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Hello everyone, welcome back on the course of Higher Surveying and we are in the

module 6 on photogrammetry. Well photogrammetry has been stretching us a lot, it is the

7th lecture today, and it is more about the digital images. If you remember that in last 6

lectures we have discussed many concepts. All those concepts are equally applicable to

the digital  images;  however, today we are going to discuss something, which is only

popular or only applicable with the digital  images. And that the reason we have now

excluded the digital world with the earlier aspects.

That  means we have been doing some work with the analogue or may be analytical

photogrammetry, but  now we are  purely  dealing  with  the  digital  photogrammetry  in

coming 2 lectures today’s lecture and the next lecture. This lecture is the 7th lecture on

photogrammetry. So, in this module we have total 8 and now we are leading to the end of

this module ok.
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So, I would like to emphasize here about the books we have suggested 2 more books

here especially last 2 books. This books are these 2 books and I would like to say that

about today’s lecture on image matching, there is a good introduction and good amount

of material available in this book that is photogrammetry computer vision by W Forstner

and so, on.

Now, what about the another book? Another book also useful for a next lecture; however,

I would like to say again these 2 books are pretty expensive and hence one should join

some public library or maybe in institute library hope these books are available there.

Anyhow you do not need those books as such because these lectures are could enough to

cover the material let us talk about the image matching.
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You can see the 2 images of the same room, where there is a cabinet and in the cabinet

there are lot of material is there some files, some books and lot of haphazard material has

been shown there ok.

The purpose of showing these images is that if I try to match these 2 images manually

like this by translation what will happen? Ideally this edge should match with this edge

right you can see it very carefully. Similarly this edge should match with this edge and

similarly I can say that this edge should match with this edge. Ok once this 3 edges are

matched what will happen? You will get a kind of mosaic or kind of combination of 2

images where you need you find that the resulting images much wider or rather it is

integration  of  2  images.  So,  that  could  be  a  good  application  for  image  matching

moreover we have many applications that is requiring image matching.

The first could be I want to do some kind of relative orientation; I also need that image

matching concept there. So, that the 2 images of steopy here when they are moving like

this, once they match then I can generate a 3D view and that we achieve by the relative

orientation well. So, let us go ahead for the image matching and try to learn that how to

do that automatically with digital computer. That is most surprising element of the image

matching or the digital images.
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Let us take another image here, I can that there are 2 images of the same building and

this edge if you just look here it is this edge and similarly this edge of the image is this

edge right and you can also find out the other common features between the two.

Now,  if  you  again  integrate  these  2  images,  you  will  get  a  bigger  image  that  is

combination of the 2 and that is covering a larger area fine ok.

(Refer Slide Time: 04:47)

So, how to perform the image matching that is the most important element today. And we

have understand some of the concepts which are not yet popular in this course or in this



module ok.  The first  thing is  that  we are going to  do the least  squares matching by

observation equation method. You would be surprise right now we are assuming that I

have  2  images  and  these  2  images  have  the  same  orientation;  that  means,  exterior

orientation parameters of 2 images are same, since they are acquired by the one camera. 

So, I can say that their interior orientation parameters are also same. Ok as a result I need

to do only the translation between the 2 images, because once they are translated like this

they will be matching and then that is it. The moment it is a best match I recover or I

perform the best matching or the digital computer performs the best matching will say

stop here. That means, by least squares matching I will get the minimum error between

the 2 images for the matching process right. So, let us say one image what I call is the

observed image, I call it g and another image or I call it the reference image I call it f.

Remember in observation equation method to what did we write? L b plus v equal to L

adjusted; that means, if I observed parameters are added with the residual I will get the

adjusted value of the parameter. Similarly I am saying that let us say f is my adjusted or

the reference image and I am trying to bring the image g; that means, if I am adding the

residual, then it will become f. So, now, you can understand that how are we correlating

our this concept of image matching with the observation equation method fine and then

we write if you remember F X a equal to L a remember that thing where access my

parameters and then we write L a equal to L b plus V fine.

