strain . So, is calculated as , is theϵ
𝑦

ϵ
𝑦

ε
2

1− 𝑧
𝑅

𝑦

𝑅
𝑦

radius of curvature in this x-z plane. Then . So, and , these are the𝑧
1− 𝑧

𝑅
𝑦

1

(1−ε
2
)𝑅

𝑦
' − 1

𝑅
𝑦

⎡⎢⎢⎣

⎤⎥⎥⎦
𝑅

𝑦
' 𝑅

𝑦

principal radius of curvature and 1 denotes the radius of curvature after deformation, that is we

denoted by prime and another is before deformation.

Now in thin shell structures, the quantity and are small compared to unity.𝑧/𝑅
𝑥

𝑧/𝑅
𝑦

Therefore, we can neglect this, and hence in simplified form, the and can be written asϵ
𝑥

ϵ
𝑦

, what is ? is the effective curvature. So, this curvature termε
1

− 𝑧 1

𝑅
𝑥
' − 1

𝑅
𝑥( ) = ε

1
− 𝑧χ

𝑥
χ

𝑥
χ

𝑥

is taken as the curvature, which is taken as the difference of 2 curvature; what are the 2χ
𝑥

curvature? One curvature is curvature after deformation, and another is curvature before

deformation.



So, we get now the expression of , including the middle surface, stretching, that is .ϵ
𝑥

ε
1

− 𝑧χ
𝑥

Similarly, can be calculated as , is the again your the curvature of theε
𝑦

ε
2

− 𝑧 1

𝑅
𝑦
' − 1

𝑅
𝑦( ) 𝑅

𝑦
'

middle surface in the x-z plane. And denotes the curvature, denotes the radius of curvature𝑅' 𝑅'

after deformation and denotes the radius of curvature before deformation. So, in a similar𝑅
𝑦

way, we can write . So, is the effective curvature in the y-direction, which isϵ
𝑦

= ε
2

− 𝑧χ
𝑦

χ
𝑦

nothing but 1

𝑅
𝑦
' − 1

𝑅
𝑦

.

(Refer Slide Time: 33:42)

Now the component of stress we can write because knowing the strain, we can now form a

stress-strain relationship using the Hooke's law because it is a linear elastic problem. So, we can

use the Hooke's law, and we can write . Similarly, , weσ
𝑥

= 𝐸

1−υ2 ε
1

+ υε
2

− 𝑧(χ
𝑥

+ υχ
𝑦
)[ ] σ

𝑦

can write .𝐸

1−υ2 ε
2

+ υε
1

− 𝑧(χ
𝑦

+ υχ
𝑥
)[ ]

Now here you can see that the is a Poisson ratio and is a Young's modulus of elasticity,ν 𝐸

are the normal strains due to in-plane forces, whereas this and are the curvaturesϵ
1
,  ϵ

2
χ

𝑥
  χ

𝑦



and and also , is due to the Poisson effect, so that quantity it denotes the− 𝑧×χ
𝑥

− 𝑧×ν×χ
𝑦

ν

normal strain due to bending. So, the total normal stress is written as this.

Similarly, and bracket close. Now, if we neglect theseσ
𝑦

= 𝐸

1−υ2 ε
2

+ υε
1

− 𝑧(χ
𝑦

+ υχ
𝑥
)[ ]

small quantities and or and , why we neglect this? Because the shell𝑧/𝑅
𝑥
  𝑧/𝑅

𝑥
'   𝑧/𝑅

𝑦
  𝑧/𝑅

𝑦
'

structure is very thin, thickness of the shell is very small. So, therefore in relation to radius of

curvature, this quantity , this ratio will be very small compared to 1, so therefore we𝑧/𝑅
𝑥

neglect this.

