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So, today I am starting the lecture 3 of module 4, that I was continuing this loading condition.

Then we can convert the partial differential equation into ordinary differential equation, since the

deflection and this load and other stress resultant will not be a function of θ. So, in that case we

have seen that equation can be arranged in the desired deflection. So, after the deflection is

obtained, then we can calculate the bending moment, shearing force and other bending moment

and shearing force. Because in that case the radial moment and tangential or circumferential

moment, these two moments are of important in axisymmetric problem, but this Mrθ that you

know because of symmetry, and Qθ is also 0. So, now, let us show further application of this

axi-symmetrical formulation by giving more examples in practical cases.
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So, we will today discuss the bending of solid plate as well as annular plate supported in

different manners. And carrying the load specially in case of this annular plate, or in some case

you will find that specially for concentrated load that I have given in the first item. There you

will find that discontinuity arises at the application of the point of concentrated load in the

expression of slope and this is when the concentrated load is acting just at the below the point of

application of the concentrated load, the slope and deflection cannot be found out.

But in the vicinity of the load this can be found out, in fact there is no load which is

concentrated. Any load has some distributed area, so practically if such load occurs in the plate,

specially the concentrated load at the center, then we can find in the vicinity of the load the

bending moment and then we take to the right and left of the load. And we can take the average

of these 2 quantities to find the bending moment at the center. So, let us go to the topic.
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So, here a plate is shown of circle circular shape thickness is h and the radius is a, it is subjected

to a concentrated load P. Now this plate may be supported in manners say that it may be clamped

along the periphery or it may be simply supported along the periphery. But since it is

axi-symmetrical problem, this support condition must be also symmetrical about the rotational

axis. Now, here line of application of the load.

Now, solve such type of problem by taking the differential equation of the equilibrium that we

develop for axi-symmetrical plate. But we can adopt any of these 2 equations, one equation is

that relating the fourth derivative of deflection to the distributed load, and the second one is

relating the shear forces to the externally applied load. So, since there is no distributed load, the

second option will be better in this case. Because in absence of distributed load the forcing

functions of the differential equation cannot be written here.
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So, let us go to this equation that the second equation which relates deflection with this third

derivative of deflection with the shear force that can be taken here with convenience. But another

form is also existing; this relating the fourth derivative of the deflection to the distributed load,

but this form cannot be used here because of concentrated load action. So, what do we do

actually?

(Refer Slide Time: 05:12)

We take a slice of the plate at a radial distance r and consider the equilibrium of this slice. So,

this slice is considered here and the equilibrium of vertical forces specially to relate the shear



force to the externally applied load will consider the equilibrium of the vertical forces. So, free

body diagram showing the vertical forces as shown here in this figure, and now we can write the

differential equation, third derivative of the deflection to the shear force per unit length.

So, the equilibrium equation now takes the form . So, this equation you𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ =−
𝑄

𝑟

𝐷

can see, this quantity is the slope and then it is taken to obtain the third derivative and to𝑑𝑤
𝑑𝑟  

relate this to the shearing force. Now observing the vertical force equilibrium of this slice in

figure 2, you figure 3 whatever you call, then we can write that any radial distance the total

vertical shear that is Qr multiplied by the length of this slice. Now, the slice is also circular in

shape, so the perimeter will be , so is the total force, this must be balanced, we2π𝑟  𝑄
𝑟

× 2π𝑟( )

can write this with a positive sign and equate to 0. From this equation 2, we get Qr = ˗P/2. So,

this is the equation for shearing forces per unit length subjected to a concentrated load at the

center at a radial distance r. So, now Qr can be substituted in the equation 1 and then we can get

the differential equation relating the concentrated load with the third derivative.
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Now, in order of this I write this substitute this Qr with this . So, this equation now− 𝑃
2π𝑟

becomes this . So, this equation is actually the shearing force equation𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ = 𝑃
2π𝑟𝐷

and that has to be integrated to extract the deflected surface w. Now, the steps are underlying, so



integrating equation 3. So, if I integrate the equation 3, then I get the expression inside the third

bracket directly.

