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Damped Harmonic Excitations

Welcome back, everyone. We are going to continue from our last lecture in which we started

obtaining the response of a single degree of freedom system subject to harmonic load.
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Today, we are going to focus on Damped System. Then see how the response of a damped

single degree freedom system subject to harmonic load, how does it differ from an undamped

system?

In previous class, we discussed what is the response of an undamped system subject to

harmonic excitation. But we said that in reality or for all practical utility, all the system would

have certain amount of damping.
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So, today what we are going to discuss damped or viscously damped system. Damped SDOF

subject to harmonic excitation. Now, I am going to write down my equation of motion for this

system.

So, now our goal is to obtain the response or solve this differential equation and get the

expression for and then physically interpret all the results that we get from it for

different values of the parameter.

Now, we already know that if we have a linear second order differential equation, the total

response can be written as-

Where, particular solution is any unique solution that satisfies this equation and

complementary solution is the solution of homogeneous part of this equation by

setting the right-hand side equal to 0.



Now, let us first look into the particular solution of this equation. So, what do we basically

want is the expression for and that should satisfy this equation-

Now, when the system was undamped and this term was not there. We simply said

that because the left-hand side contain only and , which is equal to some

constant times . The solution would be in the form of some constant times

because if you take term and then double differentiate it then it would have some

value times again the term.

However, in this case I have at as well. So, I cannot use that solution. In this case, I

would have to assume now that-

Now, our goal is to find out the values of this constant C and D, alright.
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So, if you take this solution and you substitute in this equation here basically you would get

something like an expression in terms of C and D times plus another expression in

terms of C and D and of course, , m all those terms would be there, and then it would be

. And then I would get this should be equal to .

So, if you compare the coefficient of and on both side of the equality you

will get 2 equations in terms of C and D. Then you can solve it to obtain the expression for C

and D. And, I would leave that for you to do. I am just going to write here the final

expression for the value of the constant C and D.

and

So, once you get the values of C and D, you have your particular solution. Now, you want

homogeneous solution. So, what would be the that satisfies what equation? Remember

for complementary solution or homogeneous solution you need to set up the right-hand side

of the differential equation equal to 0. So, I can write here as-
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And, as I have discussed in previous lectures, the solution for this equation would be-

So, the final expression for which is sum of both solution and can be written as-

We already knowing that C and D have already been evaluated.

So, we know the values of constant C and D. What we do not know are the constants A and

B? If the initial conditions are given to you. For example, if and , if they are

given to you then you can substitute in this expression here to obtain the constant A and B.

Now, again like the previous case of an undamped harmonic motion consider here we have 2

frequencies now here. I have and which is the forcing or excitation frequency. So,

the question becomes, at what frequency will the resultant response be? whether it would be

at or .
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Now, I have an exponential term which is and this term is actually decreasing with

time. I mean this whole term is decreasing with time. So,

after a certain amount of time this term would become 0. And as we said the term that

vibrates at the frequency of the structure which in this case is called the transient

solution.

Now, the name transient was not very clear when you are discussing undamped harmonic

motion. However, in this case now you can see why we call it transient solution. You know

the value of and . So, after sometime we know for sure that this term would become

almost negligible and equal to 0. So, this is called transient solution or the transient vibration.

So, I would be only remaining with this term the second term here.

And, the second part which is a particular solution it is called a steady state. Because, steady

state is reached. It is a state that is a steady after a certain amount of time. All these vibrations

actually died out and you are left with is this steady state solution.

So, like we did for undamped harmonic motion, let us again try to plot this function. So now,

we know that our total vibration consists of 2 type of vibration – one is the transient response,



another one is the steady state response. Transient respond is basically damped free vibration

and the steady state is forced vibration at frequency which is equal to the forcing frequency

. So, first let me just draw the both responses here.

So, if I draw the first part let us call this and let us

call this , . So, if you try to draw depending upon the initial

condition or whatever it would look like something like damped free vibration. So, it will

have the amplitude will keep on decreasing and after sufficient amount of time it will go to 0.