So, now we are going to use the same concepts here. So, f is my image function we call

it image function similarly g is my observed image both are g and f are functions; that

means, you must be surprised how image can be function ok. Let us imagine one thing

that you have an image and it has some pixel values; that means, at a given x y location

of a pixel I have some intensity value and that intensity value is function f. So, I can

imagine that there is some surface which we call small f or may be small g, which is a

continuous surface and they are representing the intensity value or the pixel value or the

digital number of the image.

I am assuming that the function f is an continuous function similar function g also an

continuous function in their image functions, they are not pixel numbers. So, there are x

y, but they are function of x y at a given x y they have some value f and so, they are the

image functions what we call here right. Sometimes you also call the target image the g



image  ok.  Now if  you  remember  by  the  observation  equation  method,  we  are  first

linearize our F X a remember? Same way now I am linearizing my F X a with respect to

some known point call  u 0 v 0. So, what is my u 0 and v 0? They are basically the

translation that I want to perform between the 2 images. So, I have estimated some initial

value of translation  u 0 and v 0 which is  v 0 in the vertical  direction  u 0 is  in the

horizontal direction in the x or y directions we can say.

And then around that point I am trying to linearize my function f by Taylor series and as

a result delta u is my deviation from u 0 similarly delta v also there and so, I can write by

Taylor series that this is the term I have and this here are the derivative terms into delta u

and derivative term into delta v. You can easily imagine those thinks it is very easy or we

are developing some concepts  about  image matching using least  squares.  So,  we are

doing all this thing remember as this is my image function fine and that is continuous in

nature let us go ahead and try to understand what does it mean.

Ok.

(Refer Slide Time: 09:29)
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Let us see that there is an output image what we call as g and there is a reference image,

if I put the animation like this is my f here and I want to match these 2 images; that

means, I am putting the same image and I am trying to match 2 images. Ideally if they

are matched then they will be having the same edge here and it will match exactly. So,

now, just see that this is my window and I am trying to move on this way right. So, if I



take this window shown in the animation and for try to move on this way right, so, if I

take this window as I shown in the animation and if I try to move over that what will

happen? So, it may not detect that what is the change in the image matching process, but

what if I move this same box on the x direction let us see like that like this now I am

moving it.

So,  definitely when it  passes through this  edge this  box will  find out lot  of changes

remember because of the change in the f function that is intensity values, because here

there is a homogeneous intensity white colour and there is another homogeneous colour

that is only single colour I have. However, at this edge at this point you can understand

that there is a change in the f function the image function.

So even if I take this particular piece here from the my g image, and I try to put and try

to slide them minimum variation will be in the homogeneous areas, but there will be

maximum variation or I can say you will find out that if I place here this kind of thing

here. So, there will be some variation you will find out; however, the moment the it is

matched like this while moving in the x direction here you will see that exactly it will

matching and as a result, I will have minimum variation between the 2 and I will say that

yes I have done I have achieve the least squares matching of 2 images.

So, I hope you can got the concept that I am taking some kind of box here, that I call it

neighbourhood. And I am using this neighbour in order to detect where this neighbour

has the same intensity value or the minimum variation in the target or output image or

the input image whatever in image f. So, I am taking this box as my neighbourhood; that

means, I am saying that whatever number of pixels are there like this; I am taking this

neighbourhood m by m and I am trying to bring to this thing there on the my reference

image and trying to see where this variation will be minimum. Now you may find out

over this process when I am moving the things on x pixel by pixel, you find out this point

this point this points these are the points where 2 images should match on this edge and

this is we are trying to achieve in this process ok.
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So, let us say my residual is my noise, noise means some kind of disturbance in the

signal or some kind of I can say confusion or some kind of you know deviation from the

ideal image. So, g is my image observed image and again what is my m? M is my local

neighbourhood remember the size of the box, it is my m; deciding the let us say there

pixels like that, I am trying here 1, 2, 3, 4, 5. So, it is regarding this pixel it is called 5 by

5 neighbourhood because there are 5 rows of pixels and 5 columns of pixels generally we

take odd number 3 by 3 7 by 7 and larger the this neighbourhood, I will have more

confidence in my work because the larger neighbourhood is confirming that what it is

detecting in the reference image large neighbourhood will definitely take more time for

the calculation.

