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Transformation of Plate Equation from Rectangular Coordinates to Polar Coordinates

Hello everybody, today I will start the module 4. So, first lecture I am starting with a topic that

covers the plate equation in polar coordinate system. So far we have introduced and solved some

problems of rectangular plates and other plates also some special cases like circular plate or

elliptical plate and triangular plate also. Now, it will be advantageous when we use the plate

equation for some specific problem where the axial symmetry is there.

For example, circular plate loaded symmetrically and boundary condition is also symmetric with

respect to an axis of rotation passing through the centre of the plate. Then it is possible to find

the solution of the system equation in the polar coordinate system.
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So, today our discussion will be governing differential equation of the plate in polar coordinate

system and introduction to axi-symmetrical bending of the circular plate. So, specifically we will

use the polar coordinate system to circular plate problem.

(Refer Slide Time: 02:00)

So, today I want to cover the following topics, transformation of equation of bending of plate

from Cartesian coordinate system to polar coordinate system. Then axi-symmetrical bending of

circular plate in polar coordinate system, then derivation of displacement-strain relations,

stresses and bending moments, so this expression how it changes? Because we are familiar with

the rectangular coordinate system, the bending moment expression for plate or shear force

expression for plate and stresses also we could find.

But now let us see how this relationship will change when we carry out the transformation of the

coordinate system. Then we will derive, specifically for axi-symmetrical bending of circular

plate, the equations of equilibrium for an infinitesimal element and from that we get the

differential equation for the bending of circular plate with axi-symmetrical condition. Now, after

getting this equilibrium equation, we can proceed to solve several problems encountered in

practice because most of the problem in circular plate comes with the axi-symmetrical loading or

axi-symmetrical conditions of boundary and loading. Then we can find the deflection equation

and bending moment, shear force, for that type of boundary condition and the loading condition



for a circular plate. And make use of these results for designing of the plate element or slab

which is modeled as a plate. So, these are the topics that I want to cover in today's lecture.

(Refer Slide Time: 03:51)

So, let us see first how this system equation or the plate equation can be transformed from

rectangular coordinate system to polar coordinate system. So, you know very well that polar

coordinate system is expressed in terms of 2 variables. The radial distance of the point from the

origin r and the angle that the radial line makes with the reference axis, here we take the x axis.

So, the point p(x,y) in Cartesian coordinate system will be transform to a point p with coordinates

r and θ, where r easily you can see that x coordinate equal to rcosθ and y coordinate is equal to

rsinθ. And you can also see that tanθ will be y/x. So, with that relationship x = rcosθ, y = rsinθ,

will be able to transform the equations of bending of plate derived in the rectangular coordinate

system like , where D is the flexural rigidity of the plate it is nothing but

equal to , where ν is the Poisson’s ratio of the plate.
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So, plate equation now can be written like this also, say is the Laplacian operator is very

well known to the students of mechanics or physics. So, , this is the

Laplacian operator in differential calculus. And , again we operate on w, so plate

equation can be written in this form . Now, our intention is to change

the Laplacian operator in the polar coordinate system.

So, the equation of the plate in transform form can be written as operated on , where w

is a function of r, θ and q is also a function of r, θ, D remains same whether you change the

system of coordinate it will not differ. Now here you can see that w and q which was previously

the functions of x and y, now it becomes functions of r and θ. So, you can see that, now our

intention is to or aim will be to transform the Laplacian operator which is into the polar form

.



So, you can see that contains the operator and , that means second derivative

of this quantity. So, first let us transfer this or transform this Laplacian operator in

rectangular system to polar coordinate system, then we will be able to write the equation in polar

coordinate system.

(Refer Slide Time: 07:25)

In polar coordinate system w(r,θ) and q(r,θ) are functions of r and θ, and giving the deflected

surface and loading respectively. So, it depends on both quantity r and θ, but for axi-symmetrical

cases where it has the plate posses rotational symmetry then w and q will be only functions of r,

so they will not depend on the θ. So, to transform the Laplacian operator in rectangular

coordinate to polar coordinate system, let us write the derivative using the chain rule

introducing the variable r.