So, I get , and in the right I will get is a constant, so constant I can write1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( ) 𝑃
2π𝐷

𝑃
2

here. But integration will be , so is given in the numerator, so . And then1
𝑟 𝑙𝑜𝑔𝑟 𝑃𝑙𝑜𝑔𝑟 𝑃𝑙𝑜𝑔𝑟

2π𝐷

constant of integration appears and we name it as . Now, you can see that term is coming𝐶
1

𝑙𝑜𝑔𝑟

because of reciprocal of r that is appearing in the equation 3.

And when we integrated dr/r the term appears, but mind that this has to be evaluated𝑙𝑜𝑔𝑟 𝑙𝑜𝑔𝑟

with respect to the base e. So, this is a natural logarithm that we have to evaluate. Now, let us

proceed go ahead, so what we will do here? Again you see we have to integrate, but before

integration you are seeing that term is associated in the left hand side. So, if I integrate this1
𝑟

equation, then integration by part will give you a complicated expression and you will not be

able to get this w so easily.

So, what can I do? I eliminate that means I multiply both sides by r. So, the right hand side1
𝑟

you can see then right hand side there will be no differential coefficient involved. So, whatever

the order of r or degree of r in left hand side it will not give trouble for integration. So,

multiplying both side by r, we now write and .𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )  𝑃𝑟𝑙𝑜𝑔𝑟
2π𝐷 + 𝐶

1
𝑟

That is just after multiplying with r, we get this expression, equation number 5. Now, you can

see I have marked it with the red colour because this appears as 2 functions of r. That𝑟𝑙𝑜𝑔𝑟

means when again I integrate I required to integrate this expression with respect to r using𝑟𝑙𝑜𝑔𝑟 

the integration by parts rule.
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So, now can be performed by the rule of integration by parts. Now, you have to note𝑟𝑙𝑜𝑔𝑟𝑑𝑟

here very clearly, that when I integrate this , then has to be taken as the first function𝑟𝑙𝑜𝑔𝑟 𝑙𝑜𝑔𝑟

and r has to be taken as the second function. So, after integrating we get in the right hand side,

that . So, this is the integration of . So, hence, equation 5∫ 𝑟𝑙𝑜𝑔𝑟𝑑𝑟 = 𝑟2

2 𝑙𝑜𝑔𝑟 − 𝑟2

4 𝑟𝑙𝑜𝑔𝑟𝑑𝑟

after integration becomes this and this result is substituted here. So,𝑟 𝑑𝑤
𝑑𝑟 = 𝑃

2π𝐷  

, r was there , so integration will be another constant of𝑟2

2 𝑙𝑜𝑔𝑟 − 𝑟2

4( ) + 𝐶
1

𝐶
1
𝑟 𝐶

1
𝑟2

2 + 𝐶
2

integration. Now, here we are integrating a third order equation, so naturally 3 constants of

integration will appear. Now we are reaching our target that means we have to obtain now the w,

the deflected surface. So, then one more step is there, so divide equation 7 by r, so we have done.

So, that we get sole expression of that after this final integration, we will be able to get w. 𝑑𝑤
𝑑𝑟

So, divide both sides by r we get in the left hand side that is the slope of the plate𝑑𝑤
𝑑𝑟  

. Now, these expressions represent the slope along any= 𝑃
2π𝐷

𝑟
2 𝑙𝑜𝑔𝑟 − 𝑟

4( ) + 𝐶
1

𝑟
2 +

𝐶
2

𝑟

radial distance because it is a axi-symmetrical problem. So, at any angular direction it will be

same. Now, you can see the features of this expression.



At the point of application of the load that is load is applied at the center because it is a

concentrated load. So, at r = 0, you will get that is undefined quantity. So, that means, in the𝑑𝑤
𝑑𝑟

vicinity of center only this slope can be evaluated but not exactly the center. This is because of

concentrated load acting at a single point. In fact, there is no such load acting at a single point as

some distributed area, whatever small maybe. So, finally integrate equation 8, so after final

integration again you see inside bracket term appears. So, this expression can be used𝑟𝑙𝑜𝑔𝑟

again here for integration.
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So, after final integration, we get , that is w is a function of r deflected surface is the𝑤 𝑟( )

function of r because it is axi-symmetrical problem. So, there will be no variable θ in the

deflection expression because at any orientation the deflection value will be same along the

radial direction. So, . Because term is there,𝑃
2π𝐷

1
2

𝑟2

2 𝑙𝑜𝑔𝑟 − 𝑟2

4( ) − 𝑟2

8{ } +
𝐶

1

4 𝑟2 + 𝐶
2
𝑙𝑜𝑔𝑟

𝐶
2

𝑟

so after integration it becomes and the final constant is . After this step, no more𝐶
2
𝑙𝑜𝑔𝑟 𝐶