But then I have also the other part which is the steady state and I can see that my steady state

is actually it is not decreasing in amplitude, it is remaining constant.

So, let us say at this point (for ) and then it has certain amplitude something like that. So,

this is steady state and this is transient. So, here and here. So, the total response is

actually sum of these two responses and how I can write, basically draw it, it would look like

something like this.

So, what is basically happening, I am summing of these two responses, so initially you can

see that the free vibration is about the steady state response with the time. These vibrations

(transient vibration) about the steady state vibration actually died out. So, this is also the total

response. After sufficient amount of time total response actually converges to steady state

response.

And, how fast is it converge? Well, that depends on the value of this term , because

that is what is going to decide that how fast the exponential term is decaying. So, the total

response converses to a steady state response that depends on the value of damping and

the natural frequency of the system.

So, now, I hope this definition why is it called transient and the steady state different part of

solution should be clear to you. The maximum response of a system could still be governed



by the during the transient phase. So, as you can see my steady state is smaller than the total

response and this additional contribution is because of the transient vibration.

However, after sufficient amount of time the total response converges to a steady state

response and that is why for the future discussion, we would be focusing on the steady state

response. So, let us go ahead with our steady state response.
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So now, we would be focusing on this term here which is nothing but-

But, before going to that, we discussed about the concept of resonance in the last lecture and

we said that a resonant frequency is the frequency at which the response becomes maximum

and the process is actually called the resonant frequency.

So, for that case it was when . That was the case when the response was becoming

maximum and for undamped case it was getting unbounded. Let us see what happens for a

damped system. Let us see if we still get a similar kind of behavior?



So, what we want to do for ? I would like to find out the expression for and

then plot it and then see as the time evolves what happens to the response. Does it become

unbounded?

Now, let me consider the total solution including the transient solution. What was the total

solution?

Now, I know the expression for C and D. So, the expression for C and D is-

and

Now, I if I substitute in these two expressions. Let us see what do we get?

and

So, let me write , which is the peak static displacement.
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Now, if you substitute these in this expression here and utilize initial condition and

. So, we are assuming that the system was initially at rest. We can find out the

values of A and B. So, after substituting I am not going to do all those calculations just giving

you the values of A and B.

and
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So, you can substitute these values to the original expression to obtain the expression .

let me write it here.

Remember that this was the forced vibration, but because I am writing it

like this . Now, for a small value of damping let us say damping is smaller than

10 percent or 5 percent. I can make some assumption and further simplify this expression

here.

For small damping and this term



Now, if we plot this system how does it look like? Now, as you increase the value of t

basically this term here would reduce to 0. But overall, would never go to 0.

what would happen? Remember that this is a harmonic function and this is

basically representing the time varying amplitude of this function .

So, as t increases this term would vanish and then I would reach a constant amplitude

which would be represented by . Of course, there is a negative sign, but does not

matter because is basically vibrating between +1 and -1.

So, if I try to plot here (vertical axis), what would basically happen? Let me draw

this envelope curve here. So, this represents the asymptotic line which is the constant

amplitude, so in this case it is . Remember, . So, the amplitude is

actually and let us say this is (horizontal axis).

So, what will happen? The vibration will start like this, because the amplitude will

start to increase. However, because the system has some damping what will happen?

After sometime this term here would vanish and then due to applied force I would

have a constant amplitude. So, a vibration with constant amplitude. So, the response does not

become unbounded if a system has damping instead the maximum value of is .

And as you can see it is very sensitive to the value of damping.

So, if the value of damping is very small or bordering to undamped system. Let us say 0.01,

this would be very high. But, if the value of damping is, let us say some reasonable



value says 5 percent or 10 percent then my system would still be bounded. Now, this is the

technique that is typically used in different kind of structural engineering systems.

So, let us say there is always a possibility that due to applied force and the source of force

could be like seismic, wind or any other type of force that has different frequencies in them.