And therefore, the in-plane forces now becomes , and will be this quantity𝑁
𝑥

σ
𝑥
(1 − 𝑧/𝑅

𝑦
) 𝑁

𝑥

that we have found out, if we neglect this , and , these quantities. Then we can simplyσ
𝑥

𝑅
𝑥

𝑅
𝑥
'

write this here, and after integration, you will find that . Similarly,𝑁
𝑥

= 𝐸ℎ

1−υ2 (ε
1

+ υε
2
)

.𝑁
𝑦

= 𝐸ℎ

1−υ2 (ε
2

+ υε
1
)

Here you can see that this in-plane force as , are expressed as the force per unit length.𝑁
𝑥

𝑁
𝑦

So, when we divide it by h, then we get and , but this relationship is obtained on theσ
𝑥

σ
𝑦

assumption that and and or are small compared to 1.𝑧/𝑅
𝑥

𝑧/𝑅
𝑦

 𝑧/𝑅
𝑥
' 𝑧/𝑅

𝑦
'
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So, bending moment expression in this shell. So, we have earlier shown that for a small element

dx, the bending moment or moment of resistance can be written as , thatσ
𝑥

1 − 𝑧
𝑅

𝑦
( )𝑧 (𝑑𝑧×1)

is the area and lever arm is z. So, after integration in the limit , we get the− ℎ
2  𝑡𝑜 + ℎ

2

expression of . Now substituting the value of here, we have got the earlier𝑀
𝑥

σ
𝑥

σ
𝑥

.𝐸

1−υ2 ε
1

+ υε
2

− 𝑧(χ
𝑥

+ υχ
𝑦
)[ ]

So, that expression, if substituted in the expression for the integral expression, and after𝑀
𝑥

integration, we get this term . So, this term is obtained, and you𝑀
𝑥

=− 𝐸ℎ3

12(1−υ2)( )(χ
𝑥

+ υχ
𝑦
)

know that this term resembles the same quantity that we obtain in case of this plate and

is nothing but flexural rigidity of the shell.𝐸ℎ3

12(1−υ2)

Flexural rigidity of the shell and flexural rigidity of the plate has similar kind of expression. So,

in that case, only material properties are of importance, and there is no curvature parameter.

Though we neglect in some analysis this bending moment in the shell, but the flexural rigidity

is also important for shell. Because shell is very rigid structure and the highest strength weight

ratio for the shell is a salient feature.



So, even the bending moment is neglected in case of shell in thin shell the flexural rigidity is

important parameter in the shell and at the edges when the shell joins the edge beam or a

support. Then for calculating the bending moment, we need to use the flexural rigidity term.

Similarly, in the direction of y, this is written as .𝑀
𝑦

− 𝐸ℎ3

12(1−υ2)
(χ

𝑦
+ υχ

𝑥
)

These are the curvatures term, is the curvature along the y-direction, and is the curvatureχ
𝑦

χ
𝑥

along the x-direction. Now here curvature term can be elaborately written in case of shell with 2

parameters, one is the curvature before deformation, and another is curvature after deformation,

so will be . Similarly, can be written as .χ
𝑦

1

𝑅
𝑦
' − 1

𝑅
𝑦

χ
𝑥

1

𝑅
𝑥
' − 1

𝑅
𝑥
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Now twisting couple, twisting curvature of the middle surface denoted by this factor, and in

some cases, the twisting couple is of importance in the analysis of the shell. So, , that is, theχ
𝑥𝑦

effective twisting curvature is also found as , where refers to the deformed1

𝑅
𝑥𝑦
' − 1

𝑅
𝑥𝑦

𝑅
𝑥𝑦
'

surface, and is the twisting curvature of the surface before deformation.𝑅
𝑥𝑦



So, shearing stress act on the lateral sides of the element that we have shown you, and if gamma

is the shear strain in the middle surface of the shell, then we can write this , now .τ
𝑥𝑦

γ − 2𝑧χ
𝑥𝑦

So, this factor is taken due to shearing stress produced during bending. So, gamma minus this

factor will represent the shearing strain in the shell subjected to in-plane forces and twisting

moment.