And that is some kind of advantage as well as limitation the larger the neighbourhood I

will take lot of time, but I will be more confident in my calculations. On the other hand

smaller the neighbourhood I will take less time, but I will be less confident about my

calculations right. So, g m is nothing, but observation that is the observed image over m

local neighbourhood in output image right ok. N m is my noise again over the m local

neighbourhood and it is applicable to image g here ok; f m is image function of reference

image or what we call as the ideal image or I want to achieve that; that means, I am

putting the g over the f image such that my reference image is not going move for rather

g is going to adjust itself; that means, my data is g that is output and its going to adjust

with the reference ok.



So, what about the derivative of f? So, this is my derivative in x direction I wrote it its

very specifically because u is the translation in x direction. So, I write it f dash u and

again over the m neighbourhood, I am calculating my derivative over m neighbourhood

and will see what is the meaning of that in coming slides. Similarly in v direction or in y

direction f dash is my derivative, and delta u and delta v are my shift; that means, with

respect to u 0 v 0 do I need to shift in positive x or may be negative x may be positive y

negative y whatever the values will come here and we will update our u 0 v 0, and we

will try to shift till we get the minimum values of the of the function in the least square

sense.

(Refer Slide Time: 15:49)

So, let us go ahead. So, now, this is my function written here; remember I have written

these for m number of neighbourhood this also for m number of neighbourhood like this,

like this and I will talk about what is this value? Since it is the if you remember f m that

is why we say that we have linearize this thing. So, the value of the function call here f u

0, v 0 this is this here and this is also here this one is nothing, but f u 0, v 0 right. This is

my noise here over n neighbourhood and these are the derivatives now the important

aspect is how to calculate the derivatives for the f or maybe for the g ok? You see here

what could be the size of these matrices. So, I am writing m by 1 fine.

This is m by one again that is my a matrix and it is my delta x matrix right there are 2

unknowns. So, we have this thing v matrix and now I have written in the form L equal to



v is equal to a x minus l form and I can find out the solution here my least square sense

ok
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Let us say there is some neighbourhood m by n, here I can say there are 5 by 5 boxes are

there, fine you can observe it and what we called here it is called Sobel filter right and

what does it mean? This filter has some values like this, I am specifying like this these

are all the values here they are some specific values. So, let me first fill this thing here

like  this  now let  us  see this  is  my f  image?  F is  my image function  as  we already

discussed we defined ok.

So, let us see that I try to fill these values like this. Now let me fill some value here

minus 5 plus 5 minus 4 0 plus 4. So, let me this side 0 0 0 0 and then we have some

values like minus 8 plus 8 minus 10 plus 10 minus 10 minus 20 plus 20 plus 10 and then

we repeat these values ok. So, this is my Sobel filter S x because it will detect the edges

in x direction, and then you write that let us say this values stands here right and this

value stands here fine.

Similarly, I will take this value and this value since it is my S x the Sobel filter in x

directions I am taking these 2 values, this value and this value and I can write my f dash

let us say u equal I use this value also and this value also. So, what does is mean? So, f i

plus 2 j into 10 this value minus minus this value into f of i minus 2 j and that is what we

call finding out derivative one more way let us look into this thing possible now I am



using these 2. So, how to write it let us say 20 this value is there. So, I multiplied 20 here

and minus 20 here.

And I will take the difference of the 2 and do the calculation. So, it will be 20 into f of i

plus 1 j minus minus 20 f of i minus 1 j. So, this is the way we calculate our derivatives

we calculate f dash v and for that we need to have a different Sobel filter what we call S

y. The filter that detects the edges in y direction ok. So, I hope you [get/got] got the idea

how to calculate the derivative using image and using this Sobel filter.

(Refer Slide Time: 20:55)

Now, let us once again look into the Sobel filter and this time we are defining the Sobel

filter for detecting the edges in y direction let us do it again. So, let us see all these are

values for f function right.

Now, let us define a Sobel filter again and this time the Sobel filter is slightly different or

other it detects the edges in y direction and how to detect that will see. Let us say 4-5

lines 2 3 4 and 5. So, the s y Sobel filter is given as 5 8 10; 8 5 then ill repeat this line

here with minus values similarly this line here with minus values right. So, this is why

my Sobel filter to detect the edges in y direction why because

If there is an edge here for example, let us say there is like this that mean there is a red

area and then this is a white area, and if I put this 0 line over there like this what will



happen then I will take the values over there I will multiply with these values a white

areas and I will multiply the values with these values here ok.

