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Conservation of Momentum 
 

Welcome all of you to fluid mechanics course.  Today, I am going to deliver lecture on 

conservation of momentum.  As you know, in the last class we discussed about conservation 

of mass.  Also, we have solved few problems based on the conservation of mass. 

(Refer Slide Time: 00:57) 

 

Basically, we have been following the Reynolds transport theorem as a basic concept to apply 

the setup of the system into physical equations to the control volume level.  And, then, at the 

control column level, we have approximation of extensive and intensive properties and as of 

now we have derived mass conservation equations.  Today, I am going to derive conservation 

of linear momentum.   

 

Again, I can tell you, book wise, the Cengel and Cimbala, The Fluid Mechanics Fundamentals 

and Applications.  This book has given very clearly the illustrations of this concept of Reynolds 

transport theorem, the conservation of mass, conservation of linear momentum, angular 

momentum, and the energy concept which is more descriptive type and that is why it gives 

enough to a student to understand this concept. 

(Refer Slide Time: 02:05) 
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So, now let us come back to the last class what we studied.  As I told you, we discussed about 

the Reynolds transport theorem for conservation of mass and when we apply this conservation 

of mass to the Reynolds transport theorem, we have two basic assumptions, that is, with respect 

to time is it a steady or unsteady.  So, the steady we do the approximations of many fluid flow 

problems which are steady problems.   

 

Then, with respect to density change or the variations of the density, we divide it, flow is 

compressible or incompressible.  So, we can have two types of approximations, steady 

compressible, steady incompressible.  So, when you have the steady assumptions, you can 

remember that the component of Reynolds transport theorem of time, differentiate components 

become 0 or the volume integral component part of the Reynolds transport theorem becomes 

0.  So, it becomes a very easy problem. 

 

You have only this surface integral component and it is equal to 0.  So, that is a very simplified 

case.  And when the density is a constant, that means, what happens is densities comes out 

from the equations which makes us only the scalar product between velocity and the normal 

vectors, that is what is a scalar quantity.  We do surface integrals with respect to area.   

 

So, thus, the problems becomes too simple as compared to if you have compressible flow.  So, 

when you have a steady incompressible flow, most of the case what we consider for flow 

devices or engineering applications, we can consider steady incompressible flow, then the 

problems becomes very simplified when you apply for Reynolds transport theorem.  As you 
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remember, there are starting with tanks with multiple inlets, the estimation of seepage losses 

in laboratory flumes.  Today, I will repeat the problem, how to do these things.   

(Refer Slide Time: 04:45) 

 

Let me come back to today’s lectures, what I will cover.  Again, I will give you a few examples 

on conservation of mass.  Then, we will go to write the linear momentum equations for fixed 

control volumes or moving control volumes.  Then, what are the simplifications that need to 

be done before applying linear momentum equations.  That is what we will discuss in terms of 

non-consideration of atmospheric pressures.  

 

Then, what is called the momentum flux correction factor, how we use it, that is what I will 

discuss.  Then, I will show the impact of jet experiment, then, I will summarise it.   

(Refer Slide Time: 05:40) 
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So, before going to these things, you could have heard of this hydro projects, one is one of the 

largest projects in our country, which is Bhakra Nangal project.  If we look at this Bhakra 

Nangal project, it has a reservoir which is about 88 kilometers long and 8 kilometers wide.  

And total water storage capacity is about 9.34 kilometer cube, so, huge amount of water storage 

if you can see in this Google earth imagery.   

 

The dam is located here which is a concrete dam and having a height of 207 meters 

approximately, and the length is 500 meters, and width varies from at the top 9 meters, as it 

goes down the base becomes wider and wider which will be 191 meters.  So, what I am to say 

is that, if you look at this project which was initiated or commissioned early in 1950s and 60s, 

generating and installing hydro power projects about 1300 megawatt power.   

 

So, what you are looking is basic fluid mechanics knowledge.  That is what is used to design 

this hydropower project.  So, the basic fluid mechanics what we have that is what is used way 

back in 1950s to design this Bhakra Nangal project which is one of the successful projects in 

our country.  So, if you look at this way, we will take a lot of hydro power projects and we will 

tell how to estimate the power potentials, how to estimate what could be the turbine speed, all 

we can do it.   

 

It is not a difficult task if you have knowledge of fluid mechanics.  So, only the knowledge of 

fluid mechanics and civil engineering excellence is helping us to generate the power at the 

order of 1300 megawatt powers without polluting the environment.  So, the hydropower 

projects they have the strength.  Also, some disadvantages are there, but they are the projects 

that are implemented and those project components we can understand if we understand fluid 

mechanics well.  That is my point for you.   

(Refer Slide Time: 08:10) 
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For this, let us come back to the example.  Last time we discussed this problem.  Again I am 

going to repeat it just for more detailed understanding of these problems.  Let us consider that 

there is a soil matrix, that means there are soils that are there which is having porous space, 

and in that soil component we have the flow.  The water is coming, it is Q1, Q2, and Q3 is 

going out.  And at the bottom, there is percolation or seepaging.   

[The soil matrix is filled with water by the two one-dimensional inlets and one outlet with the 

downwards percolation. Find out the amount of percolation from the given data. 

Q1 = Q2 = 0.1 lit/sec, Q3 = 0.05 lit/sec and q = f(s) = KS+0.1  

where S is storage and K is hydraulic conductivity] 

 

The water is coming out from the soil matrix.  In the porous space of the soil water is there, 

that is what is coming out as seepage water to here.  Here, this q is a function of storage within 

the soil matrix and the K is a constant proportional or we can call hydraulic conductivity.  So, 

Q1 is given for this study, Q2 is given, Q3 is given.  So, I have taken this is my control volume.  

If you look at the yellow colors it is the control volume.   

 

If that is the control volume, before applying this conservation of mass I should classify the 

problem.  The problem is what nature, it is one dimensional flow.  The flow what we can 

consider across this control surface is one-dimensional.   