3

integration is required because we obtained that is the deflected surface. But still some𝑤 𝑟( )

terms you can see that there are terms which contains P, that is the load, there are terms which

contains , there are terms which contains only and there is also a term which contains𝑟2𝑙𝑜𝑔𝑟 𝑟2 

only and a constant.𝑙𝑜𝑔𝑟



So, the constant arranged or clubbed together and we can write that that is term,𝑤 𝑟( ) = 𝐴𝑟2 𝑟2

we have isolated all term that is here term is there. That this constant is named as A, so .𝑟2 𝐴𝑟2

Then only this sole constant the we have taken here and named as B, fresh we have named𝐶
3

fresh as B. Then the term with P, so bending moment whatever we get is due to load P only, P

does not exist in the expression with fresh then there is no value of this solution.

So, here we get this term with P as , you can see the product of this . And other terms𝑃
8π𝐷 𝑟2𝑙𝑜𝑔𝑟

we have just clubbed together with a constant, B. Suppose their constant term is there𝑃
2π𝐷  𝑟2 

4  

with , so it is plot together with the constant A. So, final expression for deflection; now can be𝑟2

written . So, constant of integration are A, B and that have𝐴𝑟2 + 𝐵 + 𝑃
8π𝐷 𝑟2𝑙𝑜𝑔𝑟 + 𝐶

2
𝑙𝑜𝑔𝑟 𝐶

2

to be evaluated applying the boundary condition at the edges.

Now you can examine the nature of the expression and you will be interested because at the

point of application of the load will get the maximum deflection as well as you will get the

maximum bending moment, it is obvious. But in this expression if you put r = 0, then deflection

is not finite here. Because this term is becoming unbounded and this is , so 0 multiplied by any𝑟2

high number will be 0, so this term will give trouble in the expression.

So, therefore drop constant and therefore final expression for the deflection can be written as𝐶
2

. So, this is the final expression for the deflection. Now, with𝑤 𝑟( ) = 𝐴𝑟2 + 𝐵 + 𝑃
8π𝐷 𝑟2𝑙𝑜𝑔𝑟 

this expression that is concentrated load acting at the center, we can now proceed to evaluate the

value of deflection, bending moment etcetera, based on the boundary condition.
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Now, first let us consider a clamped boundary, that is plate is clamped at the periphery, a circular

plate clamped or welded a plate is welded at the periphery. Or say for example, a circular slab in

assembly hall or somewhere in a temple; it is supported on a ring beam. So, it is subjected to a

concentrated load, there may be concentrated load or a load which is distributed over a very

small area. So, in that case let us find out the maximum deflection bending moment etcetera. So,

at r = a, the edge is clamped, so the limit of the plate is from 0 to a, a is the radius of the plate.

See this figure and here therefore we get the deflection at the boundary is 0 and slope at the

boundary is 0 along the radius of the clamped condition. Now applying the first condition in

equation 10.1, what is 10.1? Let us see this 10.1. If I put r = a, then equate to 0, so +B+𝐴𝑎2

. So, this we get here +B+ . So, this is the first equation, finding the𝑃𝑎2

8π𝐷 𝑙𝑜𝑔𝑎 = 0 𝐴𝑎2 𝑃𝑎2

8π𝐷 𝑙𝑜𝑔𝑎

constant of integration A and B.

