Plates and Shells
Prof. Sudip Talukdar
Department of Civil Engineering
Indian Institute of Technology-Guwahati

Module-05
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Applications of Rayleigh-Ritz and Gallerkin’s Method

Hello everybody, welcome to the massive open online course MOOC and today I will start the
lecture 2 of module 5. In the last class I have introduced the approximate method for the solution
of plate problem. There we have seen that among various approximate methods the major
principle or the major rule that is followed is the variational principle or you can call it the
principle of least work. That based on that 2 formulations were derived, that is first I have

discussed a problem in a beam to apply the variational methods.

And then we discuss the problem of a plate. Today, let us discuss further applications of the
Rayleigh-Ritz method in case of plate. First I will bring to you a problem of rectangular plate
clamped along all edges which were not solved in earlier class using the exact method. Then we
will discuss a problem of circular plate and then we will go for another variational method which
is also approximate method known as Gallerkin method.
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OUTLMNES OF LECTURE
+ Review of Rayleigh-Ritz method and its further applications in plates

+ Development of Gallerkin's approximate method for the plate

Applications of Gallerkin's method

* Comparison between Rayleigh-Ritz and Gallerkin method

So, outlines of the today's lecture will be review of the Rayleigh-Ritz method and it is further
applications in plates, development of Gallerkin’s approximate method for the plate, application
of Gallerkin method, then comparison between Rayleigh-Ritz and Gallerkin method.

(Refer Slide Time: 02:17)

—

Rayleigh-Ritz method

The Rayeligh-Ritz methad s based on the variational principle, In this method, first
an approximate deflection function s chosen which satisfies the baundary
conditions.

When w(x, ¥) is assumed as

wiry) = a,f(xy) + afy(x¥) + -+ afy(xy)

with arbitrary constant a,, a,, . such that variation 5a,, 83, . etc are arbitrary
and non zerg, we can write according to variational principle, the first variation of
total potential {[1=U-W)

8= Gl &, +m&‘,1 +___+m§) which finally yields n-linear

L " §
o, rid, v, simultaneous equations

dl/da, = 0,d11/da, = 0,...,11/da, =0

Now, in the last class I discussed Rayleigh-Ritz method. Rayleigh-Ritz method was derived
based on the variational principle. That we have seen that first variation of the total potential is 0
if the system is in stable equilibrium. That means, if we find the strain energy and the work done

by the external load, then we can form an expression for the total potential. So, one of the total



potential is found then taking the first variation, we can write an equation expression in this form

s11=sg+ s .. s,

9 oa, will be there and the nth term is n

oa,

Now here you can see the , oa etc., these are actually arbitrary variation of the coefficient

that are used in finding or in assuming the deflection function preliminary. That means, when
you use the Rayleigh-Ritz method or when you go for evaluating the strain energy expression
then you must know the deflection function. Deflection function, before starting the problem or

in many cases is not exactly known.

So, therefore we assume functions which satisfy the boundary conditions. So, boundary
condition actually there are geometrical boundary condition, that means condition on slope and
deflection and other conditions are on bending moment and shear force. So, if both the condition
that is geometrical and force boundary conditions are satisfied then you will get the exact
solution. But it is not necessary that the deflection function that we find out from Rayleigh-Ritz

method should satisfy the differential equation.

It satisfies the boundary condition exactly you will get the result which is acceptable in practical
applications. So, here you can see that deflection function is assumed in the form of a series.
That means, I can take f| x; that is a function of x and y and also f; is a function of x and y. So,
these functions are in the form of series, that means one can take a polynomial expression or one

can take a trigonometric expression, in both cases the formulation can be done.

Now question arises, if the boundary conditions are not satisfied, then what will be the accuracy?
Accuracy in deflection in most of the cases is obtained within reasonable limit, if the geometrical
boundary conditions are satisfied. But if the force boundary conditions are satisfied, you will get
the accurate results in deflection and in it is derivative that means, slope, bending moment and

shear force that is the second derivative as well as third derivative.



Now, let us see for any arbitrary variation of the total potential, the equations are written

ﬂ5a|+m5a2 ﬂéa” Sa S 5
oa, 0a, there are other terms and finally oa, . Now, since °%, %% up to @y
ol ol
are nonzero arbitrary constants, so that means individual coefficient that is 0a _ 0, then Oa,

oIl
0, like that 9% =0,

So, here you can see we are getting n number of simultaneous equation, but I mentioned it as a
linear equation, how it becomes a linear? You can see that energy expression that is used for
finding the total potential contains the deflection and square of the deflection, actually energy is
a positive quantity it contains the square of the deflection. So, when a square term that is a ,

square a, square term or the product of a, a,, all this term will be mixed up in the total potential.

Then when you differentiate a square term you will ultimately arrive at the linear term. So,

oll ol

Oa, _ Oa,

therefore, you will get a n number of linear equations with this operation =0. Now,

if you want to increase the accuracy of the solution, you can increase the number of terms in the
series otherwise you can truncate it up to a limited number of terms.
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How to select the deflected shape of the plate?

Inn Rayleigh-Ritz method, we have ta first select a suitable function that satisfies
the boundary eonditions of the plate, Satisfaction of the differential eguation of
the plate by the assumed function is not necessary.

Several methods are available for selection deflection function [commonly called
as shape function] such as

* Beam deflection formulae

+ Eipen functions of transverse vibration of beam

+ Elpen functions of buckling of eolumn

In plate problem, lateral deflection in the form of infinite series is the best
chalee, |t is written separating the varlable as

"'\I'-.,I:I'll:.l_ H'. (b ()

in which X_|x] and ¥_[y] are funclions in séries expression that individually satisty the baundary
conditions (al |east geometrical boundary conditions)

So, question arises how to select the deflected shape of the plate? So, the most important thing in
Rayleigh-Ritz method or that is based on the variational principle is to select a deflected shape
which may be called as a shape function. So, to select a shape function, there are different
guidelines available. So, one is that beam deflection formula can be used, that means suppose a

plate, we are now focusing on the plate problem.

So plate, if you look at the plate deflected surface, you will get a function in x as well as in
function in y. So, in beam deflection formula, suppose if you consider the deflection in the beam
in one direction, you can take this formula satisfying the boundary conditions of the beam in
another direction, orthogonal direction. If the boundary condition of this strip of the beam is
different, then you can take another function in terms of y. So, the separation of variable is

possible.

So, what is seen here that deflection function w (x,y) can be written as by separating the variable
that is X, is a function of x, Y, is a function of y. So, and then A, is the constant associated with
product of these 2 functions. So, this is one method that this can guide the analyst to choose the

shape function or the deflected surface of the plate to be applied in Rayleigh-Ritz method.



Then another possible method is the Eigen function of the transverse vibration of beam. So, that
means transverse vibration of beam, generally it is represented by a 4™ order partial differential
equation. Now, when you want to find the Eigen functions of the beam vibrations, then we will
again use the separation of variable technique and we arrived at the ordinary differential equation

of 4™ order in terms of one variable.