Flow classification: 

 One dimensional 

 Unsteady 

 Laminar 
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 Fixed control volume 

 Incompressible flow 

 

Data Given: 

 Q1 = 0.1 lit/sec 

 Q2 = 0.1 lit/sec 

 Q3 = 0.05 lit/sec 

 q = f(s) = KS+0.1  

 

 (Refer Slide Time: 10:24) 

 

Now, I have to simplify the problem.  I have to apply under this control volume the basic mass 

conservation equations.  It is unsteady equation with two inlets and one outlet.  That is what 

you can do, Q1 and Q2 are inlets, Q3 is outlet.  Then, the outlet is a seepage part which is going 

out which will be in terms of S.  If you look, when I consider this is the control volume having 

Q1, Q2, the inflows, and Q3 is outflow, and q is also outflow, which is a functions with respect 

to S, the storage.  

Applying the control volume approach, equation for the unsteady flow with two inlet and one 

out let 

𝑑
𝑑𝑡

ቆන 𝜌𝑑∀
௖௩

ቇ െ 𝜌𝑄ଵ െ 𝜌𝑄ଶ ൅ 𝜌𝑄ଷ ൅ 𝜌𝑞ሺ𝑠ሻ ൌ 0 

The control volume’s K is 0.1 which unit will be litre per second.  Then, I just apply the 

unsteady flow equations of convergence of mass.  This is the volume integrals part if you 

remember it, and since it is a one-dimensional part we have the negative for the inflows and 
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positive for the outflows.  So, you can find out this Q3s and all.  All are the mass flow in, mass 

flow out, and that is the integration.  And this part is the storage, S.   

𝑑𝑆
𝑑𝑡

ൌ 𝑄ଵ ൅ 𝑄ଶ െ 𝑄ଷ െ 𝑞ሺ𝑠ሻ 

𝑑𝑆
𝑑𝑡

ൌ 0.1 ൅ 0.1 െ 0.05 െ ሺ𝐾𝑆 ൅ 0.1ሻ ൌ 0.05 െ 𝐾𝑆 

So, dS by dt, Q1 plus Q2, and this is just rearrangement of this and substituting this value we 

will get the dS dt is these functions.  And we can integrate it and finally get a relationship 

between d and S as K is the constant, is equal to C.  So, if you have the boundary conditions 

we can determine the C value, then we can know what is the function of S, how the S varies 

with respect to the time.  That is our problem.   

න
𝑑𝑆

0.05 െ 𝐾𝑆
ൌ න 𝑑𝑡 

𝑡 ൅
1
𝐾

lnሾ0.05 െ 𝐾𝑆ሿ ൌ 𝐶 

So, that way, if you look, very complex problems like this, when you have a soil matrix and 

porous structure and you have the flow of Q1, Q2 inflows, and outflow is there, the seepage is 

a function of how of water storage within the soil matrix.  We can apply a simple mass 

conservation equation for this control volume.  Then we can integrate it to get what is the 

function of S with respect time and that is what will give us from this.  So, this is about the 

problem.  Again, I solved it for you.   

(Refer Slide Time: 13:21) 

 

So, now, let us come to example five which is the GATE 2006 civil engineering part.  In that 

problem the velocity field is given.  If you see this, the scalar component of the velocity field 
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in which there is a component of lambda is unknown to us, okay?  Density also varies with 

respect to the time.  That means it is unsteady problems.  And the velocity fields are given.   

[Velocity field for a flow is given by 𝑉ሬ⃗ ൌ ሺ5𝑥 ൅ 6𝑦 ൅ 7𝑧ሻ𝚤̂ ൅ ሺ6𝑥 ൅ 5𝑦 ൅ 9𝑧ሻ𝚥̂ ൅ ሺ3𝑥 ൅ 2𝑦 ൅ 𝜆𝑧ሻ𝑘෠ 

and density varies as  𝜌 ൌ 𝜌଴expሺെ2𝑡ሻ 

In order mass is conserved the value of λ is 

         (GATE 2006, Civil) ] 

And here that mass is conserved, the point is that mass is conserved, then what could be the 

value of lambda.  That is what will be different.  So, that means what we will do is we will 

apply the mass conservation equations and once that mass conservation equation is satisfied, 

from that mass conservation equation we will compute what will be the lambda value.  That is 

the problem here.  So, let me classify the problem.   

Flow classification: 

 One dimensional 

 Unsteady  

 laminar 

 Fixed control volume 

 Compressible 

 

That means it is some sort of the volume like this, you have a dS like this.  So, applying this 

control volume approach, equations for unsteady flow, you will have this component and this 

component which already we derived earlier.  Let me put it this form, okay?   

Applying the control volume approach, equation for the unsteady flow 

න
𝜕𝜌
𝜕𝑡∀௖௩

𝑑∀ ൅ න 𝜌൫𝑉ሬ⃗ . 𝑛ො൯𝑑𝐴
஺௖௦

ൌ 0 

න
𝜕𝜌
𝜕𝑡

௖௩

𝑑∀ ൅ න 𝛻 ൉ ൫𝜌𝑉ሬ⃗ ൯
௖௩

𝑑∀ൌ 0 

(Converting area integral to volume integral using - Green’s formula) 

 

The time derivative part of the control volumes that is what we will have this part.  See, if you 

look this surface integrals, if I follow this Green’s formula, these surface integrals can be 

converted to volume integrals in terms of delta operators, okay?  If you remember this Green’s 

formula, we can convert this surface integral into the control volume levels having delta dot 

products.  That is the concept we could have known from the mathematics point of view.   

(Refer Slide Time: 15:45) 
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Now, if I have that part and if you do the integral part, I can go out.   

𝜕𝜌
𝜕𝑡

൅ 𝛻 ൉ ൫𝜌𝑉ሬ⃗ ൯ ൌ 0 

 

Then, finally, the equation becomes this because when you do integration over that, that is 

common, we can take it out.   