So, can be written as . Now, if we look back to equation

1, equation 1 is this x = rcosθ and y = rsinθ. So, you can find relation between r with x and y, so

r2 = x2 + y2. So, that relation will be using here, so x2 + y2 = r2, that is found because x is

expressed as rcosθ and y is expressed as rsinθ. So, when x is squared and y is squared and both



are added, you will get r2. Now, in order to find out this , let us differentiate this quantity

with respect to x. So, if you differentiate this with respect to x, for this you will get 2x and here

because this is not containing any x, so differentiation of y2 with respect to x will be 0. So, 2x =

2r into this dr/dx.

Because first we are differentiating with respect to r, then we are introducing this variable dr/dx.

Now dr/dx is now x/r, and x/r is you know that it is cosθ, so you got this quantity. Similarly,

when we want to find these dθ/dx, now let us see what is θ? tanθ = y/x, so θ will be tan-1(y/x). So,

differentiation of an inverse function is given by say u, tan-1(u) is an inverse trigonometrical

function. So differentiation with respect to variable u will be 1/(1 + u2). Now, here u is y/x, so

substituting this you will get that .

And you know that x2 + y2 = r2 and y you know that y = rsinθ. So, naturally it will be

. So, these 2 quantities we got in this equation, now we substitute this

. So, first derivative is obtained, so this task is

completed, now let us go to the second derivative. Because to find out the Laplacian operator

must get the second derivative, then we can isolate the operator.
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In the second derivative of this w, we got this already, so this operator

. So, you can see this, this operator I have written, I have

isolated this operator, differential operator and other variables, so w is isolated, separated. Now

to take the second derivative of that , we write = , that is

differentiation of again with respect to x to find out the second derivative.

Now here you can see that that is the operator we have already found out, so we write here

this operator . Then , we already found it here, so we write

here again that quantity will be . So, this quantity is

, so this quantity is this.

So, after operating with this operator this function, then you will get

.Now you can note here I have used different colours for different terms, so I will explain what is



the significance of that. So, you can see the second derivative of w is now expressed in terms of

variable r and θ.
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So, similarly one can obtain these that using the chain rule of differentiation can

be written , so this is the expression of using the chain

rule. Now, already we know that , that we can prove it. Because if we go to the

first expression, this expression then differentiating again with respect to y you will get this 2y

here and here you will get 2r .

So, you can find , and y/r we know that in polar coordinate system y is r sinθ, r will

get cancel. So, then you will get again in this similar fashion (1/r) cosθ. So, now this

expression can be written as .
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So, this expression is written like that, now on further differentiation as we have done earlier,

that means we can now separate the operator . And we can write this operator this

is the differential operator = . So, then differentiation of

again with respect to y will yield the equation like that. So, here you can see I have also used the

different colours for different terms.

Previously also in the equation 5, I have used different colours for different terms. Now, here you

can see if I see the red colour term, . Say let us take the first term of this

Laplacian equation that is , very popular equation. So, square in the polar

form there are say 1, 2, 3, 4, 5 terms, so let us take the first term which is marked with the red

colour. So, in the equation 5, now we go to the equation 7, equation 7 we have

got , so this is also red colour term. So, if I add this because our intention is to

find the Laplacian operator in polar coordinate that is transforming the Laplacian operator from

rectangular coordinate to polar coordinate, to find out the equation of the plate. So, if I add



equation 5 and 7, you see the addition of the red term here and red term here will yield you this

, so, this is one.
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So, after adding you will get first term as , that is sure. Now, let us come to the second

term, this second term of the equation 5 which is , you can see

and with that coefficient is . So, this is written with the green colour in this equation

5, similar term we will find in the equation number 7 with the green colour. Now, if I add again

you are finding that common term is there in both the equation . So, naturally if

I take common . And then these other terms in the parentheses will be

. So, naturally the another term in the polar system will be .

So, originally you have seen there are 5 terms, but here you can see that only 3 terms are there,

that means other terms will get cancelled. So, if I now see this term here it is

blue coloured, equation number 5, equation number 7 let us see, equation number 7 also it is blue



colour and the coefficients is with . So, naturally when it is added then it will be

r. So, the other terms the , ˗ have

alternate sign, equal but opposite sign, so they will get cancelled. So, after transformation, we

will get the Laplacian operator in polar coordinate system to be consisting of 3 terms

.

So, our one of the important task is over now, because to find the plate equation 4th order plate

equation we need the Laplacian operator, then we will operate again with the equation . So,

this term, this operator or this differentiation or the addition of these 2 curvature have been

already carried out and we have converted to the polar system. Now, we can conveniently write

.