The constant of integration has to be obtained by applying the condition of slope. At the clamped

end the slope along the radial direction is 0. So, the first derivative of w is 0, we have 2

derivative of w, since the expression for w is now known in terms of constant. So, we can obtain

the first derivative of w, you can obtain the first term derivative with respect to r will be 2𝐴𝑟 

derivative of B will be 0 because it is a constant, derivative of third term that will be𝑃
8π𝐷  

constant term. And here products of 2 terms are there, so therefore you have to differentiate 𝑟2 



first and coefficient will be remaining as plus you differentiate and with that𝑙𝑜𝑔𝑟 𝑙𝑜𝑔𝑟

multiplication of will be there.𝑟2
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So, using this we obtain the first derivative of this expression as . So,2𝐴𝑟 + 𝑃
8π𝐷 2𝑟𝑙𝑜𝑔𝑟 + 𝑟( )

you can see here this expression is the result of the differentiation of . So, after𝑟2𝑙𝑜𝑔𝑟

differentiation of , it is decomposed into 2 terms. Now, since the slope is 0 at the clamped𝑟2𝑙𝑜𝑔𝑟

boundary r = a, now we apply the clamped boundary condition. Clamped boundary condition is

, this is the condition.2𝐴𝑎 + 𝑃
8π𝐷 2𝑎𝑙𝑜𝑔𝑎 + 𝑎( ) = 0

So, now we get 2 equations, one is this equation relating A and B here and here also another

equation but here B term does not appear because B is a constant which appearing as a sole term

and when we differentiate it, it vanishes. So, in this expression we get

. From this expression one can see that the constant A obtained2𝐴𝑎 + 𝑃
8π𝐷 2𝑎𝑙𝑜𝑔𝑎 + 𝑎( ) = 0

as minus I take this term in the right hand side, so it becomes , you can see 2 is brought− 𝑃
16π𝐷

here, so 8 × 2, bracket because it is divided by a, so and it is a/a is 1.16π𝐷 2𝑙𝑜𝑔𝑎 2𝑙𝑜𝑔𝑎



So, we get the quantity or constant A as this equation 13. In equation 11,− 𝑃
16π𝐷 2𝑙𝑜𝑔𝑎 + 1( )

equation 11 is this because it gives the value of A in terms of known parameters. Because D is

known the flexural rigidity depends on the material constant E then ν and also the thickness of

the plate is known, radius of the plate is known, so the constant A is fully evaluated.

So, after knowing the constant A, we can find the constant B from the expression 11. So, A is

substituted from the previous equation here and we can now evaluate B. After evaluating B, this

B expression comes as . So, we get the desired constants of integration that is required𝐵 = 𝑃𝑎2

16π𝐷

to fully know, completely know the deflected surface. Now, substituting A and B in the deflected

surface that we have found from the solution of the differential equation that is 10.1.
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We will find that deflection equation now becomes +𝑤 𝑟( ) = 𝑃𝑟2

8π𝐷 𝑙𝑜𝑔𝑟 − 𝑃𝑟2

16π𝐷 2𝑙𝑜𝑔𝑎 + 1( )

the constant term.
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So, bending moment expression becomes the + , ν is the Poisson ratio . Now after− 𝐷 𝑑2𝑤

𝑑𝑟2
ν
𝑟

𝑑𝑤
𝑑𝑟

differentiating the w, 2 times and then we can get equation 19. So, bending moment expression is

now written as . You can see the expression for radial moment,− 𝑃
8π 2 + 𝑙𝑜𝑔 𝑟2

𝑎2 + ν𝑙𝑜𝑔 𝑟2

𝑎2( )
examine the expression for radial moment.

The radial moment at the center does not exist because the slope is discontinuous, the first

derivative is discontinuous, so the second derivative also. So, therefore you have to find this the

radial moment in the vicinity of the application of the load. But at the edges, the clamped

bending moment that is fixed end bending moment by putting a in the expression we can get the

maximum bending moment.

So, when you put this r is substituted as a. So, this becomes 1, so log1 is 0, similarly this is𝑟2

𝑎2 ,  

also becoming 1. So, therefore the maximum radial moment that is occurring at the clamped

edge is equal to . So, this is the value of maximum radial bending moment and you can see−𝑃
4π

that this quantity does not depend on the Poisson ratio. Now, let us come to the moment.