𝜕𝜌
𝜕𝑡

൅
𝜕ሺ𝜌𝑢ሻ

𝜕𝑥
൅

𝜕ሺ𝜌𝑣ሻ

𝜕𝑦
൅

𝜕ሺ𝜌𝑤ሻ

𝜕𝑧
ൌ 0 

𝜕
𝜕𝑡

ሺ𝜌଴𝑒ିଶ௧ሻ ൅ 5𝜌 ൅ 5𝜌 ൅ 𝜆𝜌 ൌ 0 

െ2ሺ𝜌଴𝑒ିଶ௧ሻ ൅ 5𝜌଴𝑒ିଶ௧ ൅ 5𝜌଴𝑒ିଶ௧ ൅ 𝜆𝜌଴𝑒ିଶ௧ ൌ 0 

𝜆 ൌ െ8 

 

Why, this u, v, w are scalar component, you can get this component as this one, okay, Finally, 

I get these relations here, and this relation will finally give me the lambda value which is equal 

to minus 8.  So, this is the problem that we solved.  So, basically, this equation is conservation 

of mass, what we have applied.   

 

But since the velocity vectors are there which is having three dimensional velocity vectors and 

the density is a function of the time, so, we have applied it as bringing to this level.  Then, we 

have solved for the lambda value. 

(Refer Slide Time: 17:09) 
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Now, we take another example which is given in GATE 2012 civil engineering specialization.  

There it is a very simple problem, like what is given in this diagram.  The pipe is there and 

there is a joint which is called a T-joint like this.  P is inflow that is coming.  Q is going out 

from this.  R is going from this out.  The pipes is having branching of P, Q, R.  The diameters 

are given.  The velocities V P and V Q are given.  V R to be estimated which is very simplified 

problem.  You can see that this problem is one-dimensional, steady.   

[Find the velocity of flow in branch pipe “R” with the following data 

Pipe Branch P: diameter (DP) = 4m, Velocity VP  = 6 m/s 

Pipe Branch Q: diameter (DQ) = 4m, Velocity VQ = 5 m/s 

Pipe Branch R: diameter (DR)  = 2m, Velocity VR = ?] 

Flow classification: 

 One dimensional 

 Steady 

 Laminar 

 Fixed control volume 

 Incompressible flow 

Assumptions: 

 Circular pipes are full 

 

Velocity is given.  The circular pipes are full.  The flow could be laminar or turbulent, okay?  

We do not know it.  Fixed control volume and incompressible.  So, this is a very simple 

problem.  Looking at this we will just apply the control volume and try to find out what will be 

the mass.  Inflow is coming into this and going out.  Basically, if you try to remember mass in 
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plus mass per unit time coming in should be equal to mass inflow from going out for steady 

problems.  So, being a steady problem, what we have.   

Data Given: 

 DP = 4m 

 VP =  6 m/s 

DQ = 4m 

 VQ =  5 m/s 

DR = 2m 

 VR =  ? m/s 

 

The mass inflow what is coming, rate of mass inflow is what is coming in, it should be equal 

to rate of mass inflow going out from this control volume, that is the thing.  So, in this case, 

because there are two outlets, sum of this two masses outflows going out from this, that is equal 

to mass inflow that is coming in, mass flow rate that is coming in, the mass per unit time that 

is coming in.   

 

So, that way you can see that if you have 𝜌 Q in, a very simple, 𝜌 Q in will be rho Q1 out plus 

Q2 out.  That is the basic concept.  Since it is same density, that means you have Q in is equal 

to Q1 out or Q2 out to outlet.  So, sum of the two volumetric discharge is equal to the inflow 

volumetric discharge what is going.  That is very simple problem.  Only, you have to compute.  

Since the velocity is given, so Q will be Q into V.   

 

That is the basic concept, area into velocity is Q, average velocity is given to us, so we can 

compute the discharge and we just applied the Q in is equal to Q1 out plus Q2 out.   

(Refer Slide Time: 20:00) 
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So, numerically that is what is coming.  For the steady flow this becomes zero.  So, you have 

in and out.  As you know, this in will be negative and both out will be positives, and substituting 

these Q values for all the cases, with V R unknown.  So finally, substituting to this equations 

will give V R equal to 4 m/s.  So, very simple form of solving the pipe problems where you 

have one inlet and two outlets. 

Appling the control volume approach, equation for the steady flow with one inlet and two out 

let 

0 

𝑑
𝑑𝑡

ቆන 𝜌𝑑∀
௖௩

ቇ ൅ 𝜌ୖ𝐴ୖ𝑉 ൅ 𝜌୕𝐴୕𝑉 െ 𝜌୔𝐴୔𝑉୔ ൌ 0 

 

െ𝐴୔𝑉୔ ൅ 𝐴୕𝑉ொ ൅ 𝐴ୖ𝑉 ൌ 0 

𝐴୔𝑉୔ ൌ
1
4

𝜋ሺ4 𝑚ሻଶሺ6 𝑚 𝑠⁄ ሻ ൌ 75.40 𝑚ଷ 𝑠⁄  

𝐴୕𝑉 ൌ
1
4

𝜋ሺ4 𝑚ሻଶሺ5 𝑚 𝑠⁄ ሻ ൌ 62.83 𝑚ଷ 𝑠⁄  

𝐴ୖ𝑉 ൌ
1
4

𝜋ሺ2 𝑚ሻଶሺ𝑉 𝑚 𝑠⁄ ሻ ൌ 3.14 𝑉 𝑚ଷ 𝑠⁄  

As it is incompressible flow, the density is constant, so you just do volumetric flux coming in 

is equal to the sum of the volumetric flux going out from the control volume.  That is what we 

commit.  If you do not remember that, very simple way you remember it is that the mass influx 

or rate of change of mass with respect to time coming into the control volume should be equal 

to the rate of the mass going out from the control volume, that should be equal.   