Then I will take a difference and if there is edge it will be enhancing of the image or

enhancing of the edge. So, how to calculate derivative? Now f dash v equals to I will

take this or this or maybe this and this let us see how to do that. So, I will take this and

this. So, let us say 10 into f of this value i j plus 2 minus minus 10 into f of this value that

is i j minus 2. Similarly I can calculate my f dash v also in different way or different

value using this value here and this value here in the Sobel filter and this value in the

image and this value in the reference image as 20 into f of i j plus 1 minus minus of f of i

j minus 1 I hope you got the concept how to calculate f dash v right.

Now, the idea here is let us imagine you have some kind of image, where as I explained

you here if you are in a homogeneous area; that means, colour is not changing right there

is only one colour imagine that there is a black and white image where half of the image

is black and half of the image is white. Suppose you are putting your Sobel filter in black

area or maybe white area. So, what will happen? My all the values of the image f are

same and as a result even if I multiply with this logic, I will get my derivative value as 0

you can try yourself. Why because these values are same fine and as a result I am not

going to get any advantage there, but if there is a some value at the edge; that means,

there is white area here and black area here what will happen now if I take the difference

of these two?

So, this value will be very very high you see this value in case of black it will be 0 and

this value if if it is in white are, it will be less at 255 or 250 or something like that very

high value. And as a result this difference will be very very high automatically because

there is an edge. So, now, you can imagine that in presence of edge this derivative value

will be very very high, but in presence of no edge these derivative values are very very

minimum under side.

Now, I have already explained you how to calculate the derivative.
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So, let us say we have calculated the derivative f dash u for n neighbourhood and equal

to given by for example, f of I can say here if you remember i minus 2 j and then minus

plus f of i plus 2 j and this is multiplied with some factor let us say positive 20 I do not

remember now, the values we can find out from the operator and here I am multiplying

here with minus 20 here like this. These values are same. So, now, what will happen? I

hope these values were minus 10 and minus 12 as I remember now no problem does not

matter these values are same.

So, what will happen if there is an edge in the f image what will happen? This value into

10 minus this value which is on the edge like this, at this point this is one homogeneous

area and this is another homogeneous area. So, let us say the value is here 254 and here

value is 26. So, then I will calculate my value as in to minus 10 here into plus 4 into

minus here plus 10 into 254.

Now, you can imagine what value you were getting. So, what about the value is very

high value? So, it is indicating very high number and that is the way we understand that

how the moment there is edge is there, it will be very high value of derivative and this is

the way we define the derivative same way I can find out what is my f dash v for m

neighbourhood as we have explained in the last slide.
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So, let us see that we have calculated f values and everything for m m neighbourhood,

and then again now I will use my standard least square solution where delta X my delta u

delta v and I can find out this or by this right.

These are the standard equations that we have learnt already in the lecture of observation

equation method in module 4, you can view them again if you need right. To sigma is my

covariance matrix of the noise remember noise is the residual error and I can write it

sigma n square that is the reference variance if you remember sigma n square into i

identity. Because we know that we assume here that noise is more or less same on each

pixel right as a result I can write sigma n square and so. So this is my system of normal

equation these 3 equations ok. So, I can write delta x like this further my delta x nothing,

but delta u delta v and then I will find out this way.

So, I will find out my first value of delta u and delta v; that means, from u 0 v 0 how

much I need to further shift.  So, I need to update my u 0 and v 0 like this. So, the

moment I updated that what will happen? I will use the new values of u 0 and I will try

the same process again repeat the same process again for each pixel in the reference

image as well as in the g image that is output image. Now you will be surprised a little

surprise will should be there that what is the purpose of this repetition. Remember at

certain stage my delta u delta v ultimately will become minimum or very close to 0 that



means,  my  delta  u  become 0  and  delta  v  become 0  because  that  is  giving  you the

minimum value of delta v and delta.

And as a result we say that now we have match our 2 images and at the age or not we can

detect  it  personally  by  viewing  it.  So,  that  is  the  process  called  least  square  image

matching or least square matching for image matching.