So, this is the Laplacian operator in the polar coordinate system. Now, we know the general

expression of moments and shear, that can be written now in this form

, so this is equation 10. Then the Mθ the

bending moment in the circumferential direction, Mr is the bending moment in the radial

direction.

So, Mθ is the bending moment in the circumferential direction is

. This can also be found because the bending

moment expression contains the second derivative of the quantities. So, second derivative will

convert now, we have converted into polar coordinate system and using this we can find this

expression, that is equivalent expression in the polar coordinate system.



So, the stress resultant that is we consider in the circular plate or in the polar coordinate system

or Mr the radial moment, Mθ is the circumferential moment and Mrθ is the twisting moment, Qr is

the shearing force and Q is in the direction along r. And Qθ is the shearing force along the or in

another perpendicular direction. So, that means Qr and Qθ these are the shear forces that is

present in case of plates of circular shape, when the polar coordinate system is used. Interestingly

you will find that for axi-symmetrical problem the quantity will be only dependent on r.

So, anything which is involving θ that is dependent on θ should be dropped, that is w in case of

axi-symmetrical problem will be only a function of r. So, this term does not come into picture

when we consider the axi-symmetrical condition, so that will come later. But now you have

understood that transformation of Laplacian operator from rectangular coordinate system to the

polar coordinate system.

(Refer Slide Time: 23:02)

So, the twisting moment Mrθ or Mθr is also written as , D is the flexural rigidity of the

plate which is the same quantity as we have found in the rectangular plate, (D has no relation

with the change of coordinate system) into the partial derivative with respect to r of the function

. Then sharing force and this is the Laplacian operator in polar



coordinate system consisting of 3 terms, Laplacian operator in rectangular coordinate system

consists of only 2 terms.

But Laplacian operator in polar coordinate system for general condition when these quantities

are dependent on r and θ contains 3 terms. So, , is introduced to you, I

have given the detailed derivation of . Kirchoff’s edge shear, that is at the free edge or at the

other edge where the twisting moment, shear force as well as bending moment 3 quantities are

there. But it is seen that the 3 forces are not necessary actually, 3 quantities are not necessary for

expressing the boundary condition, because the twisting moment has contribution to the shearing

force. So, that have been pointed out by these previous authors and Kirchoff modified the

equation of edge shear, that is the shear force along the edge, he has expressed as

. So, this is the quantity where the Mrθ or Mθr has to be substituted from this

quantity and Qr has to be substituted from here.

So, ultimately you will get the edge shear force or radial edge shear force = and this

, is the Laplacian operator in polar system +

. You can note here that this term is due to

contribution of Mrθ in the edge shear, so that you have noted and this Vr is written like that.
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Similarly, the other edge shear that is Vθ can be written as . After substituting Qθ

as and in the above expression, we get this

quantity after simplification. So, this is a very large equation and sometimes if the boundary

condition is such that we have to impose Vθ. Then we have to use this equation

. So, the expression for the radial moment,

circumferential moment, then shear forces Qr, Qθ and the Kirchoff’s edge shear Vr, Vθ are given

to you.

(Refer Slide Time: 27:19)



Now, let us see what will be the change in differential equation? So, differential equation

originally was operated on = q/D, where was the Laplacian operator in rectangular

coordinate system. But we have now known this transformation of Laplacian operator in

rectangular system to polar coordinate system. So, we can now write this plate equation in polar

coordinate system as that is is the operator which is consisting of these term

.

So, when it is operated with this function then we get the full plate equation. So, you can

write this thing in this form after getting, and then after operating you will get the 4th order

differential equation of the plate.
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Now, let us derive the condition for axi-symmetrical loading and boundary conditions. Because

the plate equation that originally contains w as a functions of r and θ and q is also a function of r

and θ, involves the 4th order partial differential equation. Now, for axial symmetry for a circular

plate under the action of lateral load, which are rotationally symmetric, rotationally symmetric

means the stress, deflection or loading anything you take all will be dependent on r at any

direction or at any orientation θ there will be no change. So that condition is known as

axi-symmetrical condition. For example, a circular plate which may be simply supported at the

edges or maybe clamped or maybe similar kind of in the same edge condition and it is

continuous along the boundary.