So, therefore the , is the shear modulus of the shell and which is denotedτ
𝑥𝑦

= (γ − 2𝑧χ
𝑥𝑦

)𝐺 𝐺

by . Now, if I want to calculate this membrane shear force , then term is taken𝐸
2(1+υ) 𝑁

𝑥𝑦
τ

𝑥𝑦

here, and it is integrated within the limit to . Of course, this factor is there− ℎ
2    + ℎ

2

, which represents the effect of curvature. So, after integration and neglecting this(1 − 𝑧/𝑅
𝑦
)

term in comparison to 1, then we can get will be .𝑧/𝑅
𝑦

𝑁
𝑥𝑦

= 𝑁
𝑦𝑥

γℎ𝐸
2(1+υ)

Because will be when the or is neglected in comparison to 1. So, in that𝑁
𝑥𝑦

𝑁
𝑦𝑥

𝑧/𝑅
𝑥

𝑧/𝑅
𝑦

case, will be ; otherwise, this 2 factors are here for , it is , for , it will be ,𝑁
𝑥𝑦

𝑁
𝑦𝑥

𝑁
𝑥𝑦

𝑅
𝑦

𝑁
𝑦𝑥

𝑅
𝑥

so and have to be equal otherwise will not be equal to . So, twisting moment𝑧/𝑅
𝑥

𝑧/𝑅
𝑦

𝑁
𝑥𝑦

𝑁
𝑦𝑥

we calculate now as , is the shear force into multiplied by and then integratedτ
𝑥𝑦

×𝑧𝑑𝑧 τ
𝑥𝑦

 𝑑𝑧 𝑧

within the limit to , we get the expression of .− ℎ
2    + ℎ

2 𝑀
𝑥𝑦

So, is nothing, but is found as , where denotes the effective𝑀
𝑥𝑦

− 𝑀
𝑦𝑥

𝐷(1 − υ)χ
𝑥𝑦

χ
𝑥𝑦

twisting curvature. That means taking account of the curvature after deformation and before

deformation. Because shell is already curved surface, so we have some curvature before the

shell undergoes any deformation. So, that curvature is simply , and after deformation, the1/𝑅
𝑥𝑦

curvature is taken as for the deflected surface produced due to loading. So, difference of1/𝑅
𝑥𝑦
'

these 2 will give you the effective twisting curvature, effective twisting curvature is .χ
𝑥𝑦
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Now we have obtain the forces and couple the expression for forces, and couple are now to be

used in other problems. And we have obtained what are the stress resultant one group is

membrane stress resultant, that is, and . So, this state of stress in shell is mostly𝑁
𝑥
,  𝑁

𝑦
𝑁

𝑥𝑦

accepted in design. Because these are found to be predominant in case of thin shell, then radial

shear is and bending moment or twisting moment is and .𝑄
𝑥
,  𝑄

𝑦
𝑀

𝑥
,  𝑀

𝑦
𝑀

𝑥𝑦

So, you can see altogether there are 8 stress resultants in a shell element so that we have to find

out by analysis. But after certain assumption, this number of stress resultants will be reduced

based on the different theories. Now here, you can see in a element of shell the is the𝑁
𝑥

membrane shear force along the x-direction, then is the membrane shear force along the𝑁
𝑦

y-direction, and and are the membrane shear force.𝑁
𝑥𝑦

𝑁
𝑦𝑥

and are the actually it is normal force, so it is the membrane force, and and are𝑁
𝑥

𝑁
𝑦

𝑁
𝑥𝑦

𝑁
𝑦𝑥

called the membrane shear force, in-plane membrane force , these are in the normal𝑁
𝑥

𝑁
𝑦

direction, and these are direct stresses, whereas and are the shear stresses. Then we𝑁
𝑥𝑦

𝑁
𝑦𝑥

have the radial shear in the element, which is and , the radial shear per unit length x𝑄
𝑥

𝑄
𝑦

𝑄
𝑥



along the edge, which is parallel to y-axis, and is the shear force that acts along the edge,𝑄
𝑦

which is parallel to x-axis.