(Refer Slide Time: 29:29)

Now, let us sink that we have 2 images and in the last case for the purpose of explanation

I have taken very simple example of 2 images where there is only translation in x or y

direction was there. However, now imagine that the e o parameter and i o parameter of

the images are same, but I am trying to match one image by this way. So, definitely if

there is edge which is vertical, it will not match like this I need to rotate also my image I

need to translate also my image like this and this all the motions.

So, what we do we do the affine transformation and the equation is like that, we have all

we learnt the affine transformation where these are my translations and these are my

rotation matrix elements. So, it is also called six parametric transformation. Moreover I

am also adding something here,  and that  is  nothing, but a linear transformation;  that

means, I am saying my g if I add some residual, then it has some function h and it is kind

of linear transformation; that means, my image function is also changing fine and now

putting it little more thing here. Not only the transformation or the x and y and theta and

angle no I am saying that my image function is also changing right.



So, I am writing by this way. So, these are my nothing, but a 7 is my multiplication

factor at a 8 is my translation factor; that means, I am adding some value a 8 to my

image function,  and I  am multiplying  my image function with a 7 and I  am getting

another image function I am saying that now what about the residuals? These residual it

is one and it is 2 because they are different remember that one I add residual one to g I

will get f; similarly if I add residual 2 to my g I will get edge right.

Now, let us make our life little complicated, but little better ok.
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So, again I am writing the same function here where this is my f u 0 v 0 right, this is my

noise. So, this is my derivative for these parameters of f you can find out analytically,

and then you can put the pixel values there again using the Sobel operator you can find

out ok. What about this one similar fashion I wrote like this, my u 0 v 0 and these are

these values. G is my observed values like this over n neighbourhood they are same. So,

they are basically repeating I can say here.

However these are not repeating. Now I am writing my noise here remember I said they

should be a different noise. So, I am writing my noise by r here over n neighbourhood.

So, my neighbourhood is say m it would be 5 by 5, 3 by 3, 7 by 7 and 9 by 9 and so, on

right. Now here I want to calculate these parameters that is one is a multiplication factor

in my image values, and here it is addition value. So, it is just kind of y is equal to m x

plus c. So, my function image function is also changing right with respect to the I can say



by linear way right and here they are my translation and rotation factors or rather I can

say translation rotation as well as a scale fine. So, 3 factors are there and there are total 8

factors we have ok.
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Now, let us integrate the 2 matrices that is here you can see that I can construct this kind

of metric system when like this is like this year. So, that you will see you can see that I

can construct this kind of matrix system well like this it is like this here. So, I have added

you  can  see  here  I  can  partition  this  matrices  here  because  it  is  complete  0  this  is

complete 0 and if you are writing a software for you, you need not to store all these

values  because  0 is  anyhow is  not  going to  give you any value  for  that  purpose of

calculation.

And  as  a  result  we  always  keep  these  2  matrices  separate  and  we  do  the  matrix

partitioning and we try to estimate these unknowns together using matrix partitioning

right. So, now, you can see all these things are very very easy and again I can write the

same equation here that v is equal x minus l v l a and delta x here, again I will use the

same logic to calculate this thing.
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So, what about the initial estimate of u 0 v 0? So, I can say all translations are 0 and all

diagonal rotations are 1.

So, what is the meaning here that my a 1 is 1 0 0 1 this matrix plus u v plus what about

the the u 0 v 0? I will say 0 and 0 translations they are my u 0 v 0 and I get some value

here. So, these are my initial values of a 1 to a 6 similarly I can also find out a 7 and a 8

again a 7 should be initial value of a 7 is my 1 and a 8 is my 0 initial values.

