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Now, how did I define transmission loss? Transmission loss was 10 log 1 by tau. We will

come to that.
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You can model this in this manner also assuming an equivalent analog circuit. I am not

really interested in this because as we shall see, this is the theoretically derived formula.

This is the theoretically derived formula. I know is this. So, 10 log 1 by tau. So, it would

be basically tau was tau. We have seen was you know how much was it rho c 2 rho c

divided by square. I also was there. There is something like this, ok. Let us go yeah 2 rho

c by omega m square m m m omega square.
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So, 10 log 1 by tau would be 10 log 1 by tau would be M omega square 10 log of M

omega square divided by 2 rho c which will be simply 20 log M plus 20 log f plus 20 log

2 pi minus you know same square. So, 20 log 2 rho c, right. So, this is the expression it

would be.
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So, if I write this it will come 20 log M 20 log f 20 log 2 pi minus 20 log 2 rho c minus

20 log because 1 over tau it was. So, this is what it is. That means, if I increase the mass

per unit  area,  my transmission loss will  also increase and it  will  be higher at  higher

frequency,  right  and  this  is  the  constant  term  because  the  rho  c,  we  assume  to  be

constant.  However,  what  is  observed  is  that  it  follows  this  law  alright,  but  these

coefficients are not practical. Coefficients are slightly different.

So, one can derive and show that, it is related like this, but finally practical equation is

something of this kind you know.
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I will come to this, but I suppose I have a practical equation given here yeah before I

discuss this. So, you see what if we take the full equation, complete equation over a large

range of frequencies without neglecting damping, then stiffness part of it what is seen is

that with frequency. The transmission loss value shows we assume that frequencies you

know that frequency should be sufficiently high, right.

So, at low frequency it is been observed that actually stiffness k x, we have actually did

not take the stiffness of the system. Also, stiffness controls it at low frequency which is

not acoustic frequency. Generally there can be some sort of a panel resonance because of

the stiffness of the thing gets spring behavior of the panel itself or the wall and in such

cases, you might have transmission loss gets reduced. Transmission loss reduces. So, this

is  not zone of our interest.  Actually  this  is  not zone of our interest.  Acoustic related

things are somewhere here, acoustic frequencies are somewhere here and majority of the

room walls will be somewhere here, right.

So, that is why you did not derive it. Also region 1 and region 2 we even did not derive

there. This is called stiffness control zone which is related to vibration of the wall. If it is

there, but not of our interest related to acoustic frequency, then in this zone actually we

can assume this frequency zone. We can assume that 2 rho c over m omega is sufficiently

large  compared  to  one  that  assumption  that  we made  and  we get  something  like  is

proportional to as the mass increases transmission loss increases 20 log m, but the slope



is not 20 log 20. It is somewhat different. We will see, but something else happens and

that  is  called  confidence  dip.  You know it  should  have  gone  straight  like  this  with

frequency 20 log f. You know this should have gone 20 log f.

So, if I plot with respect to frequency, I should have got 20 log f, but something else

happens. It is called coincidence dip.
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It is actually you know at certain frequencies, higher frequencies itself the bending wave

of the panel much might match with the you know wave length itself or a projection of

the wave length itself. That is called coincidance deep. In some case, you know it can

bend the wall fixed on or some depending upon the support condition hinge or whatever

it is, it can bend. 

I mean I should draw it like this. It can bend or there could be bending of you know the

other modes also and when this kind of a relationship is there, lambda of the bending

wave, bending wave by mean is there to in a wavelength of the bending of the panel

itself, right. It may not be visible, but it can bend structural bending of the panel itself.

Somewhere lambda by sin theta lambda is that of sound when it matches, you find there

is a reduction in the transmission loss and that is we call as there is a reduction in the

transmission loss and that we call as coincidence deep.



So,  coincidence  deep  occurs  at  some  higher  frequencies,  at  frequencies  audible,

frequency range largely most of the wall of the room, wall room. Walls shows mass law

you know shows might you know frequency 20 log f or some you know with frequency

it increases and its proportional to transmission loss is proportional to mass per unit area

somewhere at higher frequency. There can be a confidence deep and beyond confidence

deep again it follows the same parallel law.

So, there is a reduction of the transmission loss somewhere here and beyond which it

follows the same path again, right.
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So, that is what it is. So, frequency multiplied by surface density what is it? It is basically

f applied by M is plotted on this side and this is a reduction transmission loss values.

