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Welcome back to our lecture series on advanced hydraulics. We are still in the module 

three, where we are dealing with the varied flows in open channels. 
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If you recall the last class; we had discussed on gradually varied profile cases, where a 

channel of one particular type of bed slope is followed by another channel with a 

different bed slope. Some of the cases, where mild slope followed by another mild slope; 

in this itself, there were two different cases: milder slope followed by mild slope. Say I 

am just giving rough idea again. A milder slope followed by a mild slope; that is, this 

one is having less slope compared to the followed one. Similarly, a mild slope followed 

by a milder slope. So, mild slope followed by a milder slope; like that. We have 

discussed the gradually varied flow profiles in these cases. Similarly, another situation is 

where mild slope is followed by a steep sloped channel; that is, the mild slopes are 

followed by steep sloped channels. See you can see a mild slope followed by steep slope; 



how the profile slopes. Steep sloped channel followed by another steep sloped channel – 

here also, there are two different cases: first, a steeper channel followed by a steep 

channel; and second one is steep channel followed by the steeper channel. 

Today, we are now going to discuss on the gradually varied flow profile properties and 

the concept of transitional depths. Before starting the computations of gradually varied 

profiles and all, it is better to have some more theoretical back ground – what are the 

properties of the slope, water surface profile slope and all. For that, we will be going in a 

theoretical way in this class particular class. 
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We will start with the concept called control sections. Can any one of you here tell me 

what is meant by control section or where the control section is huge, and what is meant 

by control section? If you recall the dynamic equation for water surface profile, we had 

given that as... Of course, with various assumptions, we have discarded the correction 

factors and all. This was the expression for the dynamic equation. This was again 

represented in terms of section factor and conveyance factors – 1 minus k n by k whole 

square by 1 minus z c by z whole square. These expressions – what do you understand 

from this? This is an ordinary differential equation in terms y. This is a first order 

ordinary differential equation. And of course, considering the section factors and 

conveyance factors and all, it is almost true that, it is non-linear; these expressions are 



non-linear in terms of y. So, this is a non-linear first order ordinary differential equation. 

And you can solve them using any solving procedures for the differential equations. 

As this a first order this thing, you require one boundary condition to solve this ordinary 

differential equation. That is the mathematical basis. That is, mathematically, require one 

boundary condition to solve this particular differential equation. Now, according to the 

field situation, how will you determine this boundary condition? To begin or for solving 

this differential equation, we can start from the boundary condition in such a way that, 

you know all the type of the properties of that particular channel or the section. 

(Refer Slide Time: 05:34) 

 

Or, you start... That is, you start from a particular section, the computation in such a way 

that, you know all the properties of that section; that is, what is the discharge, what is the 

various channel properties – all those things. And it is well-defined; where, properties are 

well-defined. For example, if you have rectangular weir; the section of the rectangular – 

the rectangular cross section – it is well-defined. And you know, if it is a steady 

discharge coming out from there, you know various properties in that section. So, you 

can use the rectangular weir as a control section. If you have spill ways or if you have (( 

)) gates; those sections are also usually used as control section. So, such well-defined 

sections, where the properties are known in prior are called control sections. 

Usually, the control section... You start or you give the boundary condition as any of 

these control sections and you start the gradually varied flow computations. This is the 



normal procedure. If you... For example, if I construct a dam and a spill way is there; if 

this is the normal depth line, critical depth line; then the M 1 profile – it will go like this. 

This is the way discharge. This is the M 1 gradually varied flow profile. And the control 

section for of this gradually varied flow profile – to obtain this gradually varied flow 

profile, you start from the control section; and the control section is normally given – it is 

given as... In this particular case, it is given at this location, where the discharge and the 

section details are well-defined. And like that you compute.  

