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Lecture – 05
Seismic Inputs

In  the  last  4  lectures,  we  discussed  about  the  seismology  dealing  with  the  how

earthquake generates how the seismic waves travel from source to site how the ground

motions are measured and then we studied about the 2 major ground motion measuring

parameter that is the magnitude and intensity of earthquake also. We studied the seismic

hazard analysis which deals with the seismic risk analysis of a region which is helpful in

finding out the seismic risk analysis of structures also is helpful in obtaining the my

presentation  map  of  a  region  in  terms  of  the  probability  of  occurrence  of  certain

magnitude  of  earthquake  or  of  certain  peak  ground  acceleration  or  a  certain  other

earthquake measurement parameters.

Now, in this few lectures, we will be discussing about another important topic which is

seismic inputs that is the inputs that we use for finding the response of the structures for

earthquake.

(Refer Slide Time: 02:13)

There are many earthquake seismic earthquake input parameters are used out of that the

ones that  is  to be used,  depends upon the kind of analysis  at  hand in addition some



earthquake parameters such is such as magnitude of earthquake peak ground acceleration

duration predominant frequency etcetera may also be required.

(Refer Slide Time: 02:59)

The input data may be provided in time domain as well as in frequency domain or in

both.

The  data  may be  required  in  a  deterministic  or  probabilistic  format  many  times  we

require also the predictive relationship for different earthquake parameters for seismic

risk analysis of structures. So, we shall look into all these kinds of seismic inputs that we

just mentioned.



(Refer Slide Time: 03:39)

Now, the most direct and simple earthquake input is the time history record the; it is the

most common way to describe ground motion using the time history records this records

maybe  of  displacement  velocity  and  acceleration  generally  acceleration  is  directly

measured the other quantities  that  is  the displacement  and velocity;  they are derived

quantities.

(Refer Slide Time: 04:20)

The raw measured data is not straight away used as inputs these data are processed in

order to remove the noises by filters  then we make a baseline correction in order to



provide a proper base line to the earthquake data then we also remove the instrumental

error and finally, the one has to get a conversion from analogue to digital data at any

measuring station ground motions are recorded in 3 orthogonal directions. One of them

of course, is vertical the other 2 could be the 2 horizontal earthquake directions these 3

earthquake records or the measured ground motions in the 3 deductions can be transform

to principal directions measure direction is the direction of the wave propagation and the

other 2 are accordingly selected .

(Refer Slide Time: 05:34)

They can be transformed to principal directions by assuming that the ground motion is in

principal directions are uncorrelated.

In fact, this is a true for a case when we assume the ground motion or when we describe

the ground motion stochastically.



(Refer Slide Time: 06:03)

So, this figure shows the measured ground motion in a major horizontal direction and

this is a acceleration record.

(Refer Slide Time: 06:22)

This is the other acceleration record again in the horizontal direction which is a minor or

in the minor direction.



(Refer Slide Time: 06:36)

And  this  is  again  in  the  minor  direction,  but  in  the  vertical  direction  the  ground

acceleration record.

(Refer Slide Time: 06:45)

Because of the complex phenomena involved in the generation of ground motion trains

of ground motion recorded at different station vary spatially.

For homogenous field of ground motion root  mean square or peak values  of ground

motion  remain  same at  2  stations,  but  that  is  a  time  lag  between  the  2  records  for

homogene; non homogenous field both time lag and difference in the r m s exist.



(Refer Slide Time: 07:26)

Because  of  the  spatial  variation  of  the  ground  motion  both  rotational  and  torsional

components  of  ground motion  are  generated  equation  2.1 shows how we obtain  the

torsional  ground motion from the horizontal  or 2 horizontal  ground motions  that  are

measured the since the entire ground acts as a plate. Then if there is a phase lag between

the  or  time lag between the  ground motion  at  2  points  in  this  direction,  say in  this

direction, then there will be a couple which will be induced or a rotation which will be

induced about a vertical axis.