They are all initial values we are talking about right. So, here u 0 v 0 that they are my

translation  factors  one among the six here,  and these are  my scale  one or I  can say

rotation one. So, these are 1 1 right. So, I can now understand that if there is a steeper

gradient; that means, if there is a clear edge. So, what will happen? One area high value

and another area very low value, so, there is a edge. So, I will enhance that edge that my

that is the idea here. So, the higher this difference easier for detection right. So, this is

what we call the least squares logic for the image matching and what sometimes we call

least squares matching for images ok.
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What about the point feature extraction ok? I have given you one situation before that I

want to match 2 images; however, now I am giving you a situation where I am seeing

clearly that I want to detect the point what is the meaning here? Meaning here is very

simple I am changing the context now. Let us say there is an image and if there is a

distinct point; that means, let us say some ground control point, that is visible in my

image and that control point is also visible in the ground surface, but I want to force

detect my ground control points on the images before collecting the data in the field. And

for that purpose I need to detect them can I do it digitally can I do it automatically let us

see this thing. So, this thing is that that the popular point it should differ with the local

neighbourhood here.

That  means  it  is  called  the  precise  localisation,  I  can  localise  that  point  very easily

compared to its surrounding that property should be there. Further I should say that it

should detect my points that is I am basically using the Forstner operator and it has some

characteristics,  this  is  the  kind  of  requirement  it  has  the  moment  we  fulfil  this

requirement,  it  can detect  distinct  points  in  the image and it  will  detect  the point  in

images on an area even with change in illumination that is the robustness; that means,

even if the illumination of the scene or the image is changing, it still it can detect the

very very pinpointed point which are comparatively different from the surroundings ok.



It is invariant under geometric transformation fine and then it will it supports the image

interpretation. That means, once you detect the control points or the some points which

are distinctly with their surroundings, then you can find out what are these points and

what are these features indicating. So, that is called that we call as image interpretation.

So, my Forstner operator does it for me.

(Refer Slide Time: 38:00)

Let us see what is the Forstner operator again I am using one image here and I want to

show that I can say that this point is my distinct point. Similarly I can say that let us say

my this point it is distinct because it is completely different from surrounding.

So, many points I can mark for example, this point on the file it is distinct from the

surroundings and it is a kind of one of the control point if my terrene is looks like that.

Similarly I can say this point also I can say this point also any point that is different from

the surroundings is my distinct point fine right. And we can mark many points on this

image and even this point is also a distinct point, because here it is yellow, here it is

white, here it is something else, here it is something else all the surroundings if I look at.

So, they are good points to detect.
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Now, let  us see this particular  example where I  can say this  is the points which are

distinct points and I want to detect these points fine using Forstner operator right all

these points I want to detect.

(Refer Slide Time: 39:17)

Again now the question is how to calculate the derivative for the Forstner operator ok. In

case of image matching we have 2 images and we are running one Sobel operator taking

the images from one and to trying to match with other; however, in case of Forstner

operator, which detects one point in an image what to do? Let us take only one image



and now you are running this Sobel operator over that image. So, what will you do now

ok. So, let us draw then image like this, and let us put a Sobel operator at some location

this pixel. So, like this ok

I put my Sobel operator here for that pixel now how to calculate the derivative in this

case? It is quite different from image matching ok. Let us consider this value of Sobel

operator which could be let us say 10 or minus 10 whatever and let us say this is your

minus 10 let us say plus 10 and all are 0 fine it could be let us say 8 and plus 8 say I am

just writing some values. Now what will do? You will take the value of this image that is

this image here and you will multiply with the 10 fine which is just below this section

ok. So, 10 into some value plus 8 into some value plus 0 into some value plus minus 10

into some value and you will make the summation for the all the points. 

So, all there are 24 points are there from here to here. So, I can say I equal to 24, you are

doing  all  the  summation  over  this  point  not  only  that  you  are  doing  for  25  pixels

including this pixel also. So, this is the way I calculate my derivative fine. So, that is this

is  a  summation  at  this  pixel.  Or for  this  pixel  I  can  say this  is  the value  I  call  the

derivative  f  dash let  us  say pixel  i  j.  So,  this  is  the  way we calculate  the  value  of

derivative in case of Forstner operator. Now I will repeat this process for each and every

pixel. So, you can imagine now that I have shifted my operator this Sobel operator by

one pixel in x and now I am repeating the whole process and again I am calculating the f

dash for i plus 1 j and I will repeat this process let us say for f dash i plus 2 j and so on.