So, in that case we can call that the plate is having the axisymmetric condition and then there is

deflection and this q that is load that is applied on the plate will only be a function of r. That is

for example, you take a circular plate and it is uniformly loaded. So, at any radial distance you

will get the load is q that is the uniformly distributed load, intensity. Now, if you take say another

condition say a circular plate and it is loaded with a linearly varying load, gradually increasing

from 0 to maximum at the edges linearly. In that case also at any radial distance you will get this

same load intensity. So, that means, it also falls under the category of axi-symmetrical condition.

So, in the axi-symmetrical condition w will be w(r,θ) which is actually the function dependent



variable of the functions, then it will be converted to only w(r) and q(r,θ), r and θ are the

dependent variables of the function, so it will be converted to q(r).

So, with this simplification, now we can very easily see that this operator has no meaning,

Because will go to 0 because this derivative does not exist because it will be a function

of r only. So, this will remain, and here this quantity will remain, this will have no significance

because again will be 0 because w will be only a function of r, so this quantity will

remain, and q will be only a function of r.

So, instead of partial derivative, now we can write it as an ordinary derivative differential

equation. So, partial differential equation is not necessary here, we will get the ordinary

differential equation. So, therefore the Laplacian operator reduces to only 2 terms here

and then this is the quantity that we get and = q(r)/D. So, this is very

simplified situation and most of the cases this situation exists in practical field. So, we take this

differential equation of the plate to find out the deflection and other stress resultant.

(Refer Slide Time: 32:40)

Now let us see, what are the quantity that we have to take into account? We have to take into

account this bending moment in the radial direction and bending moment in the circumferential



direction. And due to axi-symmetrical condition the Qθ and Mrθ will be 0, only Qr will be

existing. Now say this is a portion of a plate, of very small length the dr at a radial distance r and

which subtends an angle dθ and q is the transverse load acting on the plate.

So, you can see at any element of the plate the stresses in the radial direction is σr, so force on the

element will be σr dA, where dA is area of the plate. And the shear stress that is acting along the

edges will be 0, because in axi-symmetrical condition there will be no shear stress. But vertical

shear stress will exist and vertical shear stress is on this τrz, and it will have a parabolic

distribution and it is neglected in our thin plate theory.

So, in axi-symmetrical condition τrθ is not to be considered only the stress that is σr and σθ are of

importance, h is the thickness of the plate. So, this is demonstrated here, this stress distribution

will be linear but we will prove it later on with the expression. Now, let us see an element of the

plate of width dr that is shown in the bent configuration. So you can see that this slope of the

plate is dw/dr.

So, due to deflection of the plate, it will undergo the displacement along the radial direction and

that displacement is u, it is shown here. Now since it is the negative direction of the r because

here the axis is the important direction is r, here in the radial direction and w is the vertical

displacement, and u is the radial displacement.

So, you can see that u that is the this or radial displacement we can call, can be expressed in

terms of if this point is located at a height z and the slope is same as this slope dw/dr, then it can

be expressed as z dw/dr. So, this height into tanθ and because of small deflection, we take the

tanθ, that is dw/dr = θ. The negative sign is taken because the u is measured in the negative

direction of this axis r. So, the strain u is now ˗ z dw/dr.
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Now, let us take this slope or you can call it θ also, any angular symbol you can give

here. So, u is ˗ z dw/dr that is the displacement in the radial direction. So, naturally the strain in

the radial direction will be = the derivative of u with respect to r. So, if this is known, u is

known then it will have this strain in the radial direction is ˗ z d2w/dr2. So, staying in the radial

direction is known.
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Staying in the circumferential direction, now can be obtained like that, because of displacement u

in the radial direction the radius changes from originally it was r, now it will be u + r. So, the

change of the circumferential length will be {2π(u + r) ˗ 2πr}/2πr, change in length divided by

the original length will give you the strain in the circumferential direction. So, you can see from

this quantity, the strain in the circumferential direction is nothing but u/r.

So, after obtaining this strain in the radial and circumferential direction, we can now express the

stresses using the Hooke’s law. So, because we are dealing with the linear elasticity, so we will

use the Hooke’s law. So, using the Hooke’s law this is , , are the

strains in the radial and circumferential direction.