So, this differential equation when it is solved and the constants of integration are found applying
the boundary conditions then we get the Eigen functions. But Eigen functions whatever you get
has no absolute magnitude. So, it is expressed in relative terms, but this will take care by the
coefficient A,, whatever is there in the assumed deflection function. So, this is one possible
method to use the Eigen functions in Rayleigh-Ritz method as a assumed deflected shape. Then
Eigen functions of buckling of column that can also be used.

(Refer Slide Time: 11:05)

Viasov's Approach for selecting shape lunction

The algebraic polynemial or trigonometricaly hyperbolic functions may be used to express the
deflected shape of the plate such that selected functions satisfy the boundary conditions,

The choiga can be made from beam's eigen functions or mode shapes to represent the
detlected shape, This approach wis suggested by Viasow.

The beram gigen function ((k=a) is given by

dlx) = Acosfix + Bsinfix + Ceoshfix + Dsinhfix
For specified baundary eondition, then, deflected surface may be eompased af
wix,y) = TLdx)0(y)

For eample, a simply supported beam of langth ‘&' , imposing boundary conditions in s},
e et

i,(x) = B,sinfl,x where fi, = amfa [ne12..). B, constant. Thus for simply supported
plate,
w=rTA sin"':" sin ":' is the appropriate cholce

Now, let us see the Eigen function method that are used in choosing the deflected shape of the
plate in formulating the problem using Rayleigh-Ritz method was first proposed by Vlasov.
Therefore, this approach is sometimes known as Vlasov. Now it is argued that the Eigen
functions are the function whose satisfy exactly the boundary conditions of the beam. Then if it

is taken properly, then it can be present the exact solution of the plate problem.



But difficulty with the Eigen functions are that in some Eigen functions of the beam especially
for boundary conditions which are not found frequently. For example, Eigen functions which is
like, that it is a fixed at one end and free at other end, that is a cantilever type of Eigen functions
containing the hyperbolic and trigonometrical terms. So, in that case the integration becomes
difficult however this approach can be adopted using the integration of the strain energy

expression, so that the accuracy of the results can be increased.

So, now generally the Eigen functions of the beam is expressed as combination of

trigonometrical cos and sine function as well as cos hyperbolic and sine hyperbolic function.
d(x)=AcosBx+BsinBx+CcoshBx+Dsinhfx

From above equation we can see that there are 4 terms, one with cosine and another with sine

and another with cos hyperbolic and another with sine hyperbolic. And 4 terms contain 4

independent constants of integration; these constants of integration can be found applying the

boundary conditions of the beam.

Now for specified boundary conditions, the deflected surface can now be composed of that

P(x)P(y)

W)= 2 Y (0P ()

So, here you can see that if [ use the Eigen function for the simply supported beam, the boundary

condition of the simply supported beam can lead to a Eigen function in this form

n(x) = Bnsinfnx

where fn = nm/a is a non-dimensional parameter. So, here n = 1, 2 etc. and then it can go up to

infinity and B, is a constant.

That is for simply supported plate we can write, that simply supported plate means simply

supported along all edges, we can write a deflected shape as like



nmy

. . mmx . .
w = Y ) Amnsin sin —— sin sin —;

These functions or this form of deflection is familiar to you because here now covered the
analysis of plates simply supported along all edges by Navier’s method. And this double
trigonometrical series is used in case of Navier’s method for the solution of plate problem. So,
the Vlasov approach for selecting the deflected function or deflected shape with the beam Eigen
function is also a very popular choice among the analyst.

(Refer Slide Time: 14:48)

Example-Rectangular plate clamped along all the edges and subjected to uniformly
distributed load p,

Due to symmetry of the problem, we take co- :
ordinate axes through the middle of the plate .
parallel to the sides. In this case deflection of the 4 _
plate is exgressed as (m, n=135...) 3 =
) L 13
s Y'Y S o) s | 1= (-1 cos— - —
"__“._ -1 a j ] [ .__I
The above equation satisfies the boundary . R i

conditions ~ g
(w)atx = ta.=0 didiib E

(Bw/dx)atx = a,=0 o = o
(waty=4b=0 .
[dw/dy)aty =+b=0 k-

Now, let us give an example of rectangular plate clamped along all the edges and subjected to
uniformly distributed load P,. Now, here you can see the plate here is clamped along all edges,
that is along all edges there cannot be any deflection and there cannot be any slope in any
direction, any 2 orthogonal directions. Now, this problem actually was not solved analytically

and the analytical solution was not found readily for that kind of problem.

However, this problem can be solved by the method of superimposition using the Levy’s method
with edge moment. So, application of edge moment can give one result and then it can be used
with a simply supported plate with uniformly distributed load. Then 2 results can be
superimposed, so that the end edge moment value can be found which can make the slope along

these in the clamped edge to be 0.



So, that condition when it imposed on the superimposed expression then we can solve a problem
of plate which has all the edges clamped. But the method will be very cumbersome and he
requires so many steps to complete this problem. So, here with the help of the Rayleigh-Ritz
method that is approximate method. We can solve it very easily with the help of strain energy

formulations.

Now here you can see the origin is taken at the centre of the plate taking advantage of symmetry,
but it is not necessary that one has to take the origin at the centre of the plate. Origin can be taken
at one of the corners also. Now here you can see if | take a function w x y = a mn, small a mn is a
constant and 4 is taken for just only for convenience, there is no necessity of taking this 4 but I

have taken 4.

Because when this function is evaluated, then the quantity becomes 4 at boundary then it is 4 and
if we divide this quantity then it becomes only A,,.. So, based on that argument it is taken but
there is no necessity also. So, if you take say for example at the boundary, at the boundary what

happens is the deflection is 0, so boundary is *a or £b. So, if you take say x at a, so here you will

find that COSM7 ifm is 1 for example you will get if this factor is 1, so 1 - 1 will get 0.

So, again at y = b you will get 1 - 1 =0, so deflection condition is satisfied at x =a or x =b or x
= -a or x = -b. Similarly, if you compute the slope of this expression that if you calculate the first

ow

derivative of this expression O¥ then you will get here this %1 and multiplied by of course

mm

@ and the sign will be minus because we are the differentiating a cos function.

So, what happens? Because of sine function appearing here as a product term when you put x =a

or y = b then you will get SINmMT gp SINT So, sine of any integer value 7 will be 0 or sine



of "7 where n is any integer will be 0. So, therefore slope is also satisfied at the boundary,

deflection is also satisfied at the boundary.

0

w(x, ) = Z%[l —(~1)" cos ’"ZX}P —(-1y" cos—m;y

So, this function m

Jc:an be selected as a

shape function to be used in Rayleigh-Ritz method.