What happens, that if we want to avoid damage to the structure? We should include some

damping in the structure.

So, that even if there is a resonance my response is still bounded. Now, how do we provide

damping in the system? Well, there are various ways to do it people use added damping

devices. So, you could use supplementary damping using viscous dampers, friction dampers.

There are different type of dampers, but the idea is to provide damping in the system because

we might not be able to predict always that what kind of frequency loading might apply.

Because loading would have different frequencies and even if you anticipate that frequencies,

it is always better to take counter measures and include damping in the system. Because if

there is damping in the system then the response would always reduce. So, this is one way to

actually safeguard including damping with the structure. It is one of the ways in which we

can safeguard our structure against resonance.

I hope this is clear to you. Now what we are going to do here. We have said we have

discussed the basically the resonance phenomena for a damped system, now I am going to

come back to again my expression for .
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So, the total expression, let me write it-

I like to write it again and again so that you can have a look at it. Sometimes these

expressions could be overwhelming if you look at them again and again. It would help you to

conceptualize each and every term.

And, we said that this transient part of the response which is vibrating at frequency is

going to die down after some time. Our main concern here, is the steady state response and

that is what we are going to discuss further. So, let us take the steady state response.

So, the steady state response is-

The expression for C and D, I have already presented. Now, you know that this kind of

expression can always be written in the form-



So, if we compare B to φ and then write it here-

and

Then
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So, further I can write this thing as-

Where, is the dynamic amplitude-



.

Now, all you need to do is to substitute the values of the expressions D and C and then you

would able to find out the value of and φ.

I could either write as which is peak static deformation.

So, what we have derived actually that for a steady state my response can be written as-
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The deformation or displacement response factor , as this expression right here-

φ is called the phase angle which is-

So, this is the expression for the and the expression for this is deformation response

factor and the phase angle φ. Now, let us see what do they mean, right.

Now, as we have previously discussed is basically the ratio of the dynamic amplitude

to the static amplitude and represents the effect of dynamic behavior of the

system on the response of the single degree of freedom system. And, phase angle φ which is



also called phase lag it represents with respect to the applied force, which in this case is

. what is the lag that in ?

Remember, my was nothing but some constant time . However, was

nothing but some constant times . So, if you try to plot these functions

and , it starts at 0 and depending upon the value of φ it might start

early or it might start late. This φ is the difference by which the response would follow the

applied force.

So, it is something like that. If you apply the force to the right whether your response is to the

left and vice versa. So, with respect to applied force in which directions the displacement, so

φ basically gives you information on that.
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So, what I have done here? I have considered systems with different values of frequencies

ratio , let us say 0.5, 1 and 2.



And then I have tried to plot the dynamic response and also the static response

not the peak value. Remember, these are the time variation. Where is nothing but

whatever your without the influence of any mass and of course, the dynamic

displacement, obtained using solving the differential equation.

So, I have tried to obtain for these values of frequency ratio , how does the

static response? Remember static response because it is simply force divided by the stiffness.

So, it also represents the force response. So, the static response and the applied force are in

completely In-phase.
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So, I have done some calculation and got these graphs.

So, what do you see here? This is the case (1st graph) where was 0.5. This was the case

(2nd graph) where it was 1 and this was the case (3rd graph) where it was 2. So,

what do you see? I mean the blue line is for the static deformation. So, static deformation (for



) is starts at t equal to 0. However, dynamic displacement has some negative

value at . Let us say this represents the equilibrium position (starting of static response)

here, after this much of difference dynamic displacement reaches at equilibrium position. So,

this difference is represented by the phase angle φ. So, this difference here is .

How do I get that? Well, I just substitute the value of

Similarly, here you can see. that it is lagging just a little bit in the same direction.

However, if we consider for we see that when the applied force is 0. The dynamic

response has the negative minimum and when it reaches to it is maximum value which is

here, the force or static displacement is 0.