They  are  given  for  certain  types  of  material  various  random incidents,  then  normal

incident, another incident also one can look into.
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The critical frequency is given by this formula for various materials it is available. So,

thickness H centimeter critical frequency for various materials; this kind of tables or just

given by this formula or such charts are available actually.

So, you can find out where coincidence deep will occur and this given by velocity of

sound H is a thickness, thickness of the wall, rho is the density, e is a elastic modulus.

So,  one can  actually  find it  out  in  this  manner  some formula  is  available.  C square

approximately velocity of the sound divided by 1.8 h c s velocity in the solid itself.

So, velocity in the solid itself, therefore, you can find out where the coincidence deep

will occur and beyond that again it follows the mass law. Anyway you need not consider

too much into it. Actually you can do detail you know work onto it actually an equation

that is followed most of the time is 18 log M plus 12 log f minus 25. You know it was 20

log M. If you remember plus 20 log e f minus, there are some minus term all the. So, this

is you know this is a practical equation. That is why I said that you can derive it, get an

idea  that  is  function  of  mass  per  unit  area.  As  you increase  the  mass  per  unit  area

transmission, loss increases, but not 20 log m. It is 18 log m and also as you increase the

frequency, it reduces, but not 20 log f 12 log f.

So, that is what is practically used. That is why the derivation of it is, ok. You understand

the physical phenomena, but I cannot derive. This found is more of a very empirical

somewhat  semi  empirical  solo  and  you can  use  this  formula  for  calculating  out  the



transmission loss. So, for example,  how it  will be using supposing I know this room

noise I do not want it to go to the other room.
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So, one way is you take a approximate formula which I will give you. Again I think there

is an approximate formula, yes 14 log m plus something. Not here, this. There is another

approximate formula which takes care of all average frequency which is 14 log m plus

some value or minus some value plus or minus some value you know. So, this is good

enough you know what supposing I know the critical frequency at which I should design.

So, I can find out what should be the transmitter loss and remember for two rooms, the

partition wall if I have to design for noise control, it was related to that T l of that room

that wall plus absorption in the receiver room. I gave you a formula earlier. So, there the

T l is required. So, you can obtain that T l here and for various frequencies whichever is

desirable whatever with the frequency values. So, you can design the partition wall based

on this formula. If you double the mass, so you actually increase you know twice M. So,

your transmission loss will increase by 18 log 2 log 2 is 0.3. So, about 6 db I mean you

know less than slightly 5.7 db.

So, if you double the mass, it will be simply about 5-6 db reduction. 5-6 db reduction is

quite significant because you know intense. So, you can use this in design, right. So,

these are some of the formula frequency and for various kind of materials surface density

and this is actually the reduction that is there for various kind of materials is there ah.
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This is again some transmission loss values for three against frequency beyond this is

this is related to confidence deep where it would not change in factor with transmission

loss would not 6 dB for every frequency reduction nearly 6 dB after that it could be ten

db  between  some  place  there  may  not  be  any  change  because  of  confidence  deep

somethings like that, but it follows something of this kind right some some practical

examples.

Now, for double leaf wall if I have two leaves and there is a air cavity inside modeling,

this is fairly complex right, but I am straightaway given empirical equation for this class.

So, this is given by this formula 20 log M d plus 34 d is a cavity width. So, I have one

leaf here, another leaf here. This is the d cavity width. So, mass total, mass per unit area

of the wall including this 220 log M d plus 34, right 20 log M d plus 34. So, you see it is

a function of d also.

Now, it cannot go on increasing the mass. I cannot make the walls thicker and thicker.

What I can do, I can make same wall separate into two parts, put a cavity inside, it will

increase. This is another formula 14 log M 1 plus M 2 plus 24. You know transmission

was 14 log M 1 plus M 2 plus 24. This is average over all the frequencies. This also

averaged over all the frequencies. So, one can use this you know you can take 14 log M

simply for a single leaf scenario plus this  you know somewhere 24 to say empirical

equation.



So, you can actually use this formula to calculate out the partition thickness E1 because

mass per unit area is known to you if you know the material.

Yes, but considering the mass here and mass there again an empirical equation,  right

empirical in an empirical.

Well  this 24 and 29 would have taken into account.  24 to 29 would have taken into

account you know. So, that is all, but this anyway is a better formula you will give you

might get some more formally somewhere because it is empirical. So, this one can use

for cavity. You can use knowing the cavity depth. You can use this. So, this was related to

transmission loss.