The justification you have understood, that these functions satisfy the boundary condition, this
slope and deflection boundary condition at the edges. Now edge is here located by the distance
+a or -a or +b or —b. So, these conditions are listed here and the plate is subjected to uniformly
distributed load. Let us illustrate this problem with a single term expression, so that how the plate

problem is used?

Rayleigh-Ritz method is used for solving the problem; you will be able to realize it. Unnecessary
complicated with the help of different terms in the series, first let us investigate the solution
procedure with the help of only one term of the series. Now, to use the Rayleigh-Ritz method, we
first have to select a deflection function; deflection function is selected, so this process is over.
Next let us see what is the step? Next step is to calculate the stain energy of the plate and work
done by the external load.

(Refer Slide Time: 20:55)



Straln energy of rectangular plate of length=a, breadth=b |5 given by

b 3 .
.. ¢ (ri"'w d+ frfuk’” Pwitw (0w : »
3/ [ 1) +(57) +2 55+ 209 gy oy

When the plate is supported along all the four edges, we get

akb
(1] itw  Iw
=?JJ[3':’ 37 )-.rm!y
ha

Now, you can see here for rectangular plate the strain energy expressions are given as

b
—ij (2 20 oo (20 L ara
-2 6x2 6y2 VaxZ ay? (=) axdy) (¥4

00

Now, for the plate which has all the edges supported, then we get a special result that this
expression becomes simplified to this

U =£}}(aw +—) dxdy

Bx

So how it becomes? Because we can now write this expression in different way by adding a term
%w 9%w
V —_—
dx? dy?

2
2
. . . . . ow ow . . .
Then we can write this expression in this form ( — + —2) minus some term will come which
0x dy

2

2 2 2

contains the product of Z_V:Z_M; minus ( aax;; ) , that I have discussed in the last class.
x" dy

And the rectangular plate which has all the edges supported whether it is a clamped support or a
simple support means simply support simply supported plate. The second term containing the
Poisson’s ratio will get vanished. So, that means the expression can be simplified in that case into
a simple form

-5

) dxdy
ay"



This expression inside the bracket you can see this, this expression can be written as Laplacian

2

2
operator ";—VZV + Z—”Z (Refer Slide Time: 23:24)
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For the sake of sumplicity, let us consider only the first

termim = n = 1), Thus, we can write

=3l 0 —

The strain energy of the plate in bending 15 given os
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Figure |, Rectangular plaie with
lixed edges

Using this expression now, we calculate the strain energy of the plate taking only one term of the
series. Now, go back to the deflected expression that we have assumed if we takem =1 and n =

X Vs
(1+cos—) (14 cos _y)
1, then this term becomes a . And this term, second term becomes b " and it

a,

will become 4 . So, then this strain energy expression is calculated by taking this function as

the deflected shape of the plate.

a
So, substituting w = %[1 + cos(ﬂff)][l + cos(—n%)] in the equation

Dab 2 2
U=7ff(VW) dxdy
—a—b

we can get this final result by double integration. The limit of the integration of course here it

will be -a to +a and -b to +b. So, integrating this expression we get the total strain energy of the

Dn4a 2
11 3b 3a 2
32 ( 3 + b3 + ab )

plate

a



Now you can see here in this expression, a |, square term is appearing. This is because when we
4y
differentiate this expression 2 times 4 , this constant will appear as it is. And when we square

2 2

4 So, that 4 term is

it in for the calculation of strain energy, then we naturally get

appearing in this strain energy expression which is required because we will differentiate this
strain energy expression that is after finding the total potential.

(Refer Slide Time: 25:25)

symalurly, from Eq, (1), the pelentinl of the external forces s computed;

o

W 1
& - -

wix, y)dxdy = pya;qab 3
Tutal Potential
Mn=U-w

Minimization of the ol pedentual,

il

dityq

yields

~ 16pga? 1

0= ] 7 L
bx 3+3(5) +2(5)

So, now let us calculate the work done by the external load. So, work done by the external load is
suppose the load is P, which has the uniform intensity over the plate area. So, P, I am taking
outside the integral sign and then integration is carried out with the product of w (x, y). w (X,y) is
the deflected shape and dx dy. So, P, is there for calculating the work done, but it is taken outside

the integral sign because the load is constant.

So, after integration you can see w is very simple expression. Now if you integrate it with respect
to x and y double integration, then you will get that this term and this term can be easily

integrated and this is the integration of dx and integration of dy. So when it is integrated, the final

a,,ab
results become Pothy p,a,,ab



. So, now total potential is calculated as pi = U — W, what is U? U is strain energy of the plate

which is equal to

D1T4a2
3b 3a 2
= |\ Tyt
a b a

So, after calculating this total potential, we now use the Rayleigh-Ritz principle. That means we
take the derivative of total potential first derivative with respect to a,;. So, now you can see the

total potential [ [ will contain the previous term

42
Dr 4y (3b

3b , 3a 2 p,ayab
= 3 + 5 + ab)subtracted by R

So, that term will be used to compose the total potential IT .

You know after taking the derivative of total potential, we see that from the previous expression

that will be 2 %11 . So, the square term of the coefficient now reduced to a linear term quadratic

term is reduced to a linear term. So, therefore we get the %11 coefficient which contains the load

intensity and dimension of the plate and other parameters that contains the material constants of
the plate that is the value of E Young’s modulus of elasticity Poisson’s ratio that forms the

flexural rigidity of the plate.

EW’

= 1o 2y
That is 12(1-v7) So, one is the coefficient %! is found, deflected shape that we take for

solving the problem can be found out. So, %1 s this expression and if I now want to calculate

for example if I take a rectangular plate which is the aspect ratio 1.5, what is the meaning of

aspect ratio? Aspect ratio is nothing but ratio of the length to the breadth of the plate.

So, if a 1s a length of the plate and b is a breadth of the plate, then a/b is the aspect ratio. So, if
take a by b is as 1.5 and Poisson’s ratio as 0.3, then we can calculate the maximum deflection at

x =y = 0, why I have taken this as the point of maximum deflection? Because for a



symmetrically loaded plate which has symmetrical boundary and loading is also symmetrical, the
maximum deflection is going to take place at the centre of the plate. So, centre of the plate has
coordinate x = 0 and y = 0, because we have taken origin at the centre of the plate.

(Refer Slide Time: 29:50)

Hence, deflected surface is now
 dppa 1
wix,y) = < —(1+ cosmxfa)(1 + cosmy/b)
Dt a it
343(m)+2(5
b I
=k
Where D = L
12{1-17)
If E = 1.5 and v = 0.3, the maximum deflection at x = ¥ = 0 15 obtained from the
&
above equation as
Poa’
Wy = 0.079] =
max |L..|II1

So, by taking this x = 0 as and also y = 0 and substituting these here and a/b = 1.5, that means a =

1.5borb=a/l.5. We can express now

p0a4
w_ = 0.0791——
max Eh
3
Dziz
12(1-0%)

Of course the D term has to be substituted by and in place of mu you substitute

0.3. So, this is the result that has been found for as a deflection of the clamped plate subjected to

uniformly distributed load.