Similarly, σθ that is the strain in the circumferential direction is written as

, is used to denote the strains, which are actually small quantity. So,

knowing the strains and we already know the quantity , now we can express σr, σθ in terms of

the distance from the middle surface. Because middle surface is our reference plate from the

distance measured from the neutral surface, positive upward and negative downward.
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Then, we can express σr = ˗Ez, E is the modulus of elasticity of the material of the plate divided

by × . Because here only the total derivative is of importance,

because the partial derivative has no meaning here, because this w is a function of only one

variable. So, similarly σθ, there is the stress in the circumferential direction can be written as

.

You can note here that in this stress expression of in the radial direction or circumferential

direction whatever you call it both quantities say slope as well as curvature, both are involved.

So, slope has contribution in the stress and also the curvature has also contribution towards the

stress. So, these are the expression for the stresses in the radial and circumferential direction.

From this expression 19, one can note that σr and σθ varies linearly with z.

So, the variation here is shown above the neutral axis, this is the middle surface it will be

compressive and below the middle surface it will be tensile. Similarly, this σθ variation on the

other edges it is shown like linear variation and τrθ is 0 but τrz will exist, it will have a parabolic

variation, but it is value is negligible and we will not consider in deriving the plate equation.



So, we have already obtained the differential equation of the bending of plates, circular plate

under axi-symmetrical condition. So, this equation is valid, you can directly now use this

equation to solve the axi-symmetrical problem of circular plate. But here I will demonstrate also

the derivation of the differential equation by using the force balance that is using the concept of

mechanics.

Previously, I just used the calculus to transform the differential equation in this rectangular

system to polar coordinate system. Now, I intend to do with the help of the principle of

mechanics.
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So, before that let us find the expression for radial moment and circumferential moment. So,

radial stresses we have obtained σr and on the small element dA the force is σr dA. What is dA?

The element is taken of width 1 and the depth is dz, so dz × 1 is the area of the element. So, force

into distance above the neutral axis will give the moment, and it is moment on the element force

acting on the element.

After integrating along the depth of the plate ˗h/2 to + h/2, we get the moment in radial direction

which varies. This complete radial moment is obtained by taking the contribution of all the

differential element. So, Mr after integration is converted to like that



. These are only the ordinary differential coefficient is taken,

so there is no necessity to use partial derivative sign.

Then z2 dz it is integrated in the limit ˗h/2 to + h/2. After integration and after cancelling some

term or arranging some term it will be converted in this form and inside the

bracket the curvature . So, this quantity you can see the constant

is same as the parameter that we have found in case of rectangular plate, this is

called the flexural rigidity of the plate.

So, there is no difference in the flexural rigidity of the plate because it depends on this thickness

of the plate as well as the material properties. Similarly, that you can write it after denoting this

with the symbol D.
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Similarly, the circumferential moment Mθ can be found, in the circumferential direction if I take

an element then with the procedure I can calculate this or find an expression for Mθ, after



substituting the value of the expression for σθ. So, then Mθ becomes

. So, these are the expressions for bending moment in the radial direction as well as

circumferential direction.
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Now equations of equilibrium of the plate under axi-symmetrical condition, so let us consider a

portion of the circular plate and the forces acting on the elements or the moments acting on the

elements are shown. This is Qr, on the opposite edges it is Qr + dQr, dQr has to be understood as

this differential incremental term dQr/dr × dr. Then Mr, an incremental term is dMr which has to

be understood as the dMr/dr × dr. So, this I am using short form, I have written here.

So, in the circumferential direction Mθ, and along the other direction for keeping the equilibrium

it is Mθ. So, Mθ will remain same, there will be no increment along the circumferential direction.

So, consider this sectorial element of the plate, the thickness of the plate is h, the equilibrium

condition is considered, first let us consider the force equilibrium. So, force equilibrium in this z

direction that is the vertical direction if I call it.

Then the length of this element is, if this length is r then rdθ is the length of the element. So, rdθ

or dϕ whatever you call this is the differential angle. So Qr rdθ is the force along this edge,



vertical force. On the other edge, this is (Qr + dQr/dr × dr) × (r + dr) dϕ. So, this as length is

increased, because this radius, this radial distance r + dr, so the length is (r + dr) dϕ, so this you

can note it.

So, these 2 forces we have written and then the transverse load, the vertical load that is acting on

the surface of the plate is q per unit area. So, total area of this element that is coloured here is q ×

dr × rdϕ, so q × dr × rdϕ, so this is the total force on the element. So, equating to 0, and then

getting simplifying this, that is first I carried out term by term multiplication.