െ𝐴୔𝑉୔ ൅ 𝐴୕𝑉ொ ൅ 𝐴ୖ𝑉  ൌ 0 
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െ75.40 ൅ 62.83 ൅ 3.14 𝑉  ൌ 0 

 𝑉  ൌ 4 m/s 

 

Mass influx and outflux rate should be equal.  That is the concept if we consider for steady 

flow conditions.   

(Refer Slide Time: 21:25) 
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Now, let us come to derive the linear momentum equations, okay?  So, we are going for solving 

these flow problems for linear momentum equations.  That means we will consider the control 

volumes, we have considered the control volume like this.  So, each control volume has the 

control surface.  It could be a very simple tetrahedral type of structure or you can have very 

complex, it does not matter what could be the shapes, okay?  

 

It can have simple shapes or it can have very complex shapes.  So, if you look at that, over that 

surface what will happen is you will have normal vectors, let dA be the surface area, over that 

is the normal vector to the surface area.  So, you will have the surface which will have two 

types forces going to act on this.  One is the body force, that because of the mass of the control 

volume, how much of body force is giving, say, gravity point of view, or other forces we do 

not consider here is electrical or magnetic field point of view. 

 

So, basically, because of the control volume mass, how much of weight you are getting, how 

much of body force you are getting, that is what will be the body force.  And along the surface 

the forces that is acting that is surface force.  So, you have two force components you get for a 

control volume.  One is the body force and the other is surface force.  The body force acting in 

the entire body, that is what is most often the gravity. 

 

The other electric and magnetic fields are not considered for this case, but some cases we can 

consider it.  The other is the surface force acting on the control surface.  So, the forces acting 

on the control surface will be the pressure force, the viscous force, and any reaction forces, 
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okay.  Like a control surface is cutting through a surface, a rigid part.  So, there could be a 

reaction force that will be there.   

෍ 𝐹⃗ ൌ ෍ 𝐹௕௢ௗ௬ሬሬሬሬሬሬሬሬሬሬ⃗ ൅ ෍ 𝐹௦௨௥௙௔௖௘ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  

So, that way if you look, if we take a control volume there results to be two types of forces.  

One is the body force which acts throughout the entire body, that depends on the mass present 

within the control volume.  Another is that over the surface of control volume there will be the 

force components, those forces are due to pressure, viscous forces because of viscosities of the 

fluid flow systems, there will be the viscous force component, and also reaction forces or the 

other force component comes in. 

 

Now, let me find out what will be the gravity force, which is a very easy thing.  If I take a small 

element dV, I will have the weight of these small control volumes, it will be 𝜌, g, and dV.  So, 

look at the unit of each component, if you can understand that.  𝜌dV will be the mass, d V is 

here.  Look for the volume.  Mass into g is the gravity force component.  Here, the gravity 

force component, we can consider g is a vector quantity of any direction.   

𝑑𝐹௚௥௔௩ప௧௬ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝜌𝑔⃗𝑑∀ 

𝑔⃗ ൌ െ𝑔𝑘ሬ⃗  

But you can align with, if y is of direction, then the K notation we can use to define the g vector 

component, okay?  So, basically, if I consider the total control volumes, then the sum of the 

force or volume integrals of this component 𝜌 g d V that will be the gravity part or indirectly 

this is mass of the control volume into g, g is the acceleration due to gravity vector component.  

And many of the times we align the z-axis and g is downward, then we use the negative, not 

the scalar quantity, as a vector representation.   

෎ 𝐹௕௢ௗ௬ሬሬሬሬሬሬሬሬሬሬ⃗ ൌ න 𝜌𝑔⃗𝑑∀
௖௩

ൌ 𝑚௖௩𝑔⃗ 

But if consider different orientation of the control volume, then you can consider g is a vector 

quantity, it has a scalar component of gx, gy, gz in three respective scalar direction of x, y, and 

z.   

(Refer Slide Time: 26:18) 
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Now, let us come back to what type of force are acting.  Surface forces as we discussed earlier 

will be there.  Any surface force will have the normal component as well as the tangential 

component.  Let us take this figure which is very interesting figure, showing to you.  This is 

the control surface having the area of da.  It is normal vector, n is this part, it is a normal vector.   

 

So, if your force acting on this is having an angle, then this force can have two components.  

One is for the component for the normal, another is the tangential component, okay?  So, the 

control surface can be considered in any orientation, okay?  Over that you have a normal vector 

which is normal to the control surface there.  So, if your force is acting at that point having a 

different angle, then what will happen is you will have a normal component and also the 

tangential component. 

 

If you want the result as the x and y component, that is your Cartesian coordinates, that is what 

is different here.  One is the Cartesian coordinate level resolving the force vector component 

to a scalar component in x and y direction.  Another one is we are resolving this force 

component into the normal or the tangential component.  That is what is illustrated here, how 

you can have two different components. 

(Refer Slide Time: 28:13) 
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Now, if you come back to the surface forces, like for example, for tetrahedral structures like 

this where you have dx, dy, and dz components are there, and your axis is like this, x direction, 

y direction, and z direction.  So, you can define the surface forces as a stress tensor.  Stress 

means what, force per unit area.  So, you can define as a stress tensor.  So, this stress will have 

nine components.  You could have this knowledge in solid mechanics. 

 

I am just repeating it.  There is not much difference between solid mechanics and fluid 

mechanics when you consider at stress level.  So, we have stress tensors in order to describe 

all surface force components.  That is what will have nine components which will have, as you 

know the subscript describes that.  The stress in the z direction acting on the face whose normal 

is eight directions.  This is similar notation to what we use in solid mechanics. 

𝜎௜௝ ൌ ൭
𝜎௫௫ 𝜎௫௬ 𝜎௫௭
𝜎௬௫ 𝜎௬௬ 𝜎௬௭
𝜎௭௫ 𝜎௭௬ 𝜎௭௭

൱ 

So, you have the stress tensor coordinate systems defining nine stress components.  If you look 

at that, if you take this diagonal component which is the normal component to this surface like 

𝜎௫௫, 𝜎௭௭, these are all normal components.  That means these are compositions of the pressure 

force and the viscous force component.  But the diagonal component what we have is 𝜎௫௬, 𝜎௫௭, 

and all, which is acting tangentially.   