The boundary of the plate are fixed and for that condition the direct use of Levy’s method is not
possible. You can obtain using the Levy’s method by several steps, superimposing the results of
the deflection of edge moment as well as superimposing the deflection of the simply supported

plate with the uniformly distributed load. And then imposing the condition that the slope will be



0 for certain value of edge moment then you can find out substitute this edge moment in the

expression and then you can find the solution for the plate which has all the edges clamped.

So, this contains several steps if you adopt the Levy’s method and the expression will be very
lengthy. But here using the approximate method, you can calculate a deflection of this order and
deflection will be actually within the reasonable limit if you see with the exact results now
because the deflection is actually small in case of the plate because we are using the small

deflection theory.

So, the slight variation of the deflection will not cause any difficulty for practical applications.
But we have to see whether these 2nd derivative and 3rd derivatives which are used to find the
bending moment as well as shear force the accuracy is retained or not, that comparison should be
made. And it is obvious that with the use of only single term in the series, the accuracy in the
bending moment and shear force will be lost. So, if you want to accuracy of these 2 parameter,
then you have to increase the number of terms in the series.

(Refer Slide Time: 32:53)

llustration of Rayleigh-Ritz Methad in Circular Plate (Axi-symmetric problem)

Strain energy of Clrcular plate of axi-symmetrical loading condition

LI
¥ l',llr [n”u' Ldw'® 201 = v)dwidw ;
b dri - rdr v drar|

L}

When the plate s supported along the boundary,

]

dw Ldw'
i _”H!(F+F4'—r) Flr

Next let us illustrate a problem of circular plate. Of course, we are taking here axi-symmetrical
problem, because so far we discussed only axi-symmetrical problem of the circular plate. The

plate which has a axis of rotation, rotational symmetry and loading and boundary conditions



symmetrical with respect to these axis of rotation. Now, if I want to use the Rayleigh-Ritz

method for the circular plate, then again we need a strain expression.

So, strain energy expression for the circular plate is given as

R 2 2 2
U:T[Df(c(iivzv_l_ 1 dw) _ 2(-v) dw dw rdr
0 T

r dr r dr  g*

Now you can see this is the strain energy expression of the plate which is in circular shape.
The boundary may be anything, now when the boundary of the plate is supported whether it is
simply supported or clamped, then the second expression can be neglected. So, in that case we

get

So, if I want to solve the problem using the Rayleigh-Ritz method in case of a plate which is of
circular shape, then we can take this function if the boundary of the plate is supported. Supported
means here it may be fixed along the boundary or it may be simply supported.

(Refer Slide Time: 35:03)

lllustration of Rayleigh-Ritz Method in Circular Plate

Calculate deflection of circular plate resting on elastic foundation carrying
concentrated load at the centre. Take deflection function as (boundary is free)

The deflected surface of the plate under axi-
symmetric condition can be taken as

w(r)=A4+Br i

Where A and B are arbitrary constants.



But consider here a problem which a circular plate is resting on elastic sub grade, just you
consider imagine it or idealize a foundation slab that is circular footing. For example a circular
footing for a circular column if somebody wants to construct it, then you will get this footing this
foundation slab, maybe idealized or modeled as a plate which is resting on the elastic sub grade.
So, elastic sub grade here acts like a spring that it will offer resistance to the downward

deflection of the plate subjected to vertical loading.

So, due to the upward soil pressure you will know that the deflection will be reduced. So, here
the sub grade will act like a spring and this kind of model is generally known as this winkler
plate model or in case of beam this is winkler beam model. Now here the boundary is not
clamped, not fixed. So, here the boundary is taken as a free boundary. So, in case of free

boundary you know that there is a possibility that the rigid body deformation may take place.

So, in that case we have introduced that term say w r = A, this constant A represents a rigid body
displacement. But you also mind that rigid body displacement will not contribute to the strain
and hence there will be no contribution of strain energy due to rigid body motion.

(Refer Slide Time: 37:04)

llustration of Rayleigh-Ritz Method in Circular Plate (Axi-symmetric problem)

Strain energy of Circular plate of axi-symmetrical [oading condition

i
|'-'=rrJ'.I|r T Fnr

\arf - rdr r o dr
]

[n'!u' I.rm.')E 21 - L".l.'.l'wd‘u.'l

When the plate s supported along the boundary,
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e 1dwt
] HJHJ(F*FF) Filr

This is obvious from that expression that the strain energy expression that you have see here

contains the second derivative as well as first derivative. So, if I take a term like that deflection



. 2
s W) =A+Br" yhen first derivative as well as secondary derivative of the constant A will get

0. So, the rigid body displacement if it is there it will not contribute to the strain energy of the

expression.

However, due to free boundary condition, we take the rigid body displacement term as in the
deflection surface expression. So, we assume the deflection surface expression with 2 term series
that is 2 term polynomial you can tell in R. Because in axi-symmetrical problem the deflections
are functions of only radial distance, so it will be independent of the angular position theta. So, if

it is taken the deflection function and the loading in the plate is concentrated load at the centre.

So, out of the 2 choices of the strain energy we cannot adopt this, this is not possible because the
plate is not supported along the edges. So, we have to go to the first one, so first expression will
be used to compute the strain energy of the plate.

(Refer Slide Time: 38:31)

The plate rests on elastic foundation (modulus of subgrade reaction is k). The
strain energy of the plate in bending

’ "J:"?:-pﬂ?,'fff

Ffll ”T[ i HI—H lh‘i ] —1“ hldl!‘:—“ lredr =48 ”_.:'il'("‘l'|+y:|

ar' rde roode e

So, taking this expression and this first expression the strain energy is calculated for the plate and

2 2
it is found as 4B DTR(1+V) Now here also you can note that the deflection term function that

contains the rigid body displacement A which appears as a constant. It does not make it is



presence here, so the strain energy due to bending of plate contains only the expression that is the

second constant B.

So, strain energy expression of the plate is found by integration of this expression with respect to
R. Now, next question comes whether there will be any contribution of the strain energy of the
elastic sub grade? Yes, because the elastic sub grade acts like a spring and the work done in the
spring will be stored as a strain energy.

(Refer Slide Time: 39:38)

Strain energy of elastic foundation
arf &
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Work done by the external load =4 i

Hence, total potential

A T s
[1=U =W =48’ Dak(1 +0) + - A'R +;.{HHJ+EH RY-P4d  w

According to Rayleigh-Ritz Equation, here we get two equations

an_, on_, "
ad il 1

So, strain energy of this spring foundation is calculated. That is if you can see here the area of the
slab on which the spring force acts is nothing but ” dOdr S, this is the area on which the spring

kw(r) So, kw(r)rdOdr .

force act. And spring force is nothing but this is the spring force. So,

spring force multiplied by deflection and it is that is half we take a factor half.