Similarly, if there is a channel intake; for example, channel intake is there from a 

reservoir. And if the critical depth line is being shown like this; normal depth line; let us 

assume that this is having a super critical flow in the channel intake and the profile will 

be something of S 2. So, this is the S 2 gradually varied flow profile. And this S 2 

gradually varied flow profile starts from a control section as shown here. So, this will be 

the control section now. This will be the control section. So, from there, you begin the 

computations or to determine the gradually varied flow profile in that intake; like that 

you can (( )) This is the flow direction. 
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We have to note that, usually, the subcritical flows have control sections at the 

downstream of the profile; that is, the subcritical flows have control points in the 

downstream end as you have seen in the spill way example, say in the previous slide for 

the... Say this is the M 1 profile; it starts somewhere here and it goes like this. But the 



control section is at the downstream of this profile. Similarly, here this is the 

supercritical flow. And here the profile is shown like this and the control section is in the 

upstream of the beginning of the... So, subcritical flows have control sections in the 

downstream; and supercritical have control sections in the upstream end. This you can 

note it down. 

Now, let us see what are the properties of these gradually varied flow profiles. It is the 

simple mathematical analysis or it is not a higher this thing; whatever you have studied 

in your high school level and... Also, that will help you in understanding the properties of 

the gradually varied flow profiles. Again, I am just writing down the dynamic equation – 

S 0 1 minus k n by k whole square – please note that this is k suffix n – by 1 minus z c by 

z whole square. In this equation, you can determine the various properties of the slope dy 

by dx. For that, just recall from module one and module two. Module one was based on 

the critical flows; module two was based on uniform flows. So, in those lectures and all, 

you have already dealt with section factors and conveyance factors. So, from module two 

or... Let us go back into the first module. From module one, you had studied that, at the 

critical section, the section factor z c – it can be given as some coefficient C 1 in to the 

critical depth raised to M. This was dealt at that time. It was clearly explained to them; 

where, you studied that M is the hydraulic exponent. It is a hydraulic exponent. z c is the 

section factor at critical flow; y c is the critical depth; C 1 – it is a coefficient. 
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Again, for any flow, if it is not a critical flow or that (( )) still you can suggest the section 

factor z square – this is equal to again C 1 into y to the power of m. If you have drawn 

non-dimensional section factor versus non-dimensional depth; these graphs and all were 

drawn; you have been taught also how to draw these graphs and all. Just recall those 

portions again. Now, we can see that, from the two relationships: z c square by z square 

– this can be given as C 1 y c to the power of M by C 1 y to the power of M. This is 

nothing but y c by y to the power of M. From module two, you had been taught about the 

conveyance factor, which was defined as k n square; that is, for the normal flow, k n 

square is equal to C 2 y n to the power of capital N; C 2 is a coefficient; and N is another 

hydraulic exponent. So, this is hydraulic exponent for conveyance factor. For any flow, 

even if it is not a normal flow, you can write the conveyance factor as k square is equal 

to C 2 y to the power of n. So, from these two relationships, you have the following ratio: 

k n by k whole square is nothing but equal to y n by y to the power of N. So, based on 

these two relationships, there is this one as well as this one. 
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Substituting them, you will get in the dynamic equation; dy by dx is equal to S 0 into 1 

minus y n by y whole to the power of N by 1 minus y c by y whole to the power of M. 

So, this gives you means... Now, it is clearly understood by... I hope you are able to 

understand that. This equation clearly represents the first order differential equation in y 

and the terms of y are non-linear. So, it is a non-linear differential equation – non-linear 

first order differential equation. So, you can solve to obtain the gradually varied flow 



profile. So, let us describe the properties of dy by dx. Let me ask you. Just recall this 

equation from this particular equation, what is inferred or what can you infer from this 

thing. If the actual depth of the flow – if it is approximately equal to the normal depth of 

the flow, then what happens? dy by dx; or, if the actual depth tends to normal depth, then 

dy by dx tends to 0; that is, the water surface profile becomes horizontal there. It 

becomes parallel to the bed. 