 

So, basically these are the viscous terms.  So, over the surface we can define it, which is the 

shear stress components or the viscous stress component.  So, these nine component of stress 

in Cartesian coordinate is defined in this surface.  So, we can solve the problems considering 
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the surface force defined as stress tensors and defining as normal stress and the shear stress 

component.  The normal stress is a composition of pressure and viscous stresses, whereas shear 

stresses is only the viscous stress that we get.   

(Refer Slide Time: 30:55) 

 

Surface force acting on a differential surface element 

𝑑𝐹௦௨௥௙௔௖௘ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝜎௜௝. 𝑛
∧

𝑑𝐴 

Now, if I have the stress component there and I have the normal vectors, if I resolve the force 

components, I will have the scalar product between the stress tensor and the n vectors, that is 

how we do it.  And for the total surface area we do surface integrals to compute it, okay?  Please 

do not be more worried about how we are having a scalar product of stress tensors and normal 

factors which will be coming to be again a second order vector components.   

 

You try to get the mathematical point of view of that or different literatures nowadays available, 

you can understand the physics behind that, how mathematically we represent this stress 

tensors and the dot product or the scalar product of the stress and the normal vectors or any 

vector quantity.  So, if it is that, you can integrate it to get all the stress components.  So, total 

force acting on the control volume will have the body force component and surface force 

component.   

Total surface force acting on control surface 

෍ 𝐹⃗
௦௨௥௙௔௖௘

ൌ න 𝜎௜௝. 𝑛
∧

𝑑𝐴
௖௦

 

The body force component will have volume integrals of rho g dV, g is the vector quantity as 

we consider the g, acceleration due to gravity can have a vector commodity with three scalar 
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components of gx, gy, gz.  That means what I am defining is g = gx I + gy j + gz k.  So, you can 

define like this.  But many of the times we make alignments in such a way that only this k 

direction or negative direction and k is in upward direction.   

 

We define the g that becomes a scalar quantity acting downwards.  That is what happens.  But 

if you are solving the problem where you do not know the direction of g vectors which is equal 

to gx I + gy j + gz k, then you need to do the volume integrals to solve the problems and this is 

the surface integrals over this control surface to get what is the force acting on the surface.   

Total force acting on control volume 

෍ 𝐹⃗ ൌ ෍ 𝐹⃗௕௢ௗ௬ ൅ ෍ 𝐹⃗௦௨௥௙௔௖௘ ൌ න 𝜌𝑔⃗𝑑∀
௖௩

൅ න 𝜎௜௝. 𝑛
∧

𝑑𝐴
௖௦
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Then, we will go for simplification of this one.  If you look at these things, it looks very 

complicated.  We cannot apply simple example problems that we encounter as a civil engineer 

or mechanical engineers.  What is the total force acting on the surface will be the body force 

and the surface force and this two integrals will tell me, one is volume integrals and other is 

surface integrals.   

෍ 𝐹⃗ ൌ ෍ 𝐹⃗௕௢ௗ௬ ൅ ෍ 𝐹⃗௦௨௥௙௔௖௘ ൌ න 𝜌𝑔⃗𝑑∀
௖௩

൅ න 𝜎௜௝. 𝑛
∧

𝑑𝐴
௖௦

 

Now, if I divide the force components, that means, the total force will be one component from 

this body force, it is gravity force component.  The surface force component we can resolve it 

into the force due to the pressure, force due to viscosity, force due to the other reactions.  That 

means the reaction component of force.  See, if I resolve this force component and if we can 
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have a simplification like the cases where the viscous force is not dominated, then we can make 

it 0, or other forces not dominated we can make it 0.   

෍ 𝐹⃗ ൌ ෍ 𝐹⃗௚௥௔௩௜௧௬ ൅ ෍ 𝐹⃗௣௥௘௦௦௨௥௘ ൅ ෍ 𝐹⃗௩௜௦௖௢௨௦ ൅ ෍ 𝐹⃗௢௧௛௘௥ 

That way, since we have resolved it or we separated the force components due to the pressure, 

due to the viscous, and separately for different types of problems we can simplify these 

equations and focus on the force components only due to the pressures or due to viscous or due 

to other components.   

(Refer Slide Time: 34:54) 

 

Now, let us consider very important component before applying this linear momentum 

equations.  When you apply a linear momentum equations to a control volume, like I have the 

control surface like this, if you look at this control surface, in these three phases we have the 

pressure is atmospheric pressure.  Here I have the absolute pressure, that means atmospheric 

pressure plus the gauge pressure.  

 

If I look at any control volume I consider, the control surface always will have pressure equal 

to the atmospheric pressure.  That means, if you can understand it, if I take a control volume, 

everywhere I will have atmospheric pressure, then the absolute pressure from some locations.  

So, if I consider the atmospheric pressure is acting throughout this control surface and do 

surface integral, if the pressure is having the direction, and if I do a surface integrals over this, 

it will be cancelled out and becomes 0.   
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So, considering that what we generally do it we nullify the atmospheric pressure component, 

because as you know when we integrate it the surface integrals of the atmospheric pressure for 

any control volume that becomes 0.  So, we consider only the gauge pressure when you define 

the pressure diagrams for a control volume.  For example, in this case, the atmospheric pressure 

components are given and this direction this pressure is equal to P 1 is the absolute pressure.   

 

So, finally what we do is that we do not consider this pressure distribution as I said earlier.  So, 

this part will be the gauge pressure, the difference between the absolute pressure and the 

atmospheric pressure.  Then, we have the two force components working, one is the body force 

component and the other is the other reactions components.  So, finally we use this control 

volume, a simplified control volume nullifying the atmospheric pressure distribution over the 

control surface. 