And then integrating with respect to dr and dO©, d© integration is from limit is O to 27 and the

integration with respect to r, radial distance has limit the lower limit is 0 and upper limit is R.



After integration of this expression we get the strain energy stored in the elastic foundation that
1 2p2 1 4 1 2 p6
nk(=A"R"+—ABa"+—B°R")

is elastic sub grade = 2 6

So, here the strain energy expression U, will contains this A square term A’ R, where A* is

coming from with deflection surface that we have introduced the one rigid body displacement
1 1
—ABa* +—B’R°

that is a constant A. So, the strain energy of the foundation contains this term 2 6

So, that expression now have to be added to the strain energy of the plate.

So, strain energy of the plate is this, next we had the strain energy of the foundation to get the
total strain energy of the plate and foundation. Now we calculate the work done by the external
load, you can see that the load is applied at the centre, so deflection at the centre is only to be
used for calculating the load. So, deflection at the centre according to our assumed expression if
we put r = 0 here deflection at the centre is A. so, now using the expression that W is work done
= load into displacement and the displacement the load does not change during the deformation.

So, therefore the work done =P x A.

U= 4B°Dra’(1+v)

So, then total potential will be [T = U - W and this term is the contribution

nk(l LR +L 4Ba* +132R6)— PA
of the strain energy of the plate plus this 2 2 6 is the

4B’Dra*(1+v)

contribution of the elastic foundation. You can see the first term this , U is the

Poisson’s ratio is the contribution of the strain energy of the plate.

nk(l LR + L 4B + L BoRe
And the second term 2 2 6 is the contribution of the elastic foundation
minus work done PxA. Now apply Rayleigh-Ritz method, so if I apply Rayleigh-Ritz method

there are 2 constants involved, one is capital A and another is capital B.



By differentiating this total potential with respect to A and with respect to B separately, So,
an_, on_,

04 OB

we get 2 equations. And this will be linear equations simultaneous equation, so 2 linear
simultaneous equation have to be solved for finding the A and B which requires to completely

know the deflection function.
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Hence we get two equations as follows

b l6i= )
i+ B R =l i
I S !
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Solve equations (10) and (11) and get the values of & and B, Solving these twe
eauatians find & and B and hence wir).

Exercise: Find w _, for Pe6B kN, R=1 m, E=2=10° Nfmm*, h=0.1 m, k=12 kN/mm*

So, now after doing this operation the 2 linear equation that we are arriving here is

A 5| 24 160050)]
3 kR

Then second equation is

A+lBa2 :LZ
2 kR

So, these 2 equation can be solved and A and B are found out which can be substituted in the

expression for the deflection to calculate the deflection any point on the plate.

So, this will be approximate deflection of course, because it may not satisfy the boundary

conditions at the edges which are very difficult boundary condition that is the edge moment as



well as edge shear, both has to be 0 because it is the free end. Now as a exercise you can
calculate the numerical value of this plate problem, if you for calculating the maximum

deflection.

Maximum deflection of course will be at the centre because it is symmetrically loaded and there
is no support actually, so it is a symmetrically loaded and it is resting on the elastic sub grade.
So, it is supported by the elastic sub grade but at the edge there is no support. So, here if you take
say P = 68 kN and the radius of the plate as 1 meter, modulus of elasticity say it is a steel plate is
2 into 10 to the power 5 Newton per mm square, thickness of the plate can be taken as say 0.1

meter, that is the 100 mm.

And then get k the modulus of sub grade reaction is taken as 12 kilo Newton per millimeter cube.
So, by adopting these data you can find the deflection of the plate.
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GALLERKIN METHOD

Let &w be the virtual displacement, then virtual work done by the loading
o -]: qu[.l.',.r]m':infr L2
0 e
Now, plate equation is given by
DV*'w=g(x,v) E]
Then using eq.(13) in eq.{12)

o =[ [DV'wodedy 04
n

o R

Now let us illustrate another method which is also derived from the work energy principle and

that is due to Gallerkin and therefore this method is popularly known as Gallerkin method. Now

in this method let 6% | where w is the deflection of the plate and del w is the variation of the



displacement or you can call it virtual displacement. So, this quantity is the virtual displacement

6W is the virtual displacement of the plate.

Then virtual work done by the loading is 6W = the double integration, double integration is
required because the plate is extended in x as well as in y direction. And 9(*>Y) is the load

applied on the plate and 6W is the virtual displacement. So, load into virtual displacement and

then integrated in the limit 0 to n 0 to b will give you the variation of the work, that is you can

call it the virtual world.

Now the plate equation is known to us, plate equation is D, here D is the flexural rigidity of the

DV*

plate, =4(X,))  Now here you can see that V* is the differential operator, which contains

ol ol ol
- a4+2azaz+a“ - - .. DV*w=¢q(x,y) ,
3 terms, thatis &* x oy V" Now you see this expression that is ~9\%Y) So,in

place of ¢ x y we now put D del 4 w and we get again the virtual work expression as

ab
oW = IIDV4w5wdxdy
o0 ... (14). Here you can see equation 12 and 14 are same because both

has the expression for the virtual work oW
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Equating(12jand (14)
Wow=glx, v] omicgay =0 {15]
{ DV =qlx,y) gl

Let us assume a trial function,
wix )= a flx )t a flx e a fln )t va LTy (16)

where a,, a,,... are arbitrary and their variations
any w0 da, w00 b0, 20

fy (), fylxy)..c., £ y) are assumed function which satisfies boundary conditions. If
assumed function satisfies both geometrical and forced boundary condition, then
exact solution is obtained. However, it is not always possible to satisfy this, hence
function is chosen to satisty at least geometrical boundary condition such that
acceptable results are obtained.

T

So, now equating 12 and 4, we can now write this expression °©

{ DV*w—q(x,y) }Swdxdy

O ey, >~

That means this expression and that expressions are now equated, so after equating we can write

this OW equal to this equal to this. So, we can now take this common term, common term you

o wdxdy DV*w—q(x,y)

can see and other terms will be this your and this is the common term,

so it is equated to 0.

So, now let us assume a trial function

w(x, y) = a fi(x, ) +a f,(x )+ as fi(x )+t a, /(6 )

So, this is the assumed function for the deflection of the plate. So, this should be taken in such a
way that the boundary conditions are satisfied. It is not necessary that differential equations
should be satisfied by the trail function but at least the geometrical boundary condition must be

satisfied.