(Refer Slide Time: 25:58)



The circumferential bending moment can be obtained by this expression .− 𝐷 ν 𝑑2𝑤

𝑑𝑟2 + 1
𝑟

𝑑𝑤
𝑑𝑟( )

Now again substituting the second derivative and first derivative of the deflected surface, we get

that . Now, here you can see this expression is not only𝑀
θ

=− 𝑃
8π 2ν + 𝑙𝑜𝑔 𝑟2

𝑎2 ν + 1{ }( ) 𝑀
θ

dependent on the value of the load and the ratio of the r/a but also it depends on the material

property specially.ν

So, at r = a again this term becomes 0 because log1 is 0. So, we get at the edges is .𝑀
θ

=− 𝑃
4π

Now compared to the earlier value of the moment , if you calculate these value then you will−𝑃
4π

find this moment is reduced because of this Poisson ratio effect.
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So, then one can find also the shearing force, but shearing force can be found from the

equilibrium in the vertical direction or from the calculation finding the third derivative and

equating to the shearing force because we know this deflected surface. So, we can now obtain the

derivative up to third order easily. Let us come to a case where the plate has a hole at the center.

So, as I told you this type of plate is encountered in practical application in several occasions.

For example, a circular shaped elevated water tank is to be constructed and then we arranged the

column in this circumference of this circle. So, for this column which are arranged in the

circumference of the circle, it will be convenient to adopt an annular rough foundation

accommodating all the column.

So, this type of problem is found application in practice and plate theory for finding these stress

resultant can be used. Now, here we are examining a case where the annular plate is subjected to

a moment at the edges. So, at the outer edge, the moment is M2; at the inner edge, moment is M1.

And you can see here that the inner hole, inner edge has a radius of b, that means, the radius of

the hole is b and the outer radius is a.

So, total radius of the complete plate is a, but there is a hole at the center concentric hole the

radius of the hole is b. So, let us solve this problem. Now you can see that in the region, r

ranging from b to a, this region, there is no distributed load. So, that means shearing force will be



0. So, based on that we can write this equation . So, this is the equation or𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ = 0

expression for shear force equal to 0 because no shearing action is taken place here because no

load is there.

So, solve homogeneous equation to find the deflected surface. Now integrate this equation, after

integration we get the quantity inside this third bracket and the quantity is . So,1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( ) = 𝐶
1

because this is 0, so after integration at constant term will appear. Now multiply equation 25 by

r, if I multiply equation 25 by r then it becomes , this expression can be again𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( ) = 𝐶
1
𝑟

integrated.
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So, after integrating this expression, we get . Then to obtain w again the𝑟 𝑑𝑤
𝑑𝑟 = 1

2 𝐶
1
𝑟2 + 𝐶

2 

tricks have to be applied that we now divide these both sides of the equation with r. So, dividing

both sides of the equation by r we get . Now integrate equation 28, after𝑑𝑤
𝑑𝑟 = 1

2 𝐶
1
𝑟 +

𝐶
2

𝑟

integrating equation 28 we now finally arrived at the desired expression, so w is nothing but

because integration of r with respect to dr will be r2/2. So, naturally 1/4 term, a factor is
𝐶

1

4 𝑟2

coming here and this term will be r . Now, here we are getting 3 constants of𝐶
2
𝑙𝑜𝑔 + 𝐶

3



integration as expected after final integration. And now 3 constants of integration have to be

found out applying the boundary condition at the edges. Let us consider the edges are simply

supported. So, that means at this outer edge a moment M2 is applied and the inner edge M1 is

applied.

And in the region 0 to b, there is no material that is a hollow portion of the plate. So, for at r = 0,

there is no question of any stress resultant or deflection because no material is there. So, this

expression r is valid only for the region r in between b to a. So, only𝑤 𝑟( ) =
𝐶

1

4 𝑟2 + 𝐶
2
𝑙𝑜𝑔 + 𝐶

3

in this region it is valid, so we can keep now all the terms. So, , , all the terms now are
𝐶

1

4 𝐶
2

𝐶
3

important to find out the deflection of the plate.
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Now at the boundaries, we examine that the radial moment at r = b. So, at the inner edge, the𝑀
1
 

moment that is applied is and it is a symmetrically applied moment. Edge moment uniform𝑀
1

along the periphery, inner periphery and outer periphery, so that you have this bending under this

symmetrical moment because if the moments are anti-symmetrical condition, the differential

equation cannot be used.



So, is existing at the inner edge. So, therefore at r = b, we now equate the bending moment𝑀
1

to . Now expression for is ˗D bracket the curvature that is the second derivative of w𝑀
𝑟

𝑀
1

𝑀
𝑟

with respect to r and then + , ν is the Poisson ratio and first derivative of w with respect to r.ν
𝑟

First derivative and second derivative both have to be found out. Now here you can see after

differentiation and applying the condition at r = b and r = a that is the inner edge and outer edge,

we get 2 equations.