Now, how do I control noise within a space? If it is generated within inside, then I put a

lot of observers. If it is coming from outside from the next room or from outside, then I

provide insulation and qualitatively I can say I should put heavy mass, right. See even if

you are not accurately calculating because there are so much of uncertainty of the noise

that is coming in you know if it is all random noise coming from traffic or something like

that. I will not get same frequency all the time. I might know the frequency range and

therefore, there is empirical equations are good enough right, ok.

So,  if  it  is  coming  from outside,  I  put  in  insulation  if  it  is  generated  within.  I  put

absorbers, but I do something related to planning also that I will come in begin later, but

supposing it is structure borne noise, you know it is in this floor, coming from a floor,

above or coming from another room because some machine is placed in the structure,

then I have to provide isolation between the machine and the structure, right and let us

look  at  how do we do it.  Here  we have  advantage  as  I  said  because  we know the

frequency. So far we talked of a airborne noise control , let us look at structure borne

noise control.
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I have a mass equipment which has got a mass. This is an isolator which could be springs

or some sort of resilient material like rubber pads or whatever it is.

So, this is isolator and this is my structure, the foundation or the structure whatever we

will call it. So, basically this will be you know this would be actually oh oh this would be

since they are machines and I know the pattern of their vibration isolation is usually for

machines, structure borne noise comes from machines, but structure borne noise also can

be random. We will look at that later on. Let us see the one which is known. So, the

machine vibrates, it is the force it imparts. 

Now, the equipment  it  imparts  it  is  the own mass.  So,  this  is  actually  vibrating.  So,

forcing  frequency  is  omega  let  us  say  and  sine  omega  t.  It  is  because  most  of  the

machines are periodic reciprocating or you know cyclic sort of. So, there will be periodic

again and they will be imparting the noise with certain frequency. So, that is the forcing

frequency and I can possibly assume it to be f 0 sin omega t.

So, that is the force which will come onto the mounting, right equipment and then, when

I have an isolator, it has got a machine on top. So, there is a static deflection first it if the

isolator  will  deflect.  So,  that  is  a  static  deflection  and it  will  transmit  this  vibration

somewhere  there.  So,  it  will  transmit  in  some  another  you  know  whatever  the

frequencies we can find it out.
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.

So, we can write the equation of motion for this. So, structure borne noise is controlled

through isolation. That is what I am saying. Transmission of vibration from machine to

the building that is prevented and such a system can be modeled as mass and spring

system neglecting the damping part of it, right and single degree freedom system there is

one  would  have  done  in  vibration  machine  foundation  design  takes  a  lot  more

complicated thing, but I am not interested in this. We are trying to only control the noise.

So, we can neglect because it will further reduce it. Damping means some energy loss

would  be  there.  Supposing  it  is  sports  in  the  pores,  there  will  be  air  motion  some

frequency you know. There will  be air  motion,  some heat will  be generated.  So, the

viscous damping could be there, there could be frictional losses and that is the damping

basically. So, that would reduce further, but for noise control we model our isolation like

a spring. So, this is my mass; this is the spring. So, isolation is a spring and this is my

structure and we simply write this equation m y double dot is equals to k y. That is equals

to 0, right. We have not taken the forcing function. First we are trying to find out the

natural frequency of that spring itself, ok.

So, complex root this, this one if we want to solve it, it will be d square is equal to minus

k right by m auxiliary equation d square. You know I can write is y double dot plus k by

equals to minus k by m y double dot is equals to y, right.  So, this will  be auxiliary



equation will be written as d square is equals to this. So, root of this one is it will be

imaginary plus minus k m. So, root of this equation is i k under root m.
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So, my solution would be when I have plus minus i a cos km by t plus b sin k m by t you

differentiate it twice it will give you the you know same equation back you can write it.

So, general solution is like that initial condition at t equals to 0 y is equals to y 0 thats the

static deflection and velocity is equals to 0 right it has is you know like initial condition

when it starts vibrating. So, it has gone to the extreme you know extreme end and from

there it will start.

So, a equals to y0, then if I put this condition here t equals to 0. This would be cos 0 is

equals to 1. This will be equals to 0. So, t equals to 0 y is equals to this. So, y is equals to

y 0 and a is equals to y 0 and b you know when t is equals to let us say you know what t

equals to pi by 2 at  t equals to pi by 2 y dash that is if  I it  you know if I take the

derivative  of  this  one  and find out  y  dash y double  y dot  equals  to  0,  put  this  two

boundary condition and I will get a goes to y 0 b equals to 0. You know if differ the first

derivative of this one will be a sin. Am I right? Under root k by m t plus b under root k

by m will come here anyway and b under root k by m yeah I can write that, but I am just

writing it. It is for me at the moment under root k by m equals to t.