So, this is the way I will do for each and every pixel this kind of operations, and I say

that these are my derivatives at different points. So, the moment if there is some distinct

point, let us say a point which is quite distinct with respect to the surrounding what will

happen?  The  value  of  this  derivatives  will  be  very  very  high  compared  to  an

homogeneous area you can try it yourself try to take simple black and white image and

try to do it you will be surprising that how simple this logics are and, but still they are

very strong in terms of their calculation in terms of their delivery of the constructs.
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So, let us work again with the Sobel operator and this time again this is f i j and again

and again I am keep on filling these values here. So, what will I do this time? Again I

will take a Sobel operator and this time how to calculate derivative that is most important

now to understand. It is slightly different from the image matching because now we have

only one image and this is my Sobel operator right and Sobel operator is same what we

have learnt in the last 2 slides before right. So, the Sobel operator is same and now I am

saying how to calculate the derivative in this case because its a only one image, its not 2

images that they are matching it is only one image that in which we are trying to detect a

particular point which is comparatively different from the surrounding pixels.

So, let us say we have Sobel operator and this is the point where I am right now putting

my Sobel operator in the image f or g whatever. Let us say g image I am putting. So, let

me draw the g image like this, this is let us say my g image now in this g image I have

put it this Sobel operator on this pixel like this now what will happen? Leaving this pixel

apart I will first take the values of Sobel operator which is let us say it is giving minus 10

I do not know I am just writing it let us say plus 10 here minus 20 here plus 20 here

whatever and say its 0 here right.

So, now, what will I do? I will take the value of g image from here and I will multiply

with minus 10 here. Similarly whatever the value of g image here right. So, what will I

do now let us see minus 10 into some value of g and let me write it let us say i minus 2



into j plus 2 like this. So, this is value is here and I am keep on multiplying this thing

sorry minus 20 minus 20 into again g value and so, on I will keep on 0 into g value plus

10 into g value plus 20 into g value and so, on like this I will calculate; I will make the

summation here like this for the whole each and every pixel in this Sobel operator and

image g and in this is process is called a convolution.

So, after doing this kind of convolution, I will find out some value here and that will be

my derivative of image f or I write it f dash at this pixel location i j  right. So, I am

writing it f dash at i j for m neighbourhood. So, I can write it m or I can also write it like

f dash u at m neighbourhood similarly f dash v at m neighbourhood see.
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So, now let us go ahead. Again I will use the same logic here after finding out this one

right normally equations and we will do like that. See remember now there is no if you

remember this was the function we have written for image matching, but this function is

now absent completely here right because there is only one image.

So, I am not writing here this thing it is absent here, and I am writing this thing here like

this fine. And I want to find out what is my delta u delta v; that means, I am trying to

match my Sobel operator in such a way that the moment it detects that particular point

which is distinct from the surroundings, my delta u and delta v should be minimum that

is the idea here. So, I have find out my f dash u, f dash v at first location and similarly



that m location right. I can you can imagine that we have some kind of n values here in

the back slide, and then I can find out like this ok.
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Then in the Forstner operator this is the logic again I am using it normal equation and

now I can write this thing.

So,  there  if  I  do  this  A T A this  my A T A will  come like  that;  that  means,  I  am

multiplying my all f dash for our k and where k is equal to 1 2 my neighbourhood and

remember  this  is  quite  different  calculation  and  then  the  image  matching.  So,  it  is

depends on how do you calculate  f  dash fine.  So,  this  is  my delta  x  here again the

solution by least square solution and there I have this thing now what about the end

matrix which is nothing, but A T A and we know that N inverse is my covariance of delta

x; that means, sigma u v.



(Refer Slide Time: 47:52)

So, I can write my sigma u v is equal to N inverse time some reference variance and I am

writing this matrix A T A inverse like this delta f by delta f T.

And like this. So, it is nothing, but it is proven well that this equal to this which is my

delta g g is nothing, but the covariance matrix of the gradients remember gradients in my

original image and these are the uncertainty in the position; position of some pixel that is

the that I want to detect. So, this is my uncertainty. So, now, we can see here, but it is

mathematical proven this logic. So, I can see here the uncertainty in the position; that

means, uncertainty in the detection of the position of point, which is distinct with respect

to surrounding is inversely proportional to the variance of gradients; that means, higher

the gradients is it is very easy to detect the point.