What happens now? In the gradually varied flow computations and all, you have to 

terminate the computations of gradually varied flow; that is, you have to terminate the 

gradually varied flow computations in such a way that you are achieving either 99 

percentage of normal depth if you are starting from a supercritical condition or 101 

percentage of y n when you start from subcritical conditions. So, like this you have to 

think on that. Why? Because now, if the actual depth – they are tending to normal depth, 

there dy by dx – it is zero; and normal depth phenomenon – it is only theoretically 

possible conditions. So, you have to compute... 
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As we mentioned earlier, dy by dx tends to 0 when y tends to y n. Now, this y tends to y 

n is possible or it reaches or becomes y n asymptotically. So, you will require a very 

large length. Say if you are starting say in this particular case, you have such an 

obstruction dam, critical depth line, normal depth line. And if you want to compute the 

M 1 profile, this M 1 – this gradually varied flow profile reaches the normal depth 



asymptotically. So, theoretically, according to the mathematical case, it will reach only at 

an infinite distance. So, that is not feasible for us. We cannot spend that much time and it 

is not at all possible. So, we stop the computation whenever you have reached, say in this 

particular case from the control section, if you have reached 101 percentage of y n, then 

we stop; we suggest that the depth has reached the normal depth and the gradually varied 

flow profile is completed, like that. Similarly, in the supercritical flow situations, one can 

achieve up to 99 percentage of normal depth and suggest that the normal depth has been 

achieved; like that you can solve. 
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Another situation – if the actual depth tends to the critical depth of the channel, what 

happens then? This means dy by dx tends to infinity; or, dy by dx tends to infinity – what 

is the physical inference of this particular term? When dy by dx is equal to 0, the water 

surface is almost horizontal. When dy by dx is equal to infinity, the water surface – this 

becomes almost vertical. And the vertical state of water surface – it is not at all possible 

in the nature. So, it is only... Whenever it reaches critical state and all, water surface 

becomes unstable and tries to achieve either the supercritical or subcritical condition as 

soon as possible. Now, what happens at large depths of y? At large depths of y, that is, y 

tends to infinity, dy by dx tends to become equal to the bed slope, S 0; and also, it is 

approximately horizontal. So, at last depth (( )) you can note that, the dy by dx is almost 

same as the bed slope. 
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What happens when you reach singular conditions? Anyhow I am not going to explain in 

detail various singular conditions just for your benefit; that is, dy by dx is equal to S 0 

into 1 minus y n by y whole to the power of N by 1 minus y c by y whole to the power of 

M. In this particular equation, when dy by dx have the form 0 by 0, this is called singular 

conditions. When do you think that it becomes singular? This condition becomes 

singular if the actual depth y is equal to the critical depth as well as y is equal to the 

normal depth. So, when the flow depth is in this situation, then the singular condition 

arrives and dy by dx cannot exist in those situations. So, we have to use alternate theory 

or we have to try to infer subsequent things from this thing. 
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Singular condition occurs when... As mentioned earlier, dy by dx – when it tends to 0 by 

0, then the singular condition exists. In that situation, what you have to do is... And this 

situation arises when the actual depth y is equal to the normal depth; and also, the actual 

depth y is equal to the critical depth when these two conditions satisfies; that means, the 

normal depth is also equal to the critical depth and this is also equal to the actual depth. 

If such situation arises, then it becomes a singular thing and it will give rise to various 

things. So, during that singular condition, what are the types of depth? How can you 

compute the gradually varied flow profile and all? We have to understand further 

phenomenon in that. 

Now, just forget about the actual depth of the water when for a given channel or when 

for the given conditions, if the normal depth is equal to critical depth; that is, in that 

channel, both the normal depth line and critical depth line – if they are same; y c and y n 

– if they are same, then what happens? Due to y c and y n becoming same, it will lead to 

a concept called transitional depths. Due to this, that is, the normal discharge as well as 

the critical discharge, if it same for a particular channel for a given condition, then that 

will yield transitional depths. So, what are the transitional depths? That is, whenever y n 

is equal to y c, the corresponding profile will give you the transitional flow profiles. This 

is further prismatic channels; the critical depth line as well as normal depth line – they 

are straight. For the prismatic channels, the normal depth line as well as the critical depth 

line – they are straight. It is a type of profile. Now, in the transitional flow profiles, there 



will be a particular... A singular point will pass through these transitional profiles 

whenever it is required; that is, when the flow – gradually varied flow profile if you are 

trying to compute and all, it has to pass through this singular point. 
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Let me make it clear before that is that transitional... Just I have tried now; just make it 

that. You just note it down that, the transitional depths occur when normal depth of flow 

is equal to critical depth. What do you mean by that? From module one and module two 

– from modules 1 and 2, you just recall that, for a given discharge Q in uniform flow 

conditions, it can be computed using Manning’s equation or Chezy’s equation, whatever 

be; let us use the Manning’s equation. So, Q is equal to 1 by n AR to the power of 2 by 3 

S naught to the power of half. You know what the terminologies in this equation. Like 

this you can compute the uniform flow.  