 

We consider this control volume and the pressure diagram to solve the problems.  That is, the 

atmospheric pressure acts in all the directions.  Its effect is cancelled out in every direction 

when performing the force balancing, that is what I am saying, when you do surface integrals 

of this constant, pressure distribution in a close control volume, that is supposed to be 0 as it 

happens here.  All these direction angles cancel out each other. 

 

So, the pressure forces can be ignored at the outlet where the fluid is discharged at subsonic 

velocity to the atmosphere.  Another assumption which is quite valid is that if you have 

subsonic flow, almost all times in civil engineering problems we get the subsonic flow, sonic 

or supersonic flow.  In that case, the pressure force we generally we neglect in that state, as the 

discharge pressure in such cases is very near to the atmospheric pressure.   

 

So, if you look and measure the pressure at that location when you have an outlet discharge, 

then that becomes the atmospheric pressure.  So, we neglect that atmospheric pressure 

component if you have free outlet discharge.  The point what I am trying to tell you is that we 

work with gauge pressure when you have defined the simplifications of control volume 

concept. 

(Refer Slide Time: 39:05) 
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Now, another point is how to choose control volume, because that is what the art is, like you 

do free body diagrams in solving solid mechanics problems.  Similar way, drawing the 

appropriate control volume is an art.  That is what you have to learn by solving many problems 

using the control volume concept.  Like, for example, what I need to do if do take this problem, 

okay? 

 

So, that means there is water coming and there is a bolt holding the water outlet point and there 

is the spigot, and we have water coming out.  I can have a control volume like as given here 

CV control volume, which is the wall surface touching only this water part if I consider the 

control volume.  We do not know what is the stress acting over this surface.  That is unknown 

to us.   

 

Also, we do not know what is the pressure distribution at this point.  So, when you draw this 

type of control volume, where over this control surface we do not know it, we cannot solve the 

problem.  Instead of that, if I take a control volume like this, it is control volume B, if I look at 

this control volume, very clearly I know inflow, I know the weight component, one is water 

weight component and another is weight component of this tap or this spigot part. 

 

Then, I also know this direction and q out from this.  So, if I consider this control volume and 

over this P will be the P atmosphere.  So, this problem becomes simple.  If I just want to know 

how much of force is acting because of this flow orientation, so I can compute the force 

components to find out how much force is acting on this bolt.  So, the point is that it is 
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engineering skill or art to be developed by the students how to use the control volume concept.  

How to define the control volume for a flow system so that you can easily solve it. 

 

And another thing what we do is that when you define the control volume, the control surface 

and the velocity should align to that.  That means what I am telling you is that if my control 

surface is like this, if I have a normal vector to that, this is the normal vector, so V should have 

either 180 degrees in the same directions making the n vector and the v vector.  If you do that, 

your scalar product becomes easy to do.  

 If 𝜃 ൌ 0 ̊, cos 𝜃 ൌ 1,  

if 𝜃 ൌ 180 ̊, cos 𝜃 ൌ െ1.   

 

So, that way, it simplified this vector product.  What you use in this thing is that the velocity 

and the normal vector they should have either 0 ̊ or 180 ̊.  That is what my point is.  We can 

consider the control surface which will be with respect to velocity.  We can take any shape, but 

when you take arbitrary shapes if your V and n is not having 0 or 180, finally you end up doing 

a scalar product, do surface integrals to solve the problem which is more time consuming and 

laborious, but the results will be the same. 

 

So, what you have to look is how to define the control volume and the control surface in such 

a way that the target of your problems you have to solve it.  That is art.  That is what the art I 

will discuss in today’s lecture.  We will talk about the different types of control volume to use 

it.  Next class onwards I will flow with how we should use appropriate control volume to solve 

the problems.  

(Refer Slide Time: 43:27) 
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Now, coming back to applying the Reynolds transport theorem we have to write the linear 

momentum equations.  At this systems level force is equal to mass into acceleration.  That 

means, at the systems level force will be mass into acceleration as you know from basic solid 

mechanics.  So, when I derive it at the systems level, the momentum flux, that is B, is my 

momentum flux.  That means that should equal to net force acting on that.   

෍ 𝐹⃗ ൌ 𝑚𝑎⃗ ൌ 𝑚
𝑑𝑉ሬ⃗

𝑑𝑡
ൌ

𝑑
𝑑𝑡

൫𝑚𝑉ሬ⃗ ൯ 

෍ 𝐹⃗ ൌ
𝑑
𝑑𝑡

න 𝜌𝑉ሬ⃗ 𝑑∀
௦௬௦

 

 

That is what is the system.  And at the control volume levels, as B is equal to mass into 

momentum flux, the v, the intensive property becomes velocity vectors.  If I apply with this, I 

will get this equation.  So, this is the general equation for a control volume.  We can have a V 

here.  For moving control volumes we can use the relative velocity component and V is the 

velocity vector and V r is the relative velocity vector.   

Using the RTT, the linear momentum 𝑚𝑉ሬ⃗  relation can be expressed as: 

Linear momentum 𝑚𝑉ሬ⃗  

B = m𝑉ሬ⃗  

b  = 𝑉ሬ⃗  

𝑑
𝑑𝑡

ሺ𝑚𝑉ሻ௦௬௦ ൌ ෍ 𝐹⃗ ൌ
𝑑
𝑑𝑡

ቌ න 𝑉ሬ⃗ 𝜌𝑑∀
∀௖௩

ቍ ൅ න 𝑉ሬ⃗ 𝜌൫𝑉ሬ⃗௥ ൉ 𝑛ො൯𝑑𝐴
஺௖௦
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So, this is the basic equation which is linear momentum equation in Reynolds transport theorem 

point of view. 

(Refer Slide Time: 44:55) 

 

This equation will be simplified to solve the problems because, as of now, this problem we 

cannot solve because it has surface integrals and it is also having volume integrals.  So, let us 

consider I have a fixed control volume, that means control volume is fixed.  So, your V r 

becomes V in the case of this.  So, you have volume integrals and surface integrals like this.   