So, here these responses are lagging by 90°. . So,

here the phase difference is corresponding to a phase angle of 90°.

Now, if you do focus at the third one when starts to increase and becomes a very large

value. What you would actually see? If you apply the force to the right, the response would

be in the left direction, and vice versa. That is evident from here. When the applied

displacement or applied force reaches to it is maximum value then the dynamic displacement

is in the negative maximum direction.

So, I hope you understand what does the phase basically means. Phase is the quantity that is

used to show or express the trailing between the applied force and the response of the system.
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Once that is clear let us put our focus back on the two expressions which were for and φ.

;

And, what we would like to do remember the most important parameter here is what the

frequency ratio .

So, like we did for an undamped system what we would like to do here is plot this and

the phase angle φ for different values of frequencies ratio. The question might arise why do

we do that?  What is the important or what are the applications?

Well, if I know based on the frequency ratio what is the value of and it represents the

amplification or reduction in the response due to the dynamic behavior of the structure or due

to the frequency ratio. So, if I know that then I could design my system to have response in

within certain level. So, amplification within a certain level or reduction within a certain level

and similarly for the phase. So, let us see how this one look like.



Now, let me just draw it in the side. So, we had something like this. So, this is let us say

which is the displacement response factor or deformation response factor on vertical axis, and

the horizontal axis was nothing but the frequencies ratio . And just below this we

will also draw our phase angle.
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So, we know that if or let us say close to 0, value actually approaches to 1.

You can see from the expression of , for then becomes 1. Now, when

becomes very large, what I am seeing here becomes 0. So, I can say that for small value

it starts to increase somewhere here and then for large value it starts to it will converge at

some point here.

And, for undamped system we saw that the value was actually unbounded at .

However, if you look in this case, when my is not infinity any more. It is not

unbounded anymore. It is actually here.



So, I would get different expression for depending upon the value of . For the

undamped system where this actually becomes unbounded like something like

this. And for different value of damping, I would obtain different curves here.

All of them converging to value of 0 at very large value of . So, let us say this is a very

small value of damping 0.01, let us say this is 0.2, this is 0.5, this is 0.7 and let us say this is

. So, as you can see as you increase the damping in the system the value actually

decreases at all frequencies.
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And, what happens to the phase angle φ. So, let us see here. So, when equal to very small

value or let us say it is 0. We saw that for undamped case it was let me first annotate the axis.

So, this (vertical axis) is 0°, 90° and 180° this is phase angle φ, this is (horizontal axis)

frequency ratio is 0, 1, 2 and 3.

So, for undamped case we saw that it 𝜑 value was 0° for and then for it

was 180°. Now, if we have some damping it would look like something like this. And as you



increased damping the slope would become more gradual. So, this is the increasing value of

damping something like this. So, this is increasing value of damping.

So, the way we utilize all these results so, the design of different type of systems. For

example, if somebody says to you that within the limitation of the properties of a system you

want response or dynamic amplification not more than any specified value.

They want that well the system or the support can sustain only the deformation up to this (any

specified ). So, you would ideally like to design a system for which you can appropriately

provide damping so that the response is within this level. Or you can design your system

based on the frequency so that it always falls in this zone (any specified ).

Similarly, if somebody says to you well, is it possible that I can reduce the response of the

system subject to load to less than 1. So, a dynamic response is actually smaller than the

static. Well, you could say that you are going to design a system, so you are going to provide

either which makes this value of less than equal to 1.

So, these charts are actually very useful in first understanding the behavior of a dynamic

system and then utilizing it to design different type of systems. Now, we saw that our value of

or the dynamic response actually decreases at all values of frequencies if is increased.

So, dynamic displacement decreases with damping for all values of .

So, this decrease is actually quite sensitive to the value of . For example, if you look at

here, if you increase the damping from let us say 0.01 to 0.05, you do not see much reduction

right only this much.

However, for the same thing if you increase the damping at this frequency ratio here, let us

say this is 0.8 you can see the reduction is actually this much, which is significant reduction.