You can easily identify the normal depth y n from this equation; say if a steady discharge 

is given to you – some value of Q; based on the Manning’s equation, you can compute 

the normal depth y n. Once you compute the depth y n for the given discharge, what is 

the critical depth y c? That can also be computed. You can also compute the critical 

depth y c. Just recall; in the rectangular channel, what was the critical depth; how the 

critical depth was measured – y c is equal to... Very easy formula; I am not going to 

again repeat it here. We will see in another example. For the same discharge Q, if you 

subsequently... Now, what happens is that, let me state it in a following way. 
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This was the normal depth line; this is the critical depth line; or, that is, this is for the 

uniform flow. This is the uniform flow with the following normal depth occurring in the 

channel. If you now increase; that is, I will change the colour and show to you. If you 

change the bed slope of the channel, what will happen? If you change the bed slope of 

the channel, you will see that, whatever normal depth was there earlier – it slowly 

starts... means whatever depth or water depth was there existing – it slowly starts 

reducing. And it will reach such a stage that, at a particular situation, say if I raise the 

bed slope from here to here like this; now, the depth of flow will become like this. And 

whatever depth of flow is there – y c – that will be the actual... Whatever flow depth is 

there, that will become a critical depth also. And such a slope is called critical slope. This 

was also explained to you earlier. The critical slope means when you tilted the bed of the 

channel in a such way that you tilted it further; means you increase the slope of the bed 

in such way that for the given discharge, whatever discharge is there, that discharge 

occurs in a critical way. If that happens, then that particular slope is called critical slope. 

So, I can give the critical slope as S 0 c. 

Now, for the given channel, whatever possible – means the limit at which you can raise 

the bed of the thing; if you raise the bed of this thing – bed of the channel beyond this 

thing, then supercritical flow occurs. If it is lower further, subcritical itself will be 

prevailing. Like that you are aware now. The limit for this particular channel at which 

the critical slope exists, that is called limit slope. The concept of limit slope is given 



there, is defined in such way that, smallest possible – it is the smallest possible critical 

slope for a channel of given shape and roughness. For given shape and roughness, the 

possible critical slope of a channel is called the limit slope. We generally give it as S L 

and all. 
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Let us do one example. And with this example, I think it will be more clear for you. Let 

us do that. I am giving you a problem – a rectangular channel of width B is equal to 3 

meters; say a rectangular channel of width 3 meters. It is carrying a steady discharge; its 

Manning’s surface coefficient is 0.015. Determine the limit slope of the channel. So, B is 

equal to 3.0 meters; manning’s n is equal to 0.015. What could be the limit slope? You 

know that, limit slope – it is a critical slope. Critical slope means both the normal 

discharge as well as critical discharge are same in such type of conditions. What is the 

minimum possible slope for this particular rectangular channel in which such a condition 

exists? That you have to determine. First, you have to...  

The first condition we can suggest is, the discharge cube – this is equal to the 

conveyance factor. And now, the slope – it is a critical slope. We have already suggested 

that, the limit slope itself is a critical slope. So, the critical slope at which this thing occur 

– means the minimum possible critical slope is called the limit slope. So, you can 

measure Q in such a way that this is equal to k S 0 c to the power of half according to the 

theory. I hope you are well aware of that, Q is equal to 1 by n AR to the power of 2 by 3 



S naught to the power of half is the Manning’s equation. And now, in this condition, S 0 

is a critical slope. So, that is why, I wrote it S 0 c. This particular quantity is k. So, I have 

written it here. So, I can write Q is equal to 1 by n; and A is equal to B y is equal to 3 y. 