And then you can get these many terms are common, that can be in many terms, some terms are

having a product of square of small quantity dr. So, taking this advantage, that is canceling

common terms and ignoring the term with the square of small quantity.

Then we can write the equation in this form. After dividing both sides by dr dϕ, so both sides are

divided by dr dϕ and then we get this equation in this form. So, Qr dr dϕ = ˗ qr dr dϕ, neglecting

the square of this small term. Now, carrying out integration over the domain of the plate, now let

us integrate it. So, domain of the plate is for radius at any radial distance r, the radial distance

varies from 0 to r, so 0 to r is the limit for radius. And angle after full rotation because it is

axi-symmetrical condition, so full rotation has to be there, so 0 to 2π. So, we carry out



integration of the both sides, we get here 2πr Qr = . And then from that quantity we

can write , so this is one equation.

(Refer Slide Time: 48:55)

Then second equation is considered after taking the moment equilibrium, we consider moment

equilibrium in radial direction. So, if I take the moment equilibrium in radial direction in this

side this is Mr and total moment along the side is Mr rdϕ, because all the quantities are expressed

in terms of quantity per unit length. So, Mr, Mθ etcetera Qr or Qθ whatever maybe these will be in

terms of the parameter or quantity per unit length.

So, therefore to get the total force on moment, we have to multiply it by corresponding length.

So, Mr × rdθ is total moment along this edge, and along this edge, you will get Mr + dMr/dr × dr

and this length, the arc length (r + dr)dθ. So, the moment of all the forces are taken, this is first

we take the moment. And then you can note here in this side the force is upward Qr on the other

side Qr + dQr.



So, we take Qr rdθdr, because this term is small, so we can take these 2 forces, that Qr and Qr

which are equal and opposite in nature, so it produces a couple. So, we take the advantage of this

small distance or small value of dQr. Therefore, we have stated that Qr rdθdr, this quantity is the

equivalent couple, after neglecting this small difference between the shearing force on 2 opposite

edges of the element.

Further, you can see that this term is coming, how this term is coming? If you see Mθ and if you

use the right hand rule, then it will be a vector, which is pointing towards the center. Then in this

side if you consider Mθ and use the right hand rule, then you will see that is a vector which is

away from the center. And if you resolve it in the radial direction at the center, then dθ/2, dθ/2

will be there and it will be this Mθ cos dθ/2 and here also Mθ cos dθ/2.

Since dθ is small quantity, so you can see we can take it that cos dθ = 1. Now, since both the

vectors though it is pointing if you use the vector notation for the moment, and it is pointing

towards the center, and another is pointing away from the center. But the effect is same, both the

moments are symmetrical and it is causing a sag in the plate. So, therefore this is added, the

components are added and we have written Mθ dr dθ, as the another term in the equilibrium

equation.

Further Mθ dr dθ is a sum of the component of the moment vector Mθ along the radial direction,

so that quantity we have taken. And another thing is that when we take the moment of the

external load about any edge, so this length is dr. So, dr/2, because the total load again dr is

coming when you compute the area, and distance also dr/2 will come. So, this dr × dr, dr2 will

appear in the moment expression, that we neglect it. Because it will be small quantity and it is

not necessary to increase with the terms which has no significance.
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So, simplifying this we write this ˗Mr dr dθ ˗ dMr/dr × r dr dθ + Mθ dr dθ ˗ Qr rdθdr = 0.

Dividing both sides by dr dθ, we ultimately get this quantity Mr + dMr/dr × r ˗ Mθ + Qr r, so Q

subscript r indicates this radial shear along the edges equal to 0. Now, the expression for Mθ is

this, and expression for Mr is this.

So this is the expression for Mθ, and this is the expression for Mr. So after substituting this

expression and then we can write this . Again this Mr is

differentiated, so this differential coefficient is written, d/dr. And D is there, D is there, flexural

rigidity, r is there, Mθ we have expressed, this is the expression for Mθ and then + Qr r, so this is

written.
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And now to simplify the equation, let us take this symbol, the slope as ψ, angle ψ. So,

substituting the slope here dw/dr as ψ. We can now express the quantity dψ/dr + ν/r × ψ, here D r

d/dr. And then the curvature is derivative of the slope like that we have written + ν/r × ψ + D

(ν×dψ/dr + 1/r ψ ) + Qr r = 0. So, here what we do actually?