So, let us now see depending upon the frequencies ratio how would the vary and how

would the dynamic response can be characterized.
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So, let us consider three cases. In the first case I would consider a case where .

That means, this forcing frequency ω is very small. Frequency small means what? It is a

slowly varying load. So, I can say that it is a slowly varying excitation or force.

Now, what happens in that case? If you look at the value of and if you substitute

as we previously saw this becomes . So, your dynamic

displacements actually become equal to the static displacement .

So, for a very slowly varying force your dynamic displacement is equal to static displacement

and which is further equal to . This is actually controlled by the stiffness of the system.

So, what I am basically saying? Let us see, I had a spring mass damper here and if I apply a

force which is very slowly applied here like.

So, what will happen? The effect of mass will not be that much and the dynamic

displacement would effectively be equal to static displacement, and it is determined by the



stiffness of the system and damping does not play a role here. So, it is the response is not

affected by the damping here.

Now, let us consider φ here, what happens to the phase angle? Now, can you imagine if you

apply the load very very slowly here then your system would move in tandem to the applied

load. So, those would be In-phase if you apply the load very slowly.

So, even from the expression of φ when you set ,then . So, those are

In-phase and that you can see from here (graph) that if you apply load very slowly your mass

would move in tandem with the applied force. So, those are in these quantities are In-phase.
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In the second case, I am considering another extreme situation in which is a

significantly large. So, this would be the case when the applied force is varying at a very

rapid rate. So, we call it rapidly varying force.

So, for a rapidly varying force, if you substitute this value , what you will see? your

or your basically tends to 0, and your dynamic displacement is actually 0. And, again



let us assume this is spring mass damper system. The dynamic system is being represented by

this spring mass damper system here.

So, what I am basically saying that if the load is applied at a very very high frequency the

system would not even respond. So, in that case dynamic displacement is almost 0. Now let

us see what happens to the phase φ of the system, for a very high value of this one it

is value becomes 180°.

And, whatever the force that you apply. Your mass would actually undergo small

displacement. let us say it is a very small displacement as we said equals to 0. It would

effectively be opposite to that applied force. So, and are completely out of phase.

So, if your is applied in the right direction your system would move into the next

direction. Of course, we have said that the displacement is very small, but in terms of phase

they would be completely out of phase.

Now, let us consider another case, when . So, basically the forcing frequency is

close to the natural frequency of the system. Which basically we discuss about the

resonance like situation. So, in this case what will happen? If you look at the value of it

becomes which is equal to . So, peak dynamic displacement is .

So, at frequencies that are very close to the resonant frequencies, your dynamic displacement

increases significantly than the static displacement. Because remember this typical value of

zeta would be around let us say 5 % or 10 %. So, the dynamic displacement is very

sensitive to the damping if applied frequency is close to the natural frequency.

So, the response is basically controlled by the damping in the system. And let us see what

happens to the phase angle.
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So, phase angle would become in this case 90°. If you substitute in denominator, it

would be 0. So, it would be tan inverse of infinity which would effectively give you 90°. So,

basically the applied force and they are out of phase by 90°.

So, that would mean that when achieves it is maximum value would reaches to 0

and then when goes to negative again reaches to 0. So, it would be something

like what we have discussed here (Refer Slide Time: 57.10), like this situation here. When it

starts at 0 it is in minus 90 when it reaches to plus positive amplitude

then it is goes to 0 and when it goes to 0, then basically you have the

maximum value of the response . So, those are shifted by 90°.

So, these are the typical scenarios. Of course, it will not be always in these extremes. It would

always fall it between or closer to one of these scenarios.

But, based on these three you would be able to interpret or predict somewhat the behavior of

the dynamic system. So, basically, we have study that how to obtain the response of a

damped single degree freedom system subject to harmonic excitation. And then we talked



about the physical meaning of different parameters and how it effects the response of the

system.

So, we are going to conclude our lecture here today, alright.

Thank you.