𝑑
𝑑𝑡

ሺ𝑚𝑉ሻ௦௬௦ ൌ ෍ 𝐹⃗ ൌ
𝑑
𝑑𝑡

ቌ න 𝑉ሬ⃗ 𝜌𝑑∀
∀௖௩

ቍ ൅ න 𝑉ሬ⃗ 𝜌൫𝑉ሬ⃗ ൉ 𝑛ො൯𝑑𝐴
஺௖௦

 

This is my control volume.  The flow is coming from this.   

Flow is also coming from this.  Both the sides flow is coming in.  And there the pressure is 

acting on P1 and P2 and A1 and A2 and there is a weight and there is reaction force acting on 

that.  This is a A1 and A2 and this is pressure diagram.  If it is that, this force can have, as I said 

earlier, we will have body force component which is the weight, the pressure forces, and the 

reaction forces at this point where we are getting the reaction forces.   

 

Also another reaction force is attached to this.  Here there are two contact points, at this and 

this.  So, we can use gauge pressure.  You need not do the integration over this.  You can use 

a gauge at this two points to find out the pressure force component due to the flow.   

(Refer Slide Time: 46:18) 
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Now let us consider special cases.  Like, many of the times, any industry if you look, there are 

network of pipes and connected to the tanks and all.  Similar way, there will be a series of 

inflows, a series of outflow.  If you have that type of concept, like, this is a fixed control 

volume, you have a series of inflows like 1 and 2 are the inflows, and 3, 4, and 5 are the 

outflows.   

 

So, through this control surface if you look, we are talking about not only the mass flux coming 

into this control volume but we are talking about momentum flux.  The momentum flux will 

be the mass flux, mass per unit time into the velocity, that is what will be the momentum flux.  

So, through this control volume we know this momentum flux.  Through this control volume, 

what is the momentum flux coming into? 

 

Through this control volume what is the momentum flux going out, and going out from this 

case, and this case, okay?  So, basically, if you look, we can compute the momentum flux 

coming into this control volume and also going out.  So, we have multiple inlets and outlet, 

then you can find out how much of net momentum flux is there in this control volume, just like 

we did for the mass flux in mass conservation equations.   

 

Here, we are talking about net momentum flux passing through this control volume which will 

be equal to the net force acting on this control volume.  We know force is equal to mass into 

accelerations.  He same concept we are considering here as a change of the momentum flux 

within this control volume, that will be equal to the net force acting on this control volume.   
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So, now, if I consider velocity distributions are there, velocity variations are there, then, you 

know this mass flow rate, across this inlet and outlet we can have surface integrals to find out 

the mass flux.  So, 

Mass flow rate across an inlet or outlet: 

𝑚
.

ൌ න 𝜌
஺೎

ሺ𝑉ሬ⃗ . 𝑛ሬ⃗ ሻ𝑑𝐴௖ ൌ 𝜌𝑉௔௩௚𝐴௖ 

Similar way, we can find out momentum flow rate, momentum flux, if you assume it is a 

uniform inlet.  That means your velocity is not changing.  Momentum flow rate across a 

uniform inlet or outlet: 

 

න 𝜌𝑉ሬ⃗
஺೎

ሺ𝑉ሬ⃗ . 𝑛ሬ⃗ ሻ𝑑𝐴௖ ൌ 𝜌𝑉௔௩௚𝐴௖𝑉௔௩௚ሬሬሬሬሬሬሬሬ⃗ ൌ 𝑚
.

𝑉௔௩௚ሬሬሬሬሬሬሬሬ⃗  

 

V average is constant or the velocity variation is not there.  That is what you call the uniform 

velocity.  That condition does not vary.  But some of the cases we can simplify that, okay?  So, 

in that case, if in a surface velocity does not vary, so we can define it as mass flux, 𝜌𝑉௔௩௚𝐴௖, 

that will be the mass flux, V average with the velocity, that will give the momentum flux. 

 

So, here what we have considered is a uniform distributions of velocity.  That is real fluid flow 

condition, we will have the correction factor for that.   

(Refer Slide Time: 49:40) 

 

So, if you look it that way, now we can write the momentum equations in different forms 

considering the velocity distribution.  That is the reason we introduce correction factors.  That 
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means, as we know it, the velocity distribution is not uniform for real fluid flow problems, 

computing this momentum flux using the average velocity, then what could be the correction 

factor for that.   

 

That is what is called the momentum flux correction factor.  Let me repeat that thing.  You 

know for real life fluid flow systems, like for example, I have three examples here, okay?  One 

of the examples is that there is well-rounded entrance to the pipe.  The flow is coming from 

this, very well rounded, so you will see the velocity distributions will be there.  At the wall it 

will be 0, then velocity distribution will be 0.   

 

Similar way, you have a larger pipe section, wind tunnel section, then it is coming as test 

sections like this.  This is the test section, okay, wind is coming through that.  So, you know, 

over this control surface the velocity will be 0 here, then distributions, then coming back to 

that, or you have free water jet coming into air.  So, you will have this.  Most of the times what 

we have is absolute, where the fluid is turbulent.   

 

No doubt you will have 0 velocity at the wall locations.  The pipes or the test section is 

stationary at the rest conditions.  The velocity distribution is more or less uniform except at the 

wall location.  So, we can use average velocity concept for that.  The V can be approximated 

as average velocity for all these cases.  If not, let us have the pipe flow, the laminar pipe flow, 

so as you know you, velocity distribution will be 0 at the pipe contact location, the maximum 

velocity will be at the center.   

 

So, there will be the parabolic distribution of velocity.  In that case, as the velocity is not 

uniform, you need to have correction factors for computing the momentum flux.  If we are 

computing momentum flux using average velocity concept, that is what is the correction factor.  

So, you try to understand it.  So, if you are computing the momentum flux based on the average, 

then you should have a correction factor for that, okay? 