And that is why the moment we say it is a distinct point and; that means, it  is quite

different from the surroundings, it is very easy to detect that point in an image by Fostner

operator. Why because, the values of my gradients of that image around that point will be

very  high  because  of  the  difference  between  the  popular  point  pixel  with  this

neighbourhood and that is why it is my logic its working there ok.
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So, let us see what is the graphical meaning of this there are 3 cases of uncertainty here

you see that it is very less here in this case. In this case you can see the uncertainty in y is

very high and in this case both uncertainty in my x that is I can say sigma u and sigma v

are very very high right.

Because of the homogeneity of the area this is my homogeneous area; that means, there

are no gradients here on the edge we have. So, this one this x direction is very small

where as my sigma u less and here you can see sigma v is very high, but the moment this

situation here both sigma u and sigma v are minimum or less least I can say. So, this is

the point easy to detect by the Forstner operator right and that is why this is kind of

situations we want; so, that we can easily detect these points very easily right, because it

is quite different from its surroundings. So, here it is white and here it is some other

colour fine.
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So, now, how to detect what is the process. So, now, we are looking for what are the

steps we should now we have understood a logic, now we are looking into the steps. So,

this is my delta g delta g which is I am saying equal to this fine that we have already

learnt. So, now, it is equal to this matrix. So, I will calculate only these values f dash and

I will just put in this matrix, I construct this matrix then here my m is size of this Sobel

operator remember how to calculate the f value ok.
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There I will calculate the eigen values of my delta g delta g, which is given by this logic

remember again eigen values and eigenvectors. So, these are my eigen values. So, that is

my minimum eigen values similarly what is my maximum eigen values. So, like this ok.

So, the smaller eigen value of gradient covariance matrix correspond to the maximum

eigen value of the shift fine; that means, because they are inversely proportional. So, I

can say that the maximum value of this one is the minimum value of this one and this is

my minimum value here right.
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 Ok  now  find  out  the  maximum  eigen  value  of  the  covariance  matrix  of  shift  by

thresholding; that means, I have already find out this. Now put some threshold value let

us say something like this then they will you put 0.5 pixels, and then by this thresholding

I can find out where the point is which is distinct in nature that is it is distinct with the

surroundings I can find out that point is very easy you can understand what are the steps.
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So, there now step 4 is there extracting the features how to extract the features finally,

and this is the last step.

So, we search within the local window for the minimum of this one; that means, if I have

some window like this and different points I have calculated all the values of lambda

max, let us say this is my lambda max this is another lambda max and so, on because let

us say this is the point which is quite distinct or this is the point quite distinct fine. So,

around that all  lambda max will  start coming now what will  happen? I will take the

minimum of the lambda max; that means, I am taking the minimum of let us say lambda

max 1 then lambda max 2 and lambda max m because m is my neighbourhood here.

And the moment the lambda max is minimum for a particular point, I will declare that

this is the my point that is final point final answer; that means, probably I am going to go

here because lambda max will be minimum here. So, this is my point that is the I want to

detect in my image. So, this is the logic of Forstner operator I hope that we have learnt

today enough material about image matching and let us see this is a demonstration of my

Forstner operator.



(Refer Slide Time: 54:08)

And again we are putting this image where I want to detect these points these point

remember  because  they  are  distinct  from  their  surroundings,  and  now  if  I  run  the

Forstner operator for this image what will I get I will get these points as my distinct

points.
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Now you can see here there also I am getting a lot of points I am clearly tell that these

are my edges. So, these are my edges here clearly tell by Forstner operator fine now I can

detect my features like this. You can see in the within this homogeneous area there is



nothing is detected nothing is detected, but there are some noise is there, because this

was made manually by some student right by some person since this image was created

by you know filling up the boxes by colour. So,  that  there was some a non-uniform

filling here. So, it detected some points like this within that area.

And then that is the way we detect on the Forstner operator detect the distinct points. I

hope this lecture was very useful it could be little complicated for you at this moment,

but try to learn it. It is very useful for g c p edges and digital image processing. So, here

we can say that now I can detect the GCPS also in the image first my automatic point

detections using Forstner operator ok. So, we stop here and then we will meet in the next

lecture  on the  closed  range photogrammetric  and that  will  be the  last  lecture  in  the

module.

Thank you.