Then we have coupled and , is the bending moment along the x-direction, is𝑀
𝑥
,  𝑀

𝑦
𝑀

𝑥𝑦
𝑀

𝑥
𝑀

𝑦
 

the bending moment along the y-direction, and then is that twisting moment. So, you𝑀
𝑥𝑦

𝑀
𝑥𝑦

are seeing here it is shown, in the opposite side this will appear with increment. is the𝑀
𝑥𝑦

𝑅
𝑥

radius of curvature, and is the radius of curvature of another curve, the tangent to this curve𝑅
𝑦

is parallel to x-axis, and is the radius of the curvature or radius of the curve in which the𝑅
𝑥

tangent is parallel to the y-axis.

So, if the shell element is acted upon the vertical forces or any other forces not necessary

vertical. So, then knowing the component of the and then is related to , will beσ
𝑥

𝑁
𝑥

σ
𝑥

𝑁
𝑦

related to your , and will give you , will give you , and this will be related toσ
𝑦

𝑄
𝑥

τ
𝑥𝑧

𝑄
𝑦

τ
𝑦𝑧

𝑁
𝑥𝑦

, and will be related to .τ
𝑥𝑦

𝑁
𝑦𝑥

τ
𝑦𝑥
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So, we get a state of stress like that in a shell element. So, , and these 2 are the mainσ
𝑥

τ
𝑥𝑦

σ
𝑦

stress component. And in some theories, and we neglect this, , and is neglected alwaysτ
𝑦𝑧

τ
𝑥𝑧

σ
𝑧

in thin shell theories, and , is also neglected. So, main stress component that are takenτ
𝑧𝑦

τ
𝑧𝑥

into analysis of the shell structure and design of that is , , or .σ
𝑥

σ
𝑦

τ
𝑥𝑦

τ
𝑦𝑥
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Now there are different shell theories based on which the analysis of the shell is carried out, and

design is also based on that theories. So, differential theories are part of actually the theory of

elasticity. Normally small deflection is assumed, and linear elastic behaviour are consider; that I

have shown you that using the Hooke's law, we obtain the stress-strain relationship. Shell

theories are classified in the following basic categories.

But there are other theories also, I have mentioned only 3 theories because 3 theories have

significant difference in between them. And we can group them into separate class, and each

theory will find that there is different aspects, and sometimes, the theory gives improved results

and some theories are simplified but gives acceptable result. So, let us first consider the

first-order approximation theory.
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These theories based on following assumption. You will find some assumptions are common to

these Kirchhoff's law plate theory that we have discussed earlier. So, in the first-order

approximation theory of shell, the thickness of the shell is assumed to be small compared to

minimum radius of curvature because, in a doubly curved shell, we have 2 curvature in 2

orthogonal directions.

So, therefore the minimum radius of curvature is taken and compared with the thickness. If the

ratio of thickness to minimum radius of curvature is small, then we can use the first-order

approximation theory. So, in that case, terms that I have shown you in different expression of𝑧
𝑅

the strain that we have obtain in my earlier slides terms becomes small compared to 1, and𝑧
𝑅

therefore these terms can be neglected.

So, this is the salient features of this first-order approximation. Linear elements normal to the

unstrained middle surface that is before deformation, remain straight and do not undergo

extension. So, this assumption is similar to Kirchhoff's law of hypothesis that we have earlier

found. And also, the component of stress along normal to the middle surface is ignored. That

means if I see the stress component normal to the middle surface, that is, is neglected, andσ
𝑧

then is neglected, and is neglected, so this 3 quantities are neglected.τ
𝑦𝑧

τ
𝑥𝑧



So, these are the salient features of the first-order approximation theory, and these are in similar

line as we have found in the Kirchhoff's plate theory Kirchhoff's in case of thin plate only first

product terms in the strain expressions is written. That means strain expressions say, for

example, the normal strain expression , that is the linear term that we only consider if∂𝑢
∂𝑥

higher-order terms of these derivative are there in the strain expression we neglected. So, these

are some points of the first-order approximation theory.