Similarly, for the ground motion in this direction if they vary a spatially or there is a time

lag between the 2 ground motions then this will induce again a torsional motion about

the vertical axis. So, this is what is reflected in equation 2.1. Similarly if we consider 2

vertical  ground motions which has a time lag, then this will induce a rotation in this

direction. So, this is shown in equation 2.2; therefore, we have 3 components of ground

motion  to  horizontal  ground  motion  and  a  vertical  ground  motion  plus  we  have  a

torsional  ground motion  about  a  vertical  axis  and a  rotational  ground motion  in  the

direction of the wave propagation.



(Refer Slide Time: 09:35)

In addition to this, there is an angle of incidence of the ground motion this is defined

with respect to the principal direction of the structure. For example, in figure 2.2, we

have the principal direction of the one of the principal direction of the structure is lying

along x direction and alpha is the angle of incidence that is the major direction of the

earthquake ground motion or the seismic wave propagation is at an inclination of alpha

with the major axis.

(Refer Slide Time: 10:22)



The time history of ground motion although is very simple and easy to understand and

gives a direct picture about the earthquake input many a time we require the frequency

contents of the ground motion and this frequency contents of the ground motion are used

for  many  purposes.  Firstly,  to  understand  what  are  the  kinds  of  likely  predominant

frequencies in the ground motion and if those frequencies unknown then one can design

structures such that the natural frequencies of the structure can be separated from those

predominant ground motions.

Also  in  the  frequency  domain  analysis  of  structures  for  earthquake  we  need  the

frequency contents of the ground motion and accordingly one has to device the input in

the  in  terms  of  the frequency contents  the  frequency contents  of  the time history  is

obtained  by the  classical  Fourier  synthesis  of  time  history  record  it  provides  useful

information about the ground motion also forms the input for frequency domain analysis

of structure.

(Refer Slide Time: 12:05)

Fourier series expansion of any arbitrary function of time t can be written in the form of

equation 2.3 where the a 0 is a constant and is defined later and the sum of the sign and

cosine terms.

The  physical  meaning  of  equation  2.3  is  that  any arbitrary  function  of  time  can  be

thought to be a sum of a number of harmonics and this number of harmonics has a a

phase term that we will see later the constant a 0 is nothing, but the average value of the



function x t  which is shown in the form of in the in equation 2.4; equation 2.5 and

equation  2.6;  they  describe  a  n  and  b  n  the  2  constants  which  are  associated  with

equation 2.3 and omega n denotes 2 pi n by T 2 pi by T is the frequency resulting out of

the period of period or duration of the ground motion now the in the Fourier synthesis we

assume that the duration t which is therefore, the ground motion this as if is repeating

after time t and we can expand any function in the form of Fourier series on only when it

is periodic in nature.

(Refer Slide Time: 14:07)

The amplitude of the harmonic at any frequency omega n is given by the expression 2.8

that is A n square is equal to small a n square plus small b n square and this A n and B n

has been described before that is by equation 2.5 and 2.6 and they are squared to get the

amplitude of the harmonic at omega n the equation 2.3 can also be written in the form of

equation 2.9 as I told you before by bringing in a a phase into the equation that is a n cos

omega n t plus b n sin omega n t can be written as c n sin omega n t plus phi n.

So, the value of phi and c n can be easily defined c n is same as a n that is computed in

equation 2.8 and phi n is tan inverse not b n by a n it is wrong written over here.



(Refer Slide Time: 15:49)

It will be a n by b n is the phi n the plot of c n that is the amplitude of the ground motion

at frequency omega n if it is plotted against omega n then we called e to be a Fourier

amplitude spectrum or this is known as Fourier amplitude spectrum.

The idea is to obtain the Fourier amplitude spectrum given a time history record this time

history record could be a time history record of acceleration in that case we will get a

Fourier  amplitude  spectrum  of  the  ground  acceleration  and  this  Fourier  amplitude

spectrum would show the different kinds of or different compositions of the amplitude of

acceleration associated with different frequencies or in other words, we call them as the

frequency content of acceleration.



(Refer Slide Time: 17:09)

The integration in equation 2.8 the equation that we have shown before these integration

now  is  done  very  effectively  using  the  FFT  algorithm.  Now  the  FFT  algorithm

transforms the Fourier synthesis into Fourier integral and a pair of Fourier integral define

the Fourier synthesis in a comprehensive fashion for example, if x t is the time history of

ground motion say acceleration then the first integration would provide the frequency

content of the ground motion x t whereas, the second integration would give back the

ground motion or the time history of the ground acceleration from the frequency content

of the ground motion that is obtained in equation 2.11.