So, I am just trying to find out b. So, if at t equals to 0 wise dot is also equals to 0, b will

be equals to 0 because y dot this is y dot. So, t equals to 0. So, b will be equals to 0 ,



right. This is what we study. I differentiate this. This is y equals to this general solution y

goes to this and then, put first differential of d y d t equals to 0, then I get b equals to 0.

So, a equals to y 0 b equals to 0. So, my equation then becomes y is equals to y 0 cos

under root km by t cos under root k by t, right.
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So, y is equals to y 0 cos km by t and anyway i omega n is k under root m this is what

this is the frequency at which it will vibrate this is you know this is equals to omega n.

So, k omega this is the natural frequency of the system of the spring because if you know

this is nothing, but this is equals to omega cos cos omega t. So, omega and t. So, this will

vibrate if I put the spring, we push it and release it. I mean just release it. So, it will

vibrate at this omega n is 2 k by n and this is twice pi f n.

So, natural frequency of the system I can find out from here. So, vibrational spring is

simple harmonic with k by m as angular frequency that we know.
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When machine is installed on the mounting, I will have a static deflection and this static

deflection is k. So, if the spring stiffness is k, you know static deflection is delta spring

stiffness is k, then mg mass of the machine into g must be equals to k delta. In other

words, if I know the static deflection, you know I can find out k by m from this equation

because that will be g by delta.

So, when I put in the machine what is the static deflection if I know I can find out k by

m. In other words, I can find out what will be the natural frequency of the system. So, if I

know the static deflection, I can find out the natural frequency of the system, right. So, fn

is 2 pi under root k by m etcetera and you can simply you can express it in 15.761 by

delta. Delta is in millimeter putting g you know in appropriate units I get. So, if I know

the bound thing which I am modeling as a spring is deflection, when I put in the load

that, then I can find out its static deflection and then, I can find out its natural frequency.

So,  natural  frequency  the  mounting  I  can  find  out  some ideas  are  given  delta  as  a

function of omega n for various materials are known. For example, if I know delta for a

cork board, right correspondingly what will be because it will depend upon its stiffness

sense you know like e i modulus of elasticity and all. So, this sort of graph is given in

national building code for various material  omega as a function of I mean you know

delta relationship depending upon delta versus omega, you know these relationships are

available.
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So, when machine is operating it imparts force F 0 sin omega t forcing function, right it

imparts  vibration to the isolation periodically. So, then the equation becomes F 0 sin

omega t where omega is the period. This is another machine vibration. Now, just look at

if it is omega n same as my natural frequency of the system, it will simply amplify it like

I  was  talking  about  a  hammer  hitting  a  pendulum  at  the  same  frequency,  natural

frequency of the pendulum itself and then, noise will be transmitted maximum, but if like

I do it some mind you know natural frequency enforcing frequencies are quite different,

then obviously it will not transmit.

So, you can find out the solution of this equation putting y is equals to a sin omega t

minus phi because there is a phase difference. So, A sin omega t you know put with this

how we find out solutions of such differential equations A sin omega t minus phi.
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If I do that for y is goes to A sin omega t. Just put it y double dot would be sin again back

with  A minus  sign and omega square.  So,  you know sin  omega t  minus  phi  i.  Just

differentiate it twice. So, first time I do, I will get a cos you know omega A cos omega t

minus phi, right. Am I right and then, this will give me A square. A remains as it is there

is a minus sign coming because again sin will come back and plus k into sine omega t.

So, that should be equals to if this is a solution particular integral because of the forcing

function, this must be valid and therefore, I can find out this value of A. So, I can find

out A you know from this A, I take common i get minus m omega square plus k plus k

sin omega t must be equal to sin omega t. So, in other words, when phi is equals to 0 is

equals to have 0 km minus omega and I can get an expression like this.

So, I can get expression in this manner, I will come back to this in the next class again at

this point of time.
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So, I can write the general equation as y 0 cos omega t because of the natural frequency

point of view and this is because of the forcing function. So, earlier without the forcing

function, this was the case and then, we define something called force transmitted ability.

It  is  transmitted,  force transmitted  divided by exciting force and this  now is  slightly

different than what you looked into because there we are doing and pt square by you

know p i square. This is from the wave isolation actually and we can derive from this.

Actually we can derive an expression for tau. 

So, what should be the properties of mountain that we can find out is a simple case of

vibration. Isolation case can be quite complicated in foundation design and things like

that.

So, I think we will stop here and next class we will relook into new thing.