We now differentiate this, and after term by term differentiation we get this quantity inside the

bracket. Because this is a product of 2 functions 1/r ψ, which are both are functions of r, so it is

differentiated and we get one more term here, after differentiation. Previously, it was 2 terms,

now we get 3 terms, because after differentiation with respect to r, it will be d2ψ /dr2.

And then after differentiation with respect to r this variable ψ, then it will be dψ/dr, then 1/r has

to be differentiated again, so this is differentiated and it is written, this quantity is written + Qr r

= 0. Dividing throughout by dr and rewriting after canceling some common terms, you will get a

very simple equation. The d2ψ /dr2+ 1/r dψ/dr ˗ ψ/ r2 = ˗ Qr/D.

This can be in compact form, it can be arranged in this way d/dr{1/r d/dr (r × ψ)} = ˗ Qr/D. So,

this is the compact form of this equation that we have obtained, where you can note that ψ is

nothing but dw/dr.
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The equation involving w instead of slope ψ can also be written. So, you can see that equation

was 2nd order equation with slope, now it will be 3rd order equation. So, shear is involved 3rd

order derivative so it is coming, so physically we are getting that, we are approaching in the right

direction. So, d3w/dr3 + 1/r d2w/dr2 ˗ 1/ r2 dw/dr = ˗ Qr/D.

So, this can be written in this form that, again involving the deflection it can be written in the

compact form with this only consist of this 3 terms, that is dw/dr and d/dr and d/dr. So, you can

see here, the w is here inside this bracket, that it is jacketed by so many variables. So, this is a

very convenient form when the Qr is known in terms of r, then you can integrate successively

and find out extract the value of w.

Now let us take the first of the equation 23, so equation let us see, 23. So, this equation let us

take, first of the equation this equation we take. So, if we take the first of the equation of 23, then

we know this equation is the first equation and Q × r actually it will be a total force, total shear

force that is acting after integration with respect to 0 to r. So, Q × r, that means you can see that

Qr is the radial shear per unit length. So, multiplied by the circumference of this circular ring 2πr

will get this shear force along this circumference, total shear force. So, this is equal to



, So multiplying both sides of the equation 24, 24 is this equation by r. And making

use of equation 25, you can write this now in this form. Now actually my intention is to remove

the term Q and write it in terms of load, small q.
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So, we have written like that now, so differentiate both sides with respect to r. So, I have

differentiated both sides with respect to r that means d/dr additional term is here. And here again

d/dr this term is there. Now interchanging the integration and differentiation, we now write in

this form, 1/D, d(qr). So, after integration and dividing throughout by r, we finally arrive at the

differential equation of the circular plate under axi-symmetrical bending as this.

Now you can note the difference between these 2 equations, 24 and 25, 24 also involves w but it

is a 3rd order differential equation. And the order of differential equation is less that means

constant of integration will be also less. So, this Qr is the shear force and here you are getting

that this is a 4th order differential equation, and q is the loading that is distributed loading on the

plate. So, both the equation can be used depending on the situation.
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So, it will be demonstrated through different examples in subsequent classes.
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So, today whatever I discussed the transformation of governing differential equation of the

bending of plate from Cartesian coordinate system to polar coordinate system. The expression

for stress resultants in polar coordinate system is discussed here. So, that is first using the

calculus, only I transform the Cartesian plate equation in Cartesian system to a plate equation in

polar coordinate system.



So, it is transformed actually from Cartesian system to polar coordinate system. Now, the use of

polar coordinate system is shown in case of circular plate using an axi-symmetrical condition.

That is having a rotational symmetry in the plate in respect of loading, in respect of edge

condition. So, with that condition we have seen that the plate equation is now decomposed into

an ordinary differential equation.

And we have found 2 types of differential equation to be used for solving the plate problem, one

is the 4th order equation in which the equation the 4th order derivative is related to the distributed

loading. In another case, we have seen that it is a 3rd order equation. And 3rd order differential

equation is ultimately related to the shearing force on the plate. So, 2 equations are there, now

there we derive the equation in the 2 forms.

And each form has it is own advantage and disadvantage. So, depending on the situation and the

problem that will be encountered we can use any of these 2 equations. So, today I finish up to

this the different applications of the circular plate under axi-symmetrical bending will be

considered in the subsequent classes. Thank you very much.