Thus equation 2.11 and 2.12; they form a Fourier transform pair. Now using this Fourier

transform  pair  a  analysis  of  the  structure  for  ground  motion  can  be  performed  in

frequency domain and this technique is known as the FFT analysis of the structure in

frequency domain. Now standard input for FFT is n sampled ordinates of time history at

an interval  of delta t;  once these N ordinates or sampled values of the ordinates  are

provided to the FFT algorithm the FFT algorithm gives back n number of ordinates each

ordinate is a complex quantity in the form of a j plus i b j where b is the imaginary part

and a is the real part and this provides what is called the x i omega in equation 2.11.

So, given n number of x t values or x values sampled at a interval of delta t n such values

if  you  provide  into  FFT  algorithm,  then  the  FFT  algorithm  will  give  as  output  n

coordinates which will be the complex conjugate numbers or the complex numbers and



they are nothing,  but  x  i  omega sampled at  a  frequency interval  of  delta  omega the

amplitude of the ground motion at frequency omega N is given by equation 2.13 that is A

j is written as the real term square plus the imaginary in terms square and then take a

square root of that.

So, this is the amplitude associated with frequency omega N and the phase angle phi j is

given as tan inverse b j by a j where b j is the imaginary component and a j is the real

component the first N by 2 plus 1 values of x i omega they are considered for obtaining

the Fourier spectrum because after the N by 2 values the rest of the value that is the other

N by 2 values, they are the complex conjugate of the previous N by 2 values therefore, in

terms of the amplitude at a particular frequency that N my 2 values do not give any

additional information similarly so far as the phase is concerned that also do not give any

additional information.

Therefore first N by 2 plus 1 values of the total N values of x i omega that is obtained

from FFT that is used for obtaining the Fourier spectrum.

(Refer Slide Time: 23:07)

Fourier amplitude for spectrum provides a good understanding of the characteristics of

ground motion the spectrums some of the spectrums shown in the figure 2.3.



(Refer Slide Time: 23:23)

So, this is a Fourier spectrum for a narrow band earthquake meaning that the there is a

concentration  of  the  frequency  within  a  small  band  that  is  within  a  small  band  of

frequency there is a large amplitude of the acceleration or the ground motion or any

earthquake measurement parameters they are concentrated.

(Refer Slide Time: 24:07)

So, this shows the broadband Fourier spectrum where there is not a there is there is not a

concentration  of  the  earthquake  measurement  parameters  within  a  narrow  band  of

frequency.



But it is spread over a broadband generally this broadband of earthquakes that is seen for

the hard bedrock or in hard soil whereas, the narrow band ground motions or narrowband

time history of ground acceleration,  they are observed for the soft  soil  condition for

understanding the general nature of spectra what we generally do is that we find out the

Fourier  spectrum  for  the  number  of  earthquakes  and  then  these  Fourier  spectrums

ordinates are averaged and we get a smooth plot of the Fourier spectrum.

(Refer Slide Time: 25:38)

The smooth is plot of the spectrum in log scale shows 3 important quantities that is the

amplitudes tend to be largest at an intermediate range of frequency then there are some

bonding frequencies which are called f c and f max and f c is found to be inversely

proportional to the duration.



(Refer Slide Time: 26:16)

So, this is the figure which illustrates the previous 3 points in the middle region we have

the maximum value and this is bounded by 2 frequencies f c and f max and these f c is

found to be inversely proportional to the duration of the earthquake.

(Refer Slide Time: 26:47)

Now, let us look at an example to illustrate how one can obtain the Fourier spectrum for

a given earthquake record for making a simplified calculation we considered 32 sample

values at a delta t is equal to 0.0 second and the FFT of that is carried out the time



duration is T; therefore, the omega n value is equal to 157.07 radian per second and d

omega is that is the frequency interval that is equal to 9.81.