(Refer Slide Time: 52:21)

In this second-order approximation theory, terms are to be retained in the stain displacement𝑧
𝑅

and stress-strain relationship. We have earlier simplified this stress-strain relationship

neglecting the terms in first-order theory. But in the second-order theory full expression, that𝑧
𝑅

we have found the stain has that quantity that or ; this term appears in the1 − 𝑧/𝑅
𝑦

1 − 𝑧/𝑅
𝑥

denominator, so these terms should not be neglected. So, we take this terms and carry out𝑧/𝑅

the analysis. So, some authors have used this theory in circular cylindrical shell.

But very simplified analysis or in simple cases, these theories are applied. In application of this

theory in thick shell, some researcher neglected strain normal to the middle surface and

transverse shear strain. So, if one neglect this strain normal to the middle surface and transverse



shear strain, this shows that this theory is in line with the Kirchhoff's law hypothesis. And that

shows the normal to the middle surface remains normal after deformation, and it is inextensible

and remains straight to the normal and straight to the middle surface.
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The 3rd theory that is the membrane theory of shell, is very popular in the analysis and design

of shell. In most of the design of shells, the membrane theory of shells are adopted because this

gives simplification in the analysis and also produces the result which are reasonably accurate

and acceptable for practical design. So, in this approach, shells are idealized as stress skin

which has small flexural rigidity.

That means the bending resistance of the shell is neglected. So, the load is resisted mainly by

the in-plane forces. So, in-plane forces that are denoted by , and , , are the𝑁
𝑥

𝑁
𝑦

𝑁
𝑥𝑦

𝑁
𝑥

𝑁
𝑦

direct stresses and are these shear stresses. So, , and will be responsible for𝑁
𝑥𝑦

𝑁
𝑥

𝑁
𝑦

𝑁
𝑥𝑦

resisting the load that acts on the shell. Bending and shear that is and are𝑄
𝑥
,  𝑄

𝑦
,  𝑀

𝑥
,  𝑀

𝑦
  𝑀

𝑥𝑦

neglected in this theory.

So, this theory gives a very simplified approach for the designer and the results are obtained

without difficulty. These calculations becomes less, at the edges, this membrane stress



condition may not be fully satisfied. But away from the edges, the results are fairly accurate and

give the reasonable result and can be accepted to determine the thickness and in case of

reinforced concrete shell, the reinforcement steel area based on this direct stresses , .𝑁
𝑥

𝑁
𝑦

Thus we can see that there is marked difference in structural action with plate or slab, which

carries the load by flexure. That in case of plate or slab that we have seen earlier, that is mainly

a flexural element. And the bending moments are developed, the moment of resistance are

developed to basis the load, but this is not the case of thin shell. In thin shell membrane forces,

the in-plane forces are main resisting forces for the external load.

The membrane action of the shell is possible if , so that is prescribed by this variousℎ
𝑅

𝑚𝑖𝑛
< 1

20

code of practice and we can take this tender that membrane analysis can be done is

. But in practical situation, shells are actually finite size terminating at their edges,ℎ
𝑅

𝑚𝑖𝑛
< 0. 05

and sometimes the stiffening girders may be there or maybe without stiffening girders.

In such cases to maintain the membrane state of stress is not possible, so bending stress have to

be considered in the vicinity of the support so that we have to take. And membrane theory of

shells are very well adopted in case of, say spherical dome or a surface of revolution of thin

elements and accept near the edge and also in case of pressure vessel. Say a spherical vessel

subjected to internal pressure, the uniform state of stress is produced, and as a hook tension, the

load will be resistant.

But if the ends of the shell are fixed, then the disturbance at the edges will be there, and this

will be actually producing the bending effects in the shell. And therefore, membrane state of

stress will not be valid near the supports. However, the membrane theory of shells are well

accepted and used for design of many important shell structure also. Sometimes designer

without rigorous calculation, in case the thickness and reinforcement near the edges to take care

of the bending effects, thank you very much.