The 1st equation is after application of the condition of radial moment at the inner edge at r = b

we get, . And then after applying the boundary condition at𝐷
𝐶

1

2 1 + ν( ) −
𝐶

2

𝑏2 (1 − ν)⎡⎢⎣
⎤⎥⎦

= 𝑀
1

the outer edge that is r = a we get, . So, 2 equations now we𝐷
𝐶

1

2 1 + ν( ) −
𝐶

2

𝑎2 (1 − ν)⎡⎢⎣
⎤⎥⎦

= 𝑀
2

get and 2 equations can be solved for C1 and C2.

And after solving C1 and C2 we go for finding these another constant C3. But application of 2

boundary conditions gives only the 2 equations. You see, there are 3 constants of integration but

we get only 2 equations. So, let us see how the third constant can be evaluated. First let us obtain

the 2 constants of integration C1 and C2. Solving C1 and C2 from equation 30 and 31 that can be

solved, because this is a linear equation with C1 and C2. So, it can be solved by Cramer's rule or

by simply any method you apply from algebra you can get the value of C1 and C2.
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So, obtaining the value of C1 and C2 we can write now . Then𝐶
1

=
2(𝑎2𝑀

2
−𝑏2𝑀

1
)

1+ν( )𝐷(𝑎2−𝑏2)

. So, these 2 constants are obtained where a is the outer radius, b is the inner𝐶
2

=
𝑎2𝑏2 (𝑀

2
−𝑀

1
)

1−ν( )𝐷(𝑎2−𝑏2)

radius, M1 is the inner moment and M2 is the outer moment. So, that has been shown in the

figure.

So, other constant C3 is found from the fact that w(a)=0 since simply supported condition at the

edges, say at outer edge the plate is simply supported, so at r = a deflection must be 0. So, based

on that we get another equation. So, substituting r = a here in this expression, we get

a , so this equation we get. Now combining this term that is
𝐶

1

4 𝑎2 + 𝐶
2
𝑙𝑜𝑔 + 𝐶

3
= 0

.𝐶
3

=−
𝐶

1

4 𝑟2 + 𝐶
2
𝑙𝑜𝑔 𝑟

𝑎

So, these 2 terms we have got now, 2 terms C1 and C2 already calculated, so now substituting C1

and C2 you can now get C3. So, C3 is calculated as this, , is the moment𝐶
3

=−
𝑎2 (𝑎2𝑀

2
−𝑏2𝑀

1
)

2 1+ν( )𝐷(𝑎2−𝑏2)
𝑀

2

at the outer edge. So, 3 constants of integration are now completely known. Because we require

only 3 constants C1, C2, C3, 3 constants are appearing because we have integrated a third order

equation. Instead of fourth order equation we have integrated the third order equation, so 3

constants are appearing. Now 3 constants here are completely known.
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So, we can write the expression for deflection. = 0, for example here there is no moment at𝑀
2

the outer edge, only the inner edge moment is acting. So, put = 0 in this expression and then𝑀
2

we can get the expression for as this. Now, let us see how the deflected surface varies with𝑤 𝑟( )

r/a ratio. So, the range of r is from b to a, b is the inner radius and a is the outer radius. So, for

example to illustrate the solution we have taken the inner radius as the one fourth of the outer

radius. And we have taken it is a steel plate whose Poisson ratio is 0.3. The variation of 𝑤 𝑟( )

with the r/a is shown in this figure 6.