If it satisfies both geometrical and force boundary condition, then exact solution can be obtained.

oa;; day;+,0

. . . . a .
Now in this expression, a,, a,, a; etc., are the arbitrary constants and n are their



arbitrary variation and these are nonzero quantities. So, now substituting this, then we can now

write the expression of 6W variation of the displacement OW will be Sey) oay (%)

like that TACRY 6a". So, if I substitute this expression here after taking the

variation of this displacement.
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Virtual displacement now can be expressed as
dw =y, f(x, v) + &, f(x, v)+ oy [ )+ ok da f ) (1)
Substituting eq.(17) in [15)

|
[ [4 DV w—gle) Kln fie )+ B filn )+ B file, ) .4 o f ey =0

an
Wi know that,

a2 0, da, 20, #0)
Hence, we gat

§ D w=gle, ) 1, (e =0 (el 2, (18)

= R
o —

Then we write this expression in this form, that in place of del w in the original expression this is
now substituted and then integration is done with respect to dxdy. Now you can see that if |

break the terms that means if I multiply term by term and then interpret the results of the

oa, da, etc.,

multiplication of the left hand side. Then we can get there since are nonzero

4 _
quantities. So, therefore we must get DViw=q(x, p) fi(x,y )_OThen again we will get

4 _ 4 — —
DV w—q(x,y)fz(x,y)—O’ then again we will get Dv'w q(x,y)f3(x,y)—0, of course

integration have to be done all other expressions integration = 0, like that will get.
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Since wix,y) is approximate which is chosen as trial function, {F*w = g{x, ¥} will not
be equal to zero, instead we can write

[F*w - gz v} =%, i19]

where right hand side of eq.(19) represent error in solution due to assumed trial
function, Hence equation [18) can be written as

fl:' ]'u" & fulx.yidxdy =0 (200
Writing eq.(20) for eachn, i,e n=1, 2,_.etc.

!;:I i’: Ey f'lf.t,}']':f.rd}' =0
[ 17 €, fulx,y)dady = 0

L (21)
In" i’ﬂﬂ €, fulx, ¥)dxdy = 0

So, for any term a general term say n, n number of terms we get this expression
!

So, n here varies from 1 to up to infinity but infinite number of terms cannot be taken in practical

{ DV'w—q(x,y) }f,(x,»)dxdy =0

S C— >

applications. So, 1 has to truncate the series up to the limited number of terms. Since w (X,y) is
approximate which is chosen as the trail function. So, {V4W — q(x, y} will not be 0.

Instead, it will show an error because the w is not a exact function. It cannot satisfy the

differential equation. So, therefore
4
AVw —qxy} =€
Some error term is given here. So, Gallerkin equation now can be written as error (€,) into

assumed function and it is integration over the area of the plate is equal to 0. So, that is the final
expression for the Gallerkin method and this integral has to be found for all the function in the

series, all the terms in the series.

So, suppose we have taken a term, say polynomial term, say st term is say x, 2nd term is a x?,
3rd term we say x° like that. So, that means f, is x, f, is x?, f; is X’ like that. So, this Gallerkin

equation is from like that



ab
{{Erfl(x,y)dxdy =0

ab
[ € f,Goydxdy = 0
00

So, n number of equation can be formed using this the Gallerkin principle and you will get in
each equation. These will be a linear equation, simultaneous equation with unknowns coefficient

a,,a,,a . . . a.,a,,a .
1°72>%3 etc.. By solving these equations for unknown coefficients ' “2°"3 we can now obtain

the deflection surface completely, so this is the Gallerkin method.
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It can be noted that in Gallerkin method, we require differentiol equation instead of
Energy equation in Rayleigh-fitz methed,
However, deflectlon function has to be assumed In both the cases so as to saflsfy

boundary conditions.
We may note that due to assumed deflection the expression

IV = glx,v)=¢g

5o, Gallerkin's principle can be mathematically written as,

g, (x. ylededy =0

= —
S, T

The eq, represents errar o residue, Hence this methad Is also described as ‘welghted
residual’ method

So, it can be noted that the difference between the Gallerkin method and Rayleigh-Ritz method is
that. In Gallerkin method we require differential equation instead of strain energy expression.
Now 2 methods have their origin from the strain energy the principle, but the procedure of the
method will differ. Because in one case, say for example Rayleigh-Ritz method, we start with the

strain energy expression of the plate or beam whatever may be?



But here, instead of strain energy expression we required this differential equation of the plate.
And we substitute a assumed trial function which is not the actual deflected surface of the plate.
So, therefore we get an error, this error multiplied by the assumed function and integrated over

the domain of the plate equated to 0 will give the Gallerkin equation

]ﬁ j8f1(X,y)dxdy:0
00

which can be solved to find the unknown value of the constants that is used to form the deflected
surface.

But one common thing is that in Gallerkin and Rayleigh-Ritz method the deflection function that
we have to assume should satisfy the boundary conditions, geometrical boundary condition as
well as force boundary condition. If both the boundary conditions are satisfied the results will be
accurate. But if not, at least geometrical boundary condition must be satisfied otherwise the
results will be erroneous and may not be acceptable in practical applications.
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Steps for Gallerkin's method for plate

[1}Assume a suitable deflection function
[2)Then find

! I [1 09 Y (xddedv=0  gisi2,nl
a4

[3) Also find
|'. ].|-r|ll:l.','.'|f_|'|', Vil = ()

(#) Equate the expression ;f step (2) to the expression of step (3] for every
i=1,2,...,n to form n numbers of simultaneous equation

() Selve for the constants a, a,,....a, from n number of equations

(B)Hence find wixy)

3 MaC

So, let us discuss the steps of the Gallerkin method. I will give you the systematic procedure how
to be adopted in Gallerkin method for solving the plate problem? So, first step is assume a

suitable deflection function. Deflection function can be assumed with a trigonometrical series,



deflection function can be assumed with a polynomial function. It depends on the choice of the

analyst or it can be assumed as a combination of this.

Ili=]i
0

{ DV*w }f,.(x,y)dxdy =0

O Ly >

D is the flexural rigidity of the plate into V4W, V*is the operator differential bi harmonic

differential operator, w is the assumed deflection function multiplied by VACSY . So, /i is one

of the function that is used to represent the deflected surface in this series. So, i here varies from
1, 2, 3 etc. up to n. So, for example if we are solving a simply supported plate, so we are
generally taking a function for plate which has all the edges simply supported as double

trigonometrical series.

. TX . Ty . X
sin— sin—— sin—

. a . a a
For example, first term is say 1 a b second term will be %1 %2 a x

sin 2”—)}

b | like that the terms can be composed. So, here you can see when I use the Gallerkin’s

equation, then here VACHY , that functions of x y, we will use only the terms which does not

.. TxX . T
SIn—- Sll’l—y

contain a constant. That means, in the first term say 4 a b | %1 should not be used

here.

In this function only the function that is used to compose the deflected surface has to be used.

And of course here in place of w we use the full expression of the deflected surface. Then this

integral is calculated and it is denoted as it . And these small i varies from 1 to n, that is number

of terms that we have taken in the deflected surface. In the third step we find



q(x,y) f;(x, y)dxdy = 0 )
, this integration is carried out, and it is denoted as “? equate

Izi:]i
0

© Ly, >~

the expression of step 2 to the expression of step 3.