So, this is a critical depth as well as normal depth; you can also suggest like that. I am 

just writing it as c – 3 y c to the power of 2 by 3 by 3 plus 2 y c to the power of 2 by 3 S 

naught c to the power of half. Like this you will get the relationship. 
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Substitute n is equal to 0.015. You will get Q is equal to 1 by 0.015 3 y c into 3 y c by 3 

plus 2 y c whole quantity raised to 2 by 3 S naught c to the power of half. Substitute the 

terms. You will get Q is equal to... I have just computed everything; 416.0167 y c to the 

power of 5 by 3 by 3 plus 2 y c raised to 2 by 3 S naught c to the power of half. So, you 

do not know the Q and you also do not know the slope S 0 c in this equation. So, let me 

give this as equation number 1. Now, just go to the second condition. The second 

condition suggests the given discharge is equal to critical discharge. So, from module 

one, you just recall them. You had defined section factor z c; z c is equal to for critical 

conditions, Q by root g. This is same as A into root of D. So, from this relationship, you 

know Q is equal to z c into root g. This is nothing but A root D into root g. Substitute the 

quantities. 



(Refer Slide Time: 40:33) 

 

You will see Q is equal to 3 y c root into root of y c into root of 9.81. This is equal to 

9.3963 y c to the power of 3 by 2. So, I can write Q is equal to 9.3963 y c to the power of 

3 by 2. So, this becomes equation 2. So, from equations 1 and 2; that is, you recall 

equations 1 and 2. This is equation 1 and this is equation 2. So, compare the both 

equations. From the both the equations, you can eliminate now the critical depth y c and 

you can have relationship, you can have expressions between discharge Q and critical 

slope S 0 c. Like this, we can eliminate y c from those expressions. So, when I did that, I 

got the following thing; that is, from equation 2, I got y c to the power of 3 by 2 is equal 

to Q by 9.3963; or, this will give you y c is equal to Q by 9.3963 to the power of 2 by 3. 

Now, in equation 1, you substitute this y c – expression for y c. You will get Q is equal 

to 416.0167 Q by 9.3963 to the power of 10 by 9 divided by 3 plus twice Q by 9.3963 

raised to 2 by 3 this whole quantity raised to 2 by 3 – this multiplied by S naught c to the 

power of half. Like this, you are now getting an implicit expression for Q and S naught c. 

You will see them. You can just rearrange them. 
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You will see that, either you can write Q is equal to – after computing the terms, 34.518 

Q to the power of 10 by 9 by 3 plus 0.4492 Q to the power of 2 by 3 the whole quantity 

raised to 2 by 3 S naught c to the power of half. You can either write like this or just 

rearrange the terms; means this equation can be rearranged as S naught c is now equal to 

Q squared into 3 plus 0.4492 Q to the power of 2 by 3 whole to the power of 4 by 3 – 

this entire quantity like that; this divided by 1191.49 Q to the power of 20 by 9. Like this 

you are getting the terms. So, you can plot Q versus S 0 c. So, for various values of Q, 

what could be the critical slope? Like that you can slot. 
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I have plotted them and I am just showing it here. This is the curve I got in this particular 

form. So, this is the discharge Q in meter cube per second for the given channel 

conditions for the rectangular. This is the slope – critical slope. This entire curve is now 

the critical slope curve. So, why I am showing it here? This curve will be useful for when 

further try to understand the gradually varied flow profile. So, I am repeating in front of 

you that, you just recall; just remember this particular curve, this particular shape of the 

curve. We will be dealing with this particular curve later also. So, this is how you 

compute the critical slope curve. Now, from this curve, it is quite obvious now, what is 

the... Say this particular portion, whatever is the magnitude, this is giving you the 

minimum critical slope for the given rectangular channel. So, this is called the limit slope 

S L. So, the limit slope S L – I got from the curve is 0.00408. So, this is how I got the 

limit slope. 