(Refer Slide Time: 39:35)



Here you can see this is the end, 0 is the center, this is the center and this is the outer radius. So,

variation of deflection with r/a ratio for simply supported circular annular plate subjected to edge

moment is shown only for this edge moment . Now you can see here that at the simply𝑀
1

supported edge the deflection is 0 obviously as expected and, it is not going at the center because

at center there is no material. So, at 0.25 because r is equal to only 0.25 a because we have taken

r = a/4. So, you can see that at r = a/4, that is at the inner edge because this is free, the maximum

deflection is occurring here.
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So, in such a manner we can find the expression for the annular plate. Now here another variety

of problem I am discussing. This problem will be slightly complicated because the loading is not

continuous. Because there is a break in the load although it is axi-symmetrical, but the load is not

containing the full plate. This is also a plate with hole, the radius of the hole is b but the loading

portion is from c to a. That is c is the radial distance from where the uniform load starts and it

ends at the outer edge a, the hole with the radius b in the plate exist. Now here we have to obtain

the solution in 2 cases that means first we have to get the solution for inner region and then we

have to get the solution for outer region. Inner region I am calling that region to where there is no

load acting and the outer region I am calling this portion where the load is acting.

So, inner part is say b to c where no load is acting and outer part is from c to a. Now if I see the

vertical force equilibrium in the outer part, we can see that total shearing force at any slice will

be is equal to total vertical load acting on the slice. So, total vertical load acting on the2π𝑟𝑄
𝑟
 

slice will be the total vertical load acting on the area, which will be and q is the load𝑟2 − 𝑐2( ) 

acting on the slice. So, this is the total external load that is acting on this slice should be equal to

the total shearing force. So, from that condition we can get ).𝑄
𝑟

= 𝑞
2𝑟 (𝑟2 − 𝑐2
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Then we should find the deflected surface by integration procedure and we adopt the third order

equation where shear force is related to the third derivative of the deflection. Now here if you

solve this by substituting that we have obtained here, we can get a solution w. Now this𝑄
𝑟

solution contains 3 constants for the outer region. Then the inner region also will get a solution,

inner region actually no force is acting, so naturally this q will be 0, but we get 3 constants of

integration.

So, 3 + 3 = 6 constants of integration have to be known by applying the boundary condition. So,

boundary condition we require 6 in numbers to be applied to know all the constants of

integration and then we can finally know the deflected surface. For the inner part if you see that r

= b no moment is acting because it is a free end and no externally applied edge moment is there.

So, therefore we take =0 at r = b, so this is one condition.𝑀
𝑟

Then for outer region or outer solution, if you call that we have obtained, where the load is

considered q. Second condition is at simply supported end that is the radial moment is 0, is 0,𝑀
𝑟

that is second condition. Then deflection is 0 at this simply supported end that is another

condition. So, we get 3 conditions to be imposed on the 6 in the 2 differential equations

involving 6 constants of integration.

Then another 3 constants are found at r = c, that is this point, deflection found from the inner part

should match with the deflection found from the outer part for satisfying the compatibility of

deflection. So, compatibility of deflection has to be satisfied at the common point. So, at r = c,

, then 5th condition is the slope compatibility has to be satisfied at the common𝑤
(𝑖𝑛𝑛𝑒𝑟)

= 𝑤
𝑜𝑢𝑡𝑒𝑟

point. So, at r = c again .𝑑𝑤
𝑑𝑟 (𝑖𝑛𝑛𝑒𝑟)

= 𝑑𝑤
𝑑𝑟 (𝑜𝑢𝑡𝑒𝑟)

That means, outer and inner solution differentiation has to be taken and has to be equated. Last

boundary condition is the bending moment , that is the radial bending moment at this common𝑀
𝑟

point on the inner part should be equal to the radial bending moment at this point from the outer



solution. So, in this way we get the 6 solution, 6 boundary conditions and applying 6 boundary

condition, 6 constants of integration can be evaluated.
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Now lastly I want to discuss a problem of finding the deflection and bending moment in a

circular plate carrying concentrated load at the center, whose boundary condition is simply

supported. So, that type of problem is also occurring in practice, that is the simply supported

edges and let us see how to solve such problem.
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So, we have here this problem of simply supported plate, circular plate. That means we have a

plate which is simply supported at the edges and carrying a concentrated load at the center, that

means if you see a section in the center there is a load. So, let us solve the problem of finding the

deflection. The equation of the plate deflection is known, we can take the third order equation,

we can take the fourth order equation.