The omega n over here denotes the nyquist frequency or the cutoff frequency after this

frequency we find that  the complex numbers that  we obtained from the FFT, it  was

complex number repeat in the form of complex conjugate . So, therefore, we considered

the FFT up to a frequency of omega n that is not for the total frequency that we get in the

what we call x i omega plot. Now this figure shows the 32 sampled values at the delta t

of 0.02 second.

(Refer Slide Time: 29:07)

Now, this shows the real part of the x i omega obtained from FFT and we can see that the

real part is symmetric about this point; that means, after this point or after this frequency

the it repeats whatever we get on to this side the imaginary part is anti symmetric about

this point and whatever we get on to this side after this point it is just a mirror image of

those points.

Therefore the a square plus b square value or a n square plus b n square values on the left

hand side of a and right on the right hand side of a, they are same we do not get any

additional information from the right hand side. Similarly the phase that we calculated

that is tan inverse b by a b n by a n rather that remains also same for the 2 parts on either

side  of  a.  So,  we  consider  only  up  to  this  frequency  to  plot  the  Fourier  amplitude

spectrum.



(Refer Slide Time: 30:40)

Now, this shows the Fourier amplitude spectrum drawn for the first half that is on the left

side of a n; this shows the phase spectrum that is 5 plotted against the frequency .

(Refer Slide Time: 31:03)

Next  we come to  another  frequency  domain  input  for  the  structure.  Now when you

perform the a random vibration analysis of structures for future ground motion that is a

ground motions are modeled as a random process not as a deterministic process, then we

require power spectral density function the power spectral density function again is a

form of input which is given with respect to different frequency or we can say that the



different frequencies we have different power spectral density function ordinate showing

the frequency; again the frequency content of the ground motion, it is a very popular

seismic input for probabilistic seismic analysis of structures.

Now, the definition of the power spectral density function of the ground motion is a very

simple definition,  but it  requires some understanding of the random process now the

random process would be discussed later in chapter 4; when will be discussing about the

response analysis of structures for future ground motions model as a stochastic process

or a random process; right now let me give you a very introductory information about the

random  process  whenever  we  talk  of  a  random  process  or  whenever  we  model

earthquake as a random process then we do not talk of a single time history.

(Refer Slide Time: 33:35)

We collected collect at n symbol of time histories like this; this is one time history, then

you have another time history that way, we can have a and n symbol of time histories the

larger the number of the time histories records better is the prediction ideally one must

have an infinite number of records in the n symbol.

Similarly, the duration should be as large as possible for modeling the earthquake has a

random process;  however, for most  of  the practical  problems we have a  duration of

earthquake which is of the order of 30 seconds or 35 seconds maximum and we satisfy

our  self  with that  amount  of  duration,  but  ideally  if  the  duration  takes  place  or  the

duration is of infinite duration then we have the ideal situation. So, in an ideal situation



we can define or distinguish a random process if we have an infinite number of ground

motion records of infinite duration.

Now, if we have in reality we have a finite number of ground motion recurs and finite

duration. Now if I take any time t 1, then at that particular time t 1, I will get the ordinate

from each one of these samples in the n symbol. So, if there are n number of samples in

an n symbol, then we will get n values of x t 1 similarly at some other time t 2, we can

get n number of values of x t 2 if we take a average of these x t 1 values across the n

symbol that is across this sample; let us say the value is x bar one we calculate then x bar

2 that is the average value of x t 2 at time t 2.

If we see that x bar one is approximately equal to x bar 2 and is approximately equal to x

bar 3, so on then we can say that across this n symbol the n symbol average is invariant

with time. Similarly one can find out the mean square value of the values of x t 1, x t 2, x

t 3, so on and if it is found that this mean square values are again more or less the same

then we can say that the n symbol mean square value is invariant with respect to time

now in any random process. If we find out these criteria or this condition existing then

we  called  that  random process  as  a  stationary  random process  and  these  stationary

random process is uniquely defined with the help of a mean square value and a mean

value.