(Refer Slide Time: 47:19) 

 

Now, let us come back into the transitional depths. When you are at transitional depth, y 

n is same as the critical depth y c. Therefore, in the dynamic equation d y by d x – S 

naught into 1 minus k n by k whole square by 1 minus z c by z whole square. So, in this 

equation, when dy by dx tends to S 0, what happens? When dy by dx tends to S 0, this 

entire quantity, that is, this entire quantity – this tends to 1. So, when dy by dx tends to S 

0, this entire quantity now will tend to become 1; that means, the k n by k condition will 

be equal to z c by z condition; that is, the slope will be approximately equal to S 0 in 



such situation. This is the condition for transitional depths to exist; that is, transitional 

depth exists when k n by k is equal to z c by z. So, just note it down. 
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Again, let me repeat it; k n is now equal to Q by root S naught for the normal flow. And 

also, k is equal to 1 by n AR to the power of 2 by 3. Similarly, the section factor for 

critical flow is equal to Q by root g. Refer module one. And the simple section factor z is 

equal to A root D. So, this is the section factor for critical flow; this is the section factor 

for the actual flow. This is the conveyance factor for normal flow; and this is the 

conveyance factor for the actual flow – actual depth existing. So, the ratio k n by k is 

equal to z c by z can be written as... This can be written as Q by root S naught by 1 by n 

AR to the power of 2 by 3. This is equal to Q by root g by A root D; where, D is the 

hydraulic depth. I hope you recall what is the term – hydraulic depth. 
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Rearrange the terms here. What will I get? I will get finally, particular relationship n 

square g D is equal to S naught R to the power of 4 by 3. Please note this relationship. If 

this relationship exists, then transitional depths exist. Therefore, in such situation, what 

happens? So, you can compute the transitional depths. Now, what do you infer from this 

relationship? Only channel geometry and roughness is playing a role for computing the 

transitional depth for the given slope only. You can see that only channel geometry and 

roughness are coming into picture. So, that is the discharge. Whatever discharge is being 

given to you; that is not affecting your transitional depths and all. So, that way, one can 

clearly infer the things. So, we will continue the portions related to this further in the 

next class. As we are not able to complete this entire portion in this thing, there are few 

more minutes of transitional depth theories and all left. So, I will continue it in the next 

class. 
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Today’s quiz – the first question to you is, the control section for a gradually varied flow 

will be at which location if a dam with regular shaped weir is constructed in a channel 

having uniform flow. Sketch the location of the control section. I just want to erase this 

particular portion – this is not is; if a dam with regular shape weir is constructed in a 

channel having uniform flow. Sketch the location of the control section. 
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Your second question for the quiz is why the water surface tends to become vertical at 

critical depths? Briefly explain. Why the water surface tends to become vertical at 

critical depths? Briefly explain. 
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Third question is what is meant by limit slope of a channel? Briefly explain. So, these 

three are the questions. 
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The solutions for today’s quiz – for the first question, you are asked, the control section 

for a gradually varied flow if a dam is constructed, and we are... Let us assume that, the 



normal depth is greater than the critical depth. In that condition, you will be having an M 

1 profile like this; and the control section is somewhat here. So, that is just above the top 

of the spill way; where, if you are constructing a weir of regular shape and all, that will 

give you the control section. So, that is the control section. 
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Your second question – why the water surface tends to become vertical at critical 

depths? Briefly explain. Just recall the dynamic equation – S 0 into 1 minus y n by y 

whole to the power of N by 1 minus y c by y whole to the power of hydraulic exponent 

M. You can write the dynamic equation in the following way also. Why the water 

surface tends to become vertical at critical depths? At critical depth, y is equal to y c. So, 

this quantity – dy by dx then tends to infinity. So, at infinity, dy by dx is equal to infinity 

means it is a vertical line. dy by dx is equal to 0 means it is a horizontal line. So, that is 

why, water surface tends to become vertical at critical depths. 
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What is meant by limit slope of a channel? We had already drawn that. We have 

suggested that, for a given condition, for given channels sections, for given channel 

properties and all, the minimum possible critical slope... You can draw the critical slope 

curve like this. This is the critical slope curve. So, the minimum possible critical slope 

for that channel; that is called the limit slope S L. I have already explained that in the 

class. So, this way we are concluding today’s lecture. In the next lecture, we will 

continue some of the portions left in this topic and then we will start the computations of 

gradually varied flow profiles.  

Thank you. 

 