Now here we shall take a slice around the load and consider the equilibrium of this slice. So, load

is acting here P and we have the shearing force that is acting around the slice of magnitude 𝑄
𝑟

per unit length. Now from vertical force equilibrium that is summation of forces in z direction is

0, z direction is the vertical, this is the z direction and direction of w is also same. So, taking the

equilibrium of forces, summation of forces in the z direction to be 0, we now get because2π𝑟𝑄
𝑟

we take this slice at a distance of r equal to this P. Or we can say because both are taken this

downward, so it will be minus. So, with the minus sign, so this is the . Now let us𝑄
𝑟

=− 𝑃
2π𝑟 𝑄

𝑟

write the equations of equilibrium, differential equations. So, differential equation, let us write

like this . Instead of now I put this term. So, this term is brought𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ =−
𝑄

𝑟

𝐷 𝑄
𝑟

here and now differential equation can be written is . So, instead of , we have now𝑃
2π𝑟𝐷 𝑄

𝑟

written , so this equation now becomes .− 𝑃
2π𝑟

𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ = 𝑃
2π𝑟𝐷
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Now integrating the equation, what do we get actually? We will get this because integration𝑤 𝑟( )

have to be carried out it is result is known to us . Now for𝐴𝑟2 + 𝐵 + 𝑃
8π𝐷 𝑟2𝑙𝑜𝑔𝑟 + 𝐶

2
𝑙𝑜𝑔𝑟

deflection to remain finite for to be finite at r = 0, that is at the center we drop . So,𝑤 𝑟( ) 𝐶
2

therefore final expression for deflection becomes . So, this is the final𝐴𝑟2 + 𝐵 + 𝑃
8π𝐷 𝑟2𝑙𝑜𝑔𝑟

expression for deflection. Now, if you see this deflected surface, then you can find the 2

constants of integration A and B by applying the boundary condition.
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So, if I look towards the boundary condition in the previous slide. Boundary conditions are that

is a circular plate was there and these edges are simply supported.
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So, the equilibrium of vertical forces is considered for this slice. And we have seen that the 𝑄
𝑟
 

can be related with the externally applied load as . So, differential equation of equilibrium− 𝑃
2π𝑟

is now . So, obtaining this we now go to finding the constants of𝑑
𝑑𝑟

1
𝑟

𝑑
𝑑𝑟 𝑟 𝑑𝑤

𝑑𝑟( )⎡⎣ ⎤⎦ = 𝑃
2π𝑟𝐷

integration. That means, the equation can be rearranged in this final form and then we apply the

boundary condition.

So, boundary conditions are at say radius say r = a, at the boundary the deflection is 0 because it

is simply supported as well as Mr = 0, that is the radial moment equal to 0. So, first condition

gives this , so this is one equation after applying the boundary𝐴𝑎2 + 𝐵 + 𝑃
8π𝐷 𝑎2𝑙𝑜𝑔𝑎 = 0

condition. Second equation is obtained applying the radial moment condition to be 0 at the

edges.
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Now if I go finding the radial moment, then we should know the first derivative and second

derivative because the radial moment contains the curvature as well as the slope also in

axi-symmetrical equation. So, . And second derivative of this𝑑𝑤
𝑑𝑟 = 2𝐴𝑟 + 𝑃

8π𝐷 2𝑟𝑙𝑜𝑔𝑟 + 𝑟( )

. You see, this is the product of 2 functions, so we are𝑑2𝑤

𝑑𝑟2 = 2𝐴 + 𝑃
8π𝐷 2 + 2𝑙𝑜𝑔𝑟 + 1( )

differentiating. And after differentiating, we are getting say here 2 into say we are getting first

say logr, then we are getting 1, +1 another term is there.

So, final expression of second derivative is . Now apply the condition of2𝐴 + 𝑃
8π𝐷 3 + 2𝑙𝑜𝑔𝑟( )

bending moments, so at r = a to be 0. What is ? should be equal𝑀
𝑟

𝑀
𝑟

𝑀
𝑟

=− 𝐷 𝑑2𝑤

𝑑𝑟2 + ν
𝑟

𝑑𝑤
𝑑𝑟( )

to 0 at r = a. So, after substituting these values, these and with r substituted as a, we𝑑2𝑤

𝑑𝑟2
𝑑𝑤
𝑑𝑟

now finally get an expression of A, so from that condition, we get directly the expression for A as

, because 2 is there in the left hand side of the− 𝑃
8×2π𝐷 1+ν( ) 3 + ν( ) + 𝑙𝑜𝑔𝑎2 1 + ν( ){ }

equation.