So, the random process can be said to have a unique mean square value the distribution

of these expected mean square value of the ground motion with frequency is called the

power  spectral  density  function.  Now we will  look  into  this  power  spectral  density

function more in details later on chapter 4 as I told you, but for the time being with this

definition of the power spectral density function, we will go ahead and we will show you

how  we  can  construct  the  power  spectral  density  function  the  expected  value  is  a

common way of describing probabilistically a ground motion parameter expected value

means basically and the average value expected value of a random variable means is

average value expected mean square value means the squared values are average of the

squared values.

And these 2 quantities are closely connected to defining a stochastic process.



(Refer Slide Time: 39:39)

Now, one type of stationary random process is called an ergodic random process many a

time the ergodicity or ergodic condition may not be valid in a stationary random process

for simplifying the analysis or for simplifying the calculation procedure many a time we

assumed ergodicity. Now ergodicity means that if I take a single sample out of the entire

n symbol, then this single sample has a mean square value along the time axis t. So, if

this mean square value is same for all the samples and is equal to the n symbol mean

square value then we call the process to be an ergodic process.

Now, in that assumption it is implicit that a single time history sample taken out of the n

symbol represents the mean square characteristics of the entire system. So, therefore, if

our intention is to look into the distribution of the mean square value of the process then

instead of considering all the samples we can take out any one of sample out of the n

symbol and look into its mean square value and then find out the distribution of that

mean square value with frequency now this  can be easily  done with the help of the

Fourier series analysis that we discussed before.

So, therefore, at this stage the assumption of a ergodicity helps us in defining the power

spectral density function of ground motion with the help of a single time history and

using the Fourier series analysis now the rigorous definition of the power spectral density

function from the n symbol of time histories will be discussed later now mean square

value of an acceleration time history say a t.



(Refer Slide Time: 42:42)

Can be obtained from the time history itself and using Parsaval’s theorem which states

that the mean square value of a time history is equal to half of the amplitude squares of

the Fourier series constants that is Fourier series constants are a n, b n and a 0. So, these

are the constants that you had seen in the Fourier series.

So, the Parsaval’s theorem says the mean square value of the time history is equal to half

of the sum of v a n square and b n square all a n squares and b n square plus the a 0

square now this can be shown to be obtained with the help of the FFT algorithm in this

fashion. Now instead of the Fourier series analysis if we carry out the FFT analysis, then

from the  FFT, we get  the  amplitude  at  different  frequencies  that  is  whatever  shown

before and those amplitude squares are taken from 0 frequency to n by 2 that is the first n

by 2 plus one values of the FFT that we consider to obtained the value of the c n square.

So, c n square is nothing, but the real term square plus the imaginary term square and

half of this sum of those squares divided by 2 or half of that sum is equal to the mean

square value.

Now, the mean square value again by definition comes to be the integration of these

quantity that is s omega says the power spectral density function ordinate at a frequency

omega then if we integrate these function s omega from 0 to omega n that is the nyquist

frequency that is the up to the point a in the figure that I discussed before. Then that area



under the curve you will be the mean square value by definition because by definition the

power spectral density function is a distribution of the mean square value with frequency.

Now, this integration can be converted into a summation provided we say that there is a

function g n and this g n varies with every frequency and the g n value will be, then

equal to nothing, but s omega into d omega; so, the or in other words this s omega d

omega if we take together then we can convert this integration into a summation and in

that case g n omega is equated to s omega d omega. Now with this definition one can

find out s omega to be is equal to c n square divided by 2 d omega thus.

(Refer Slide Time: 47:10)

One can obtain the power spectral density function for a ground motion of provided, we

have the frequency contents of the ground motion or Fourier amplitude squares or we

perform an FFT and from the FFT we can take the real term square plus imaginary term

square at every frequency up to the nyquist frequency and with the help of those that

information  one  can  obtain  the  power  spectral  density  function  ordinate  using  this

equation that is s omega is equal to c n square divided by 2 d omega.

A typical PSDF of ground acceleration is shown in the figure.
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We will  then and solve an example  to show; how we can obtain the power spectral

density function from the time history of a ground motion now the same time history of

ground  motion  that  we  considered  for  obtained  in  the  Fourier  spectrum  that  is  32

sampled values of an acceleration time record that was used. And for each frequency we

obtained the c n square value that is the real term square plus imaginary terms square that

c n square value and then divided it by d omega d omega is equal to 2 pi by T where t is

the total duration of the ground motion and that divided again by 2 or in other words s

omega is equal to c n square divided by 2 d omega that is what we discussed before.