For every i want to varying up to n, to form n number of simultaneous equation and this equation
again it will be a linear equation. And solving these linear equations we will now get the
constants a , a ,, etc. and then deflected surface can be composed of.
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Example: Consider a simply supported plate. Two springs are attached to the plate at
coordinate (a/4, b/4) and (3a/4, 3b/4). Load acting Is uniformly distributed q0. Find
the deflection of the plate. Assume

m. a0
WL ¥ ey, S0 —5n
L [

Here, according to Gallerkin's principle
-I: ]: AN =gl %, ) :,': t, Plaely =
The distributed loading including force in the two discrete springs can be expressed as

gl vl = gy = kol v =gl a0y = bl d) =k wix, v = Ja/4)3 v =30 [4)

where & denotes Dirac delta function with the property _f: flx)d(x —c)dx = f(c)

a

Let us give one example of plate with the help of Gallerkin method. Considered a simply
supported plate, simply supported plate means here I mean that all the 4 edges are simply

supported, rectangular plate. The length is a and the breadth is b, length is in the x direction and

breadth is in the y direction. Now the plate is subjected to uniformly distributed load 9o, load

acting in the plate is uniformly distributed %

In addition 2 springs are attached at the discrete point, that points are denoted by the coordinate

al4bl4 So, there is 1 spring attached to the plate at a point x coordinate al4 and y



coordinate ©/4 . And another spring is attached to a point which has coordinate 3a/4,3b/4

The coordinates are measured with respect to origin which is taken at the top left hand corner of

the plate.

Now, let us for simplicity, we assume a one term deflected series.

. X . T
w(x,y)=a, sin Y sin 2
a a

So, for simply supported plate we can see that Navier series can represent the deflection surface
. X . T
a sm—sm—y
truly, provided the ™''is correctly evaluated. But these functions a a completely

satisfy the boundary condition of the plate. That is the deflection at the edges is 0 and the

bending moment at the edges is also 0.

Now here according to Gallerkin principle, we can now write

a

J

0

{ DV*w—q(x,y) }f,(x,y)dxdy =0

O Ly >

le(x, y)

Now here we have this first integration that will carry out that integration is the first

integration I,. Now before that let us show what is Q9 9o s the distributed loading on the

plate, now distributed loading on the plate is given as Z° | there is ok uniformly distributed.

But there is also 2 spring setters at certain points. Now spring offers a upward reaction to the

downward deflection of the plate and that reactive force of the spring is given by the stiffness of

the spring multiplied by the deflection. Say first spring that is attached at the point ¢ /4,574 55

spring constant k; and the second spring which is attached at a point 3a/4,3b/4 pag a spring

constant k,.



q(x,y)=q, —kw(x,y)0(x—a/4)0(y—b/4)—k,w(x,y)0(x—-3a/4)0(y—-3b/4)

So, resistance offered by the spring at this point ¢ /4,074 il be

kw(x, y)8(x—a/4)o(y=b/4) . Now the discrete force I have represented here with the help of

al4,b/4

direct delta function. Because the location of the spring is at , so [ use the direct delta

function with arguments X4 /4 for x coordinate and another location for Y coordinate, I use

the direct delta function with the argument Y~ bl4

3a/4,3b/4

Similarly for the second spring that is attached at the point , the upward force or

upward resistance, resisting force offered by the spring is kw(x, y) , that is the deflected
surface. But it is evaluated at this point and it is presented now mathematically with the help of

direct delta function. So, direct delta function with arguments * —3a/4 into direct delta function

with argument —3b/4 Now, so this is the loading that is expressed on the spring.

The property of direct delta function here can be used to simplify the calculation. The property of
direct delta function is known to us that if suppose a function f , is multiplied by a direct delta
function x - ¢ with argument x - c. And it is integrated within a limit say -infinity to +infinity,
any limit. So, the value of the integral will be only the function evaluated at which the direct
delta function is defined. So, direct delta function is defined at the point only at c that is the
point. So therefore, the value of the integral will be the function evaluated at c.
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We break the following integral in two parts

J [: ¥ =gz, ) L, pleivdy =10
@ b ."
I = J' [ DV wf, (x, v )ebdy

ah

I = [ [, 0)f,(x, ey

According to Gallerkin's principle

I=1,

So, we break the following integral into parts. First part is this, this is the integral. So, first part is
L=
0

Second integral is

DV*wf;(x, y)dxdy

O C— >

I, = | q(x, ») f,(x, y)dxdy

O
S C— >

Because there is only one function is chosen, so I write as a function as f;. According to
Gallerkin principle, now I equate I, =1 ,.
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New using the assumed deflected function,

2 2 = 3 y
d'w o d'w ' o2, omom
DV W= D # Jmeer # —=} = Dt (= + =)' it —5in =
or i U - a b

u b =
[ = | [ DV (x, ydey = D (=4 ) 2

I J: -l z S A
Now we have to evaluate,

[,= ]I'i',ﬁ-.[.u, ¥ (x, pdedy

a b 5 ,

o nw°,ab

]1 =I jDV“wfl(x,y)dxdy = Dall(a_2+ )2 ab
0 0

72
And then the first integral becomes this, b4

This is the standard expression that we know. The second integral now has to be evaluated with
the help of direct delta function; the evaluation will be very simplified.
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Mote that
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In a similar fashion,
”k:u, -.|n“~|n: I, i = R i y = B/ A= k. sin :xm \: SiAad3b/d) = ka, sin’ :xln !
i i ¥ L :

Hence,

N [

j Jll'l 1 rind l...l'hl:kill' - -” \ds =k wlx, PMix =a -|hT|_l|'-.'| )= {:uh,l TR I N T |

4g ab 3 ]
I, whifeay :Ir",‘ l.'u||~.|1'|z--l.|'|:~.|n..* 4) J.':.J_:unl.-r'-1|'-:ﬂn‘i.r 45}

dn.ab k+k,
= 4 ~h

So, with the help of direct delta function, you can see the integration is carried out very

conveniently



O ey
O Sy >+

ka, sinﬂsin% F(x.9)8(x—al H)S(y—b/ 4)dxdy = ka,, sin%sin% f(a/4,b/4)=kay, sin® %sin2%
a

n n
s a2 c a2
ka, sin” —sin” —

I is seen in the equation that 4 Dbecause the x y that has to be substituted as
LT LT
sSin— sin —

al4 5o it becomes 4 . And here also y is also b/4 o it is again 4 . Similarly, the

other function will also be calculated with the quantity 3a/4 gnq 3b/4

So, therefore we get this in a similar fashion for 2 springs k; and k,. First we have evaluated for
K,, then in the second case the evaluation is done for the second spring force k,. So, we get this
term and then using in the Gallerkin final equation I, =I,, we now substitute all these quantities.
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Hence,

1y 2

T
Daba™(— + =) +(k +k,)
a b ’
Hence the deflected surface is given by

|
510 — 810
a

i il . W
w(.y) 16, l\?. i}

Dahx* ] .I_ | Fik, +k,)

ha” b )

What will be the deflection of a sguare plate at the centre if k,=k,=k?