 

Let us have this, the momentum-flux correction factor which will be the dimensional correction 

factor of beta where the velocity in most of the inlets are not uniform, we can convert this 

control surface integral to algebraic form.  That is what it is here, okay?  Because V average 

computations are easy and you know this mass flux in and out for each control volume, inlet 

and outlets, so you can compute the momentum flux. 
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And since you are using the average velocity to compute the momentum flux, you also consider 

the velocity distribution in terms of correction factors, that is what the 𝛽 value is in terms of 

correction.  So, finally, your surface integral part and the volume integral part will come like 

this.  If it is a steady problem, this becomes 0.  Again, you have a very simplified case.   

෍ 𝐹⃗ ൌ
𝑑
𝑑𝑡

න 𝜌𝑉ሬ⃗
஼௏

𝑑𝑉 ൅ ෍ 𝛽
௢௨௧

𝑚
.

𝑉௔௩௚ሬሬሬሬሬሬሬሬ⃗ െ ෍ 𝛽
௜௡

𝑚
.

𝑉௔௩௚ሬሬሬሬሬሬሬሬ⃗  

Sum of the force acting on that will be equal to the net momentum flux passing through this 

control surface, that is what will come, okay?  So, let us have this for uniform flow.  So, 𝛽 will 

be equal to 1 and this thing if I do the integration of the velocities and the scalar products of V 

and n over a surface AC, and that is what I am representing in average.  So, 𝛽 will come to be 

this part or with the simplification 𝛽 will come this way. 

 

If I know the velocity distribution, I know the average velocity.  If I do this integration, I know 

this surface area, then I can compute what will be the beta value for a velocity distribution 

coming into a cross section.  Like, I have a pipe of laminar flow, a pipe of turbulent flow, or it 

is an open channel flow it is connecting, but each case we know approximate velocity 

distribution.  That means, for each case we know what is the 𝛽 value. 

න 𝜌𝑉ሬ⃗
஺೎

ሺ𝑉ሬ⃗ . 𝑛ሬ⃗ ሻ𝑑𝐴௖ ൌ 𝛽𝑚
.

𝑉௔௩௚ሬሬሬሬሬሬሬሬ⃗  

𝛽 ൌ
׬ 𝜌𝑉஺೎

ሺ𝑉ሬ⃗ . 𝑛ሬ⃗ ሻ𝑑𝐴௖

𝑚
.

𝑉௔௩௚
ൌ

׬ 𝜌𝑉஺೎
ሺ𝑉ሬ⃗ . 𝑛ሬ⃗ ሻ𝑑𝐴௖

𝜌𝑉௔௩௚𝐴௖𝑉௔௩௚
 

𝛽 ൌ
1

𝐴௖
඲ቆ

𝑉
𝑉௔௩௚

ቇ
ଶ

𝑑𝐴௖

஺

 

So, if I know the 𝛽 value, then we need do the integrations again.  We use that beta value to 

convert from average velocity data to the momentum flux.  So, that is the advantage to use the 

momentum-flux correction factor. 

(Refer Slide Time: 55:01) 
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Now, before concluding today’s lecture, let us see the figures, what is there, very simple 

experiment is impact of jet experiment.  If you look at this jet, the water jet part is here and it 

is balanced by the weight here.  So, we can know what is the velocity of impact if happening 

and that is how much of weight we are counterbalancing it.  So, if you know it, theoretically, 

you know this is the control volume, you have water jet coming in and that water jet is going 

in these two directions. 

 

If you look at this photograph and this simplified conceptual diagram, you can find out that.  

So, theoretically, 

𝑭𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 ൌ 𝝆𝒂𝑽𝟐 

V= Velocity of Jet = Q/a  

 

It is a momentum flux. 𝝆 and V square will be the momentum flux that is impacting on that 

because in this direction the output momentum flux is 0.  So, what is influx that is converted 

to the force component and you have experimental, then, definitely there is a deviation from 

the experiment and theoretical because any systems like this jet apparatus, it has some degree 

of loss. 

𝑭𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍 ൌ
𝒎𝒈𝒍

𝟎. 𝟏𝟑𝟓
 

Distance of vane from fulcrum is 0.135 m 

%𝑬𝒓𝒓𝒐𝒓 ൌ ሺ
𝑭𝑻𝐡𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 െ 𝑭𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑭𝑻𝐡𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍
ሻ ൈ 𝟏𝟎𝟎 
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So, we cannot have exactly whatever the theoretical value.  We will have deviations from that.  

That is why we compute the error.  The deviations between the theoretical and experimental 

divided by theoretical, that is what gives us the error.  So, this type of simple apparatus will be 

there in any engineering colleges, so you can see that how the force is acting because of jet 

impacting on that plate. 

 

That is the condition.  This is very simplified case.  Here impact is normal to the plate.  You 

can have many numerical examples where the plate can be inclined or the flow jet can have an 

incline and different conditions, we will also discuss in the next class.   

(Refer Slide Time: 57:15) 

 

So, with this let me summarise today’s class.  We started with very interesting Bhakra and 

Nangal dam project.  If you are that interested, you just get more data available, but I can say 

that because of that dam project we have changed the irrigation, hydropower generation, and 

water resource management in Himachal Pradesh and part of Uttar Pradesh and all.  So, all 

because of the knowledge of fluid mechanics way back in 1950s and 1960s, that is how that is 

possible. 

 

Now, we have more advanced way to understand the fluid mechanics.  As I told earlier, we can 

solve many, many challenging problems apart from the standard problems.  And we also 

discussed about the Reynolds transport theorem for linear momentum equations.  The problems 

I have not solved, in the next class I will solve the problems and try to know how to know to 

use the control volume appropriately so that we can solve the problem with less timing and in 

proper way.   

264



 

That is my point.  So, we can solve problems or the exercise from any of the reference books.  

With this, let me conclude this lecture.  Thank you. 
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