So, that way we can plot this histograms these histogram is spread over d omega and this

value is equal to c n square by 2 d omega. Now know if I join the centre points of these

histograms then these shows at the raw spectrum raw power spectral density function of

the ground motion now this can be made smooth by some smoothening technique, but if

I add up all these histograms the area would be equal to the mean square value.
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Now, here those the PSDF the row PSDF that  we got that  has been smoothened by

various  smoothening  technique  that  is  3  point  averaging  technique  3,  then  5  point

averaging  technique,  then  5  point  averaging  curve  fitting  technique  and  finally,  this

shows a  more  or  less  a  smooth  response  power  spectral  density  function  of  ground

motion obtained for the time history of ground motion having 32 coordinates.

The sum of the areas of those bars that we discussed was found to be 0.011; the area

under the smooth PSDF curve was obtained as 0.0113 and the mean square value of the

time history that is the by just squaring all the ordinates 32 ordinates and divided by 32

that gave value of 0.0112. So, we can see that these mean square values of the 3 3 mean

square values they are matching quite well.  So,  in this fashion one can obtained the

power spectral  density  function of a  ground motion  provided we assume the ground

motion to be a stationary ergodic process and one single time history of ground motion

then can be utilized to obtain the power spectral density function by the use of the FFT

algorithm.
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Next  for many calculations  we require  the movements  of the power spectral  density

function  of  the ground motion.  Now the n th  moment  of  the power spectral  density

function is defined as omega to the power n multiplied by s omega and this d omega is

missed over here there will be a d omega now this is integrated again from 0 to the

nyquist frequency that is up to the point a that I had shown initially in the figure of the

frequency or rather the Fouriers spectrum now the 0 th moment means simply area under

the curve. So, the 0 th moment is lambda 0 is nothing, but the mean square value since

the area under the power spectral density function curve is the mean square value the

second moment will be omega square multiplied by s omega and then you integrate over

from 0 to omega n.

So, this quantity called the big omega or capital omega is defined as lambda 2 by lambda

0 that is the second movement divided by the 0 th movement now this capital omega is

called central frequency denoting concentration of frequencies of the PSDF. So, or in

other words if  we wish to find out the predominant frequency content of the ground

motion then we go we obtained this value the main peak acceleration that is peak ground

acceleration is defined using these 3 quantities that is the value of the capital omega the

duration time t and the lambda 0 value.
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And is defined by this equation and this was derived first by davenport and later on this

equation has been improvise somewhat in a better form, but here will be describing the

peak ground acceleration using this formula and you can see that this formula requires

the square root of the mean square value that is the root mean square value.

Then  we  require  the  capital  omega  the  duration  and  with  the  help  of  that  one  can

obtained the peak ground acceleration. So, for obtaining the peak ground acceleration we

required the movements of the PSDF curve and the root mean square value of the what

we call the ground motion predominant frequency or period is where PSDF and Fourier

spectrum peaks  and  additional  input  is  needed  for  probabilistic  dynamic  analysis  of

specially  long  structures  that  have  multi  support  excitation  the  time  lag  or  lack  of

correlation  between  excitations  at  different  support  is  represented  by  a  coherence

function and a cross PSDF function.

In the next lecture, we will look into this coherence function the time lag effect and for

specially long structures how do we define the power spectral density function that is a

probabilistic description of the ground motion in frequency domain using the PSDF the

coherence function and the time lag. So, in today’s lecture what we have discussed is that

the input for the analysis of the structures for earthquake. So, these inputs could be of

several  types  and the one which  we use depends  upon the type  of  problem and the

analysis that we are doing the simplest form of the input is the time history records then



one can obtained a frequency content of the ground motion using Fourier series analysis

of  the  time  history  and  can  obtain  the  Fourier  spectrum and  then  from the  Fourier

spectrum one can obtain the power spectral density function of ground motion if it is

assumed that the earthquake is a stationary ergodic process.