By "

Put a=h in the above expréision and x=y=a/2, w(centre) = =

And then we get
16g,ab

a —

' Dabnﬁ(;—2+biz)2 +(k +k,)

Now you can see how this quantity %\ comes? After evaluating the I,, we get this term



4g,ab k +k,
2 a,
T 4

Now you can note here that this term, the first term is the contribution due to uniformly

distributed load and this term is due to contribution of the spring forces.

__ 8,4
And the first term that we got 207 *+ka®

Equating I, and I, and then finding this %1 that is the only unknown in this expression, we get

16g,ab

a 1 = 1 1
' ' Dabr®(— +—)" +(k, +k,)
this quantity. a b
Now you can note here, this expression can be verified easily. Because when there was no spring

and the plate is like a rectangular plate, simply supported along all edges subjected to only

uniformly distributed load. So, in that case results are well known.

So, if these springs are absent then we can take k, = k, = 0. So, the expression coincides with the
expression that we have obtained in case of a rectangular plate subjected to uniformly distributed
load and has simply supported edges. So, deflected surface of the plate now can be written in this

1 . )
64ab sin®*sin Y

b

w(x,y) = Y
} Dab7r6(az+sz +(k, +ky)
orm



. X . Ty
in—sin——
with the variable a b . Now if these 2 springs are say of same stiffness the spring
constants are same. Then at the centre if we are interested to calculate the deflection at the
centre, the centre coordinate is x =y =a /2, and w at the centre will be equal to
8q,a*

_8q0at 2Dl 4 kg’
2Dm6+ka2

So, this is the maximum deflection of the plate in that case.
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o

Example-A circular plate is fixed at the boundaries carries load uniformly
distributed load g, per unit area, The radius of the plate is R. Differential equation
of the axi-symmetric bending of the circular plate is given by

M«.lll'-- : 1d'w | ||II".L . 1o

W
| =apl(F)
i F ol

Take the deflaction function as
wir)= AR - R

Lot i vake operator |

i 1 i g
d 2d I I a

ir’ l e r |.|II"I : T ;

Now a circular plate is fixed at the boundaries carries load uniformly distributed over the area.
The radius of the plate is R and differential equation of the axi-symmetrical bending of the
circular plate is given by this. So, this expression is found from the differential equation of the

circular plate where this operator you can isolate. You can see this differential operator L is

dt 2d 1d 1d
L= t——— +

So, once you know this operator and the deflection surface of the fixed plate, circular plate can
be assumed like that. You can verify that this expression can represent the deflection surface
because it satisfy the clamped edge condition. At the clamped edge the w is 0, that is if R is the

radius of the plate, by substituting r as R, you will get w at boundary 0.



Again if you differentiate it and then the substitute r = R that is at the edges the slope will be 0.
_ 4 2.2 4
So, 2 conditions are satisfied easily, so therefore the function W) = 4R —2Rr" +717]

can represent the deflected surface of the circular plate clamped along the boundaries. So, we

take the uniformly distributed load on the plate as 7o .
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Flrst let us calculate |, as

i ::d;[m-]mu-‘rr inwhich ~ fi(rh=R'-2R°F +¢'
&

In the second step calculate

[
{ :-'-']-.'II'I I (¥l

Equate 1; to L, and find constant A. Hence wnte the expression for the
deflection.

R
I, =2xD j L(w) f, (r)rdr
And then I, is calculated, 0

Here the differential operator L w is taken to write the expression in compact h() is the

_p4_Ap22, 4
deflection function which is S =R =2R°r"+r

As I have told you earlier the deflection function here you have to take or in other cases also
rectangular plate that you have to take into calculation without the constants, arbitrary constant

that is associated.

In the second step, calculate I, that is with the load,



L =2x [ q(r) f(r)r

soloadis 9(") and deflection function is the /179" Of course here 9() is constant is equal

to 9. So, if 2 integrations are carried out and then equated both the expressions are equated I, is

equated to I,, then we can find the unknown constant A. Once the unknown constant is found
then deflection is completely known.

(Refer Slide Time: 1:14:12)

Remarks on Rayleigh-Ritz method and Gallerkin's Method

* Raylelgh-Ritz and Gallerkin's method are approximate method. The
success of these methods depend on the selection of the displacement
function satisfying boundary conditions.

» Both the methods are derived from Variational principle.

* In case of applying Rayleigh Ritz method, it is necessary to know the strain
energy of the plate and work done by the applied loads.

* But in case of Gallerkin's method one has to know the governing
differential equation of the plate.

k 4.4

So, let us compare the Rayleigh-Ritz method and Gallerkin method. Rayleigh-Ritz and Gallerkin
method are a approximate method, both are approximate) method, it cannot give the exact result.
But it can give a result which is very close to the exact result. If the deflection function is chosen
accurately or satisfying the boundary condition, the exact solution can be only obtained in some
limited cases but with the help of approximate method that is the Rayleigh-Ritz or Gallerkin
method.

We can attempt the problem of plate with any type of boundary conditions and loading. So, that
is the beauty of the approximate method. For practical purpose the solution can be adopted. The

success of these methods, however depend on the selection of the displacement function



satisfying the boundary conditions. Both the methods are derived from variational principle, so

that is the similarity is there in these 2 methods.

But in case of Rayleigh-Ritz method we required to know the strain energy expression and the
work done by the applied load. But in case of Gallerkin method, we must know the governing
differential equation of the plate. You can see even both the methods are derived from the
fundamental principle of work and energy. But approach becomes different because in one case

you require the strain energy expression in Rayleigh-Ritz approach.

In another case, the Gallerkin method you require the governing differential equation. So, if the
governing differential equation of the system is known, we can choose the Gallerkin method. But
when the strain or energy expression is known, we can choose the Rayleigh-Ritz method. So, let
me summarize the lecture that I have delivered today.
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SUMMARY

Ir thuiler.ture. Rayleigh-Ritz method has been applied for rectangular plate clamped
at edges and a circular plate free at the boundary which rests on elastic foundation.
The guide lines to select the shape function has been stated,

Gallerkin's method has been derived from virtual work principle and step by step
procedure to be followed for selving the plate problem has been discussed. Two
examples-one for rectangular plate and the ather for circular plate

In this lecture, Rayleigh-Ritz method has been applied for rectangular plate clamped at edges and
circular plate free at the boundary which rests on elastic foundation. The guidelines to select the
shape function has been stated or discussed. Gallerkin method has been derived from virtual

work principle. And step by step procedure to be followed for solving the plate problem has been



discussed. Two examples, one for rectangular plate and the other for circular plate has been

discussed in our lecture. Thank you very much.